A Series of Choices

« divide-and-conquer works by dividing the task into
independent subproblems which are solved separately

 an alternative is to build up a solution incrementally by
making a series of choices

Given a collection of events with start time (i) and finish time f(7) (0 < s(i) < f()), find the
largest set of non-overlapping events.

initialize an empty set of events
repeatedly

select a non-overlapping event
until no non-overlapping events remain

CPSC 327: Data Structures and Algorithms + Spring 2025

Paradigms

* how many alternatives need to be considered for each
decision leads to fundamentally different algorithmic
paradigms

Common Elements — Approaches and Flavors

* as with iterative algorithms, there are two main
approaches to the series of choices

e process input, where the choice or decision is about what to do with each input element in turn
e produce output, where the choice or decision is about what what the next output element is

« there are also several common types of tasks which lead
to slightly different flavors for the algorithm components

e a subset, where the task to is select a subset of the input items subject to some subset membership
constraint

e a sequence, where the task is to produce an ordering of all or a subset of the input items

e a labelling, where the task is to assign labels to the input items

these can overlap — pick what best aligns with the primary task
not an exhaustive list

CPSC 327: Data Structures and Algorithms + Spring 2025

Greedy Algorithms

e If only one alternative needs to be considered, the formulation can be iterative. The key focus for
the algorithm is determining how to pick that right alternative for each decision, and showing that
the series of choices made leads to a correct solution. Greedy algorithms are of this type and will be
considered in chapter 7.

If more than one alternative needs to be considered, the formulation is typically recursive. The key
focus for the algorithm is how to avoid an exponential blowup in running time. Backtracking, branch-
and-bound, and dynamic programming algorithms are of this type and will be considered in chapters §
to 10.

CPSC 327: Data Structures and Algorithms + Spring 2025

 iterative

« always make a local decision
each choice is made without consideration of future possibilities

« often, but not exclusively, applied to optimization problems
goal is to find the best solution among (generally) many legal solutions

for non-optimization problems, goal is to find a legal solution among
(generally) many invalid (non-)solutions

» don’t work for everything — requires

greedy choice property — that a globally optimal/legal solution can be
found by making local choices

optimal substructure property — that an optimal/legal solution can be
constructed from optimal/legal solutions of subproblems
° a correctness proof is essential!

finding counterexamples is an important technique for identifying
incorrect greedy choices

CPSC 327: Data Structures and Algorithms + Spring 2025

Proof Techniques — Incorrectness

One counterexample is all that is needed to prove an
algorithm incorrect.

Properties of a good counterexample.

« simple, which often means small

« verifiable — need to be able to compute the algorithm's
output and give a better answer

Strategies.

« think exhaustively — can often enumerate all possible
inputs of a small size

* hunt for weakness — look for a case where the algorithm's
choice is the wrong thing to do

« try inputs with duplicates or ties, as that neutralizes the
algorithm's choice

« seek extremes rather than uniformity

Counterexamples

1-2. [/ Show that a x b can be less than min(a. &).

)/ Design/draw a road network with two points ¢ and b such that the fastest
route hetween a and b is not the shortest route.

/5] Design/draw a road network with two points a and b such that the shortest
rou

between o and b is not the route with the fewest turns.
1-5. (4] The subset sum problem . is as follows: given a set of integers S = {s1,52,.... 5.},
and a target number T, find a subset of § that adds up exactly to 7. For ex-
ample, there exists a subset within § = {1,2,5.9,10} that adds up to 1" = 22

but not T" = 23.
Find counterexamples to each of the following algorithms for the subset sum problem
That is, give an 5 and T' where the algorithm does not find a solution
, even though a solution exists.

(a) Pick elements of § in left to right order if they fit,

(b} Pick elements of §

< from smallest to largest, that is,

(c) Pick elements of S from largest to smallest.

CPSC 327: Data Structures and Algorithms + Spring 2025

=

Counterexamples

Find a counterexample to prove the following statement false:

a + b >= min(a,b)

* both numbers negative e.g. -5, -2
-5+-2=-7>2min(-5,-2) =-5 - false

CPSC 327: Data Structures and Algorithms + Spring 2025

How to Design Greedy Algorithms

 establish the problem
for optimization problems, identify “legal solution” separate from “optimal
solution”

* identify avenues of attack

patterns — iterative patterns + series-of-choices interpretation

- what the decision is about — next input item (process input) or next output item (produce
output)

flavors

- type of decision (picking a subset, ordering, labeling, ...)
greedy choice — by what criteria can we pick an alternative?
counterexamples — rule out incorrect greedy choices

« define the algorithm
iterative algorithm steps
* show termination and correctness

loop invariant patterns
« for optimization problems — staying ahead
« in general — we haven't gone wrong yet

commonly use proof by contradiction for the “maintain the invariant” step
= determine efficiency

Proof Techniques — Contradiction

+ assume that what you want to prove is false
+ develop logical consequences from this assumption, until
you get to one that is demonstrably false

* since there were no flaws in the deduction, the
assumption that what you want to prove is false must
have been faulty and thus what you want to prove is true

CPSC 327: Data Structures and Algorithms + Spring 2025 78

