

CPSC 327: Data Structures and Algorithms • Spring 2025 70

A Series of Choices

• divide-and-conquer works by dividing the task into
independent subproblems which are solved separately

• an alternative is to build up a solution incrementally by
making a series of choices

CPSC 327: Data Structures and Algorithms • Spring 2025 71

Common Elements – Approaches and Flavors

• as with iterative algorithms, there are two main
approaches to the series of choices

• there are also several common types of tasks which lead
to slightly different flavors for the algorithm components

– these can overlap – pick what best aligns with the primary task
– not an exhaustive list

CPSC 327: Data Structures and Algorithms • Spring 2025 72

Paradigms

• how many alternatives need to be considered for each
decision leads to fundamentally different algorithmic
paradigms

CPSC 327: Data Structures and Algorithms • Spring 2025 73

Greedy Algorithms

• iterative

• always make a local decision
– each choice is made without consideration of future possibilities

• often, but not exclusively, applied to optimization problems
– goal is to find the best solution among (generally) many legal solutions
– for non-optimization problems, goal is to find a legal solution among

(generally) many invalid (non-)solutions

• don’t work for everything – requires
– greedy choice property – that a globally optimal/legal solution can be

found by making local choices
– optimal substructure property – that an optimal/legal solution can be

constructed from optimal/legal solutions of subproblems

• a correctness proof is essential!
– finding counterexamples is an important technique for identifying

incorrect greedy choices

CPSC 327: Data Structures and Algorithms • Spring 2025 74

Proof Techniques – Incorrectness

One counterexample is all that is needed to prove an
algorithm incorrect.

Properties of a good counterexample.

• simple, which often means small
• verifiable – need to be able to compute the algorithm's

output and give a better answer

Strategies.

• think exhaustively – can often enumerate all possible
inputs of a small size

• hunt for weakness – look for a case where the algorithm's
choice is the wrong thing to do

• try inputs with duplicates or ties, as that neutralizes the
algorithm's choice

• seek extremes rather than uniformity
CPSC 327: Data Structures and Algorithms • Spring 2025 75

Counterexamples

• both numbers negative e.g. -5, -2
– -5 + -2 = -7 ≥ min(-5,-2) = -5 → false

CPSC 327: Data Structures and Algorithms • Spring 2025 76

Counterexamples

subset sum problem

subset sum problem

Pick

Pick

Pick

CPSC 327: Data Structures and Algorithms • Spring 2025 77

How to Design Greedy Algorithms

• establish the problem
– for optimization problems, identify “legal solution” separate from “optimal

solution”

• identify avenues of attack
– patterns – iterative patterns + series-of-choices interpretation

• what the decision is about – next input item (process input) or next output item (produce
output)

– flavors
• type of decision (picking a subset, ordering, labeling, …)

– greedy choice – by what criteria can we pick an alternative?
– counterexamples – rule out incorrect greedy choices

• define the algorithm
– iterative algorithm steps

• show termination and correctness
– loop invariant patterns

• for optimization problems – staying ahead
• in general – we haven’t gone wrong yet

– commonly use proof by contradiction for the “maintain the invariant” step

• determine efficiency

CPSC 327: Data Structures and Algorithms • Spring 2025 78

Proof Techniques – Contradiction

• assume that what you want to prove is false

• develop logical consequences from this assumption, until
you get to one that is demonstrably false

• since there were no flaws in the deduction, the
assumption that what you want to prove is false must
have been faulty and thus what you want to prove is true

