How to Design (Iterative) Algorithms

- · establish the problem
- identify avenues of attack
- · define the algorithm
- show termination and correctness
- · determine efficiency

CPSC 327: Data Structures and Algorithms • Spring 2025

How to Design (Iterative) Algorithms

Define the algorithm. The core of an iterative algorithm is defining the loop.

Main steps.
 This is the core of the algorithm — the loop body. What's being repeated?

• Exit condition.

When does the loop end?

	pattern	loop structure	exit condition
ł	process input	for each input element, process that	when all of the input elements have been
		element and incorporate it into the	processed
		solution so far	
	produce output	repeatedly produce the next output	when all of the output elements have
		element	been produced
		repeatedly produce the next piece of the	when the solution is complete
		solution	
	narrow the	repeatedly eliminate some non-solutions	when the solution has found or there are
	search space		no solutions left

- Setup.

 Whatever must happen before the loop begins.
- Wrapup.
 Whatever must happen to get the final answer after the loop ends.

Make sure the algorithm works for all legal inputs — identify the cases that need to be handled and address how that handling is incorporated into the previous steps (if not already accounted for).

Assemble the algorithm from the previous steps and state it.

There shouldn't be new elements here, instead bring together the main steps, exit condition, setup, and wrapup along with any handling needed for special cases and state the whole algorithm.

How to Design (Iterative) Algorithms

Identify avenues of attack.

 Paradigms and patterns. Consider the iterative patterns defined in section 3.1.

pattern	loop structure
process input	for each input element, process that element and incorporate it into the solution so far
produce output	repeatedly produce the next output element repeatedly produce the next piece of the solution
narrow the search space	repeatedly eliminate some non-solutions

CPSC 327: Data Structures and Algorithms • Spring 2025

In a group of people, it is to be expected that some of them may not want to work with each other. Assuming that each person has at most \emph{d} other people that they don't want to work with, divide the people into d+1 groups so that everyone is in exactly one group and

	pattern	loop structure		exit condition		
Main steps.	process input	for each input eleme element and incorpo- solution so far		when all of the processed	input elements ha	ve bee
incorporate the next input item into more element	the solution to obt	ain a solution for one	3 respondents	60 %		
for each element, process it			3 respondents	60 %		
for each person, put them into a gro	ир		2 respondents	40 %		
for each person, put them into the f don't want to work with	irst group not cont	aining someone they	5 respondents	100 %		/
produce the next output item				O %		
for each group, add people to that g group that they don't want to work		re isn't anyone in the	3 respondents	60 %		
exit condition. The loop ends w	when					
all of the input items have been proc	essed		3 respondents	60 %		
when all of the ouput items have bee	en produced		1 respondent	20 %		
when every person has been added	to a group		3 respondents	60 %	~	
	a legal group		5 respondents	100 %		
when everyone has been assigned to						
when everyone has been assigned to when no one else can be added to the	ne current group			0 %		
	ne current group			0 % 0 %		

How to Design (Iterative) Algorithms

Show termination and correctness. Show that the algorithm produces a correct solution.

- Termination. Show that the loop and thus the algorithm always terminates.
 - Measure of progress
 - Identify a quantity and the direction of change that leads towards the exit condition.
 - Makina progress.
 - Explain why every iteration of the loop advances the measure of progress towards the exit condition.
 - The end is reached
 - Explain why making progress ensures that the exit condition is always reached.

pattern	measure of progress	making progress	termination argument
process	number of input	each iteration	repeatedly processing one more input
input	elements processed	processes one	element means that eventually all will
		more element	have been processed
produce	number of elements in	each iteration	repeatedly producing one more output
output	the solution	produces one	element or one more piece of the solution
		more element	means that eventually all will have been
			produced
narrow the	size of the current range	each iteration	repeatedly reducing the size of the
search space	or (alternatively) the	reduces the size	current range or the number of solutions
	number of solutions still	of the search	still in the current range means that
	in the current range	space	eventually there will be no solutions left if
			the solution hasn't been found

CPSC 327: Data Structures and Algorithms • Spring 2025

How to Design (Iterative) Algorithms

- Correctness. Show that the algorithm is correct.
 - Loop invariant.
 - State a loop invariant.
 - Establish the loop invaria
 - Explain why the loop invariant holds at the beginning of the first and second iterations of the loop.
 - Maintain the loop invariant.
 - Explain why the loop invariant continues to be true after each iteration assuming that it holds at the beginning of iteration k, explain why it also holds at the beginning of the next iteration (k+1).
 - Final answer
 - Explain why the whole algorithm setup, loop, wrapup means that the final result is a correct answer to the problem.

