HW5

* be careful to always consider vertices in alphabetical
order (when stated)

L ———————————
L ————
29

CPSC 327: Data Structures and Algorithms + Spring 2025

HW5S

* #3 — DFS
intent was to trace the recursive DFS from class

dfs(s,s)
for each vertex u in V-{s} do
state[u] = "undiscovered”
previul = null
statels] = "discovered”
previs] = null
dfshelper(G,s)

dfshelper(G,u)
process vertex u (early)
for each edge {u,v) in G.incidentEdges(u) do
if statelv] = "undiscovered” then

process edge (u,v) each vertex is discovered right
L, scovered” w1 pefore recursing on it - the
dfshelper(G,v) <«——— neighbors are not all
state[u] = "processed” di d at
process vertex u (late) Iscovered at once
e
CPSC 327: Data Structures and Algorithms + Spring 2025 31

HW5

° #2 — bipartite graph
intent was to trace the 2-coloring / bipartite graph detection

algorithm from class rather than simply inspect the graph / look
for odd-length cycles

BFS-Based Algorithms

« bipartite graph detection /
two-coloring bipartite not bipartite

a bipartite graph is one whose vertices can be divided into two
sets such that every edge connects a vertex in one set with a
vertex in the other
coloring refers to assi?lning labels (colors) to vertices so that no
two adjacent vertices have the same label (color)

- a two-coloring uses two colors

color[s] = @

run bfs(s), setting color[v] = the opposite color of the main error with tracing the
color[u] for each discovery edge (u,v) and checking that . :
color[v] is the opposite color of color[u] for each mon- algorithm was not detecting a
discovery edge (u,v) i i i

if there is an edge (u,v) for which color[u] = color{v], the graph problematic coloring earlier

is not bipartite / two-colorable enough

intuition — follewing a path along discovery edges must alternate colors, since
those edges are graph edges

— can't change the color of any vertex without changing them all =
 —non-discovery edges are also graph edges, and ends must be opposite colors , .

HWbS

* #4 — cut vertices

the problem asked to find the cut vertices — so be sure to identify
the cut vertices!

drawing the DFS tree with forward
and back edges + entry times makes
determining the earliest reachable
ancestor and the cut vertices much
easier

« children and descendants are much
easier to identify

CPSC 327: Data Structures and Algorithms + Spring 2025 32