pattern	loop invariant
process input	have a correct solution for the first k input elements, or (alternatively)
	haven't gone wrong yet (solution so far is consistent with a solution for the
	whole problem)
produce output	have produced the first k elements of the correct output
narrow the search space	either the element is within the current search space / set of solutions or it
	was never present at all, or (alternatively) not all of the solutions (if there
	are any) have been eliminated

CPSC 327: Data Structures and Algorithms • Spring 2025

want to work with each other. Assuming that each person has at most *d* other people that they don't want to work with, divide the people into *d*+1 groups so that everyone is in exactly one group and no one is in a group with someone they don't want to work with.

| pattern | measure of progress | making progress | most progress |

number of groups that have been filled

number of people that have been assigned to a group

number of people not yet assigned to a group

CPSC 327: Data Structures and Algorithms • Spring 2025

In a group of people, it is to be expected that some of them may not

	pattern	measure of progress	making	progress	termination a	argument	
	process	number of input	each ite	eration	repeatedly pr	ocessing on	e more input
	input	elements processed	process		element mear		tually all will
			more e	lement	have been pr	ocessed	
Exit conditi	on. The loop end	ds when					
	•						
all of the inp	out items have been p	processed		3 responde	nts 60 %		
when all of	the ouput items have	been produced		1 responde	nt 20 %		_
when every	person has been add	led to a group		3 responde	nts 60 %		~
Measure of	f progress.						
	p. 03. 000.						
something t	to count the number	of people added to groups		2 responde	ents 40 ⁹		
the number	of elements consider	red		2 responde	ents 40 ⁹		
the number	of elements left to co	onsider		1 responde	ent 20 ⁹		
number of i	nput items processed			4 responde	ents 80 ⁹		
number of a	output items processe	ad			0.%		- 1

	want to work with e	ach other	. Assuming tha	at each pe	rson has at
	most d other people	that they	don't want to	work with	, divide the
	people into d+1 grou	ups so tha	nt everyone is i	n exactly o	one group and
Main steps.	no one is in a group	with som	eone they don	t want to	work with.
for each person, put them into the fir don't want to work with	st group not containing sor	meone they	5 respondents	100 %	~
Exit condition. The loop ends w	hen				
when every person has been added to	a group		3 respondents	60 %	<u> </u>
[pattern	loop invaria	nt		
Loop invariant.	process input	have a corr	ect solution for the e wrong yet (solution		lements, or (alternatively) nsistent with a solution for th
			,		
0.6.01					
the first k people have been assigned	to groups		2 respondents	40 %	
the first k people have been assigned the first k people have been assigned with someone they don't want to wor	to groups so that no one is	in a group	2 respondents 4 respondents	40 [%]	
the first k people have been assigned	to groups so that no one is	in a group			
the first k people have been assigned with someone they don't want to wor there are at most d+1 groups the first k people have been assigned with someone they don't want to wo	to groups so that no one is k with	s in a group	4 respondents	80 %	
the first k people have been assigned with someone they don't want to wor there are at most d+1 groups the first k people have been assigned	to groups so that no one is k with to groups so that no one is to groups so that no one is rk with and there are at mo	s in a group	4 respondents 2 respondents	80 % 40 %	
the first k people have been assigned with someone they don't want to wor there are at most d+1 groups the first k people have been assigned with someone they don't want to wo groups	to groups so that no one is k with to groups so that no one is to groups so that no one is rk with and there are at mo	s in a group	4 respondents 2 respondents 4 respondents	80 % 40 % 80 %	
the first k people have been assigned with someone they don't want to wor there are at most d+1 groups the first k people have been assigned with someone they don't want to wo groups have a correct solution for the first k	to groups so that no one is k with to groups so that no one is to groups so that no one is rik with and there are at mo input items	s in a group	4 respondents 2 respondents 4 respondents 2 respondents	80 % 40 % 80 %	
the first k people have been assigned with someone they don't want to wor there are at most d+1 groups the first k people have been assigned with someone they don't want to wo groups have a correct solution for the first k haven't gone wrong yet	to groups so that no one is k with I to groups so that no one is to groups so that no one is k with and there are at mo input items output	s in a group	4 respondents 2 respondents 4 respondents 2 respondents	80 % 40 % 80 % 40 % 20 %	