Greedy Algorithms

- iterative series-of-choices
 - main steps: repeat make the next choice until done
- always make a *local* decision
 - each choice is made without consideration of future possibilities
 - pick a single alternative for each choice, no regrets can't reconsider later
- often, but not exclusively, applied to optimization problems
 - goal is to find the best solution among (generally) many legal solutions
 - for non-optimization problems, goal is to find a legal solution among (generally) many invalid (non-)solutions
- don't work for everything
 - some problems aren't solvable with only locally good decisions
 e.g. knapsack empty space has no value, so it may be better to take several lesser-valued items that fill more of the space and thus achieve a higher total value
- a correctness proof is essential!
 - finding counterexamples is an important technique for identifying incorrect greedy choices

You're planning to drive from Boston to Seattle on I-90 this summer, and have a GPS programmed with the locations of gas stations along the way. Assuming that your car can go 400 miles on a tank of gas, determine where you should stop for gas in order to make as few stops as possible.

series-of-choices patterns and flavors

task	iterative pattern	choice
subset	process input	include element in the solution or not
	produce output	which element to include in the solution next
ordering	process input	where to add the element into the solution-so-far
	produce output	which element to append to the solution-so-far
labeling	process input	the label to give the element

/hat will be the choice in the series of choices?			"gas stations to stop at" is a subset
include the element in the solution or not		0 %	task
which element to include in the solution next		0 %	
where to add the element into the solution-so-far		0 %	
which element to append to the solution-so-far		0 %	
the label to give the element		0 %	
whether to stop at the current gas station		0 %	
which gas station to stop at next	4 respondents	80 %	subset
where the current gas station goes in the list of stops		0 %	wording
which gas station to add to the end of the list of stops		0 %	labeling
assign "stop" or "don't stop" to the station	1 respondent	20 %	wording

CPSC 327: Data Structures and Algorithms • Spring 2025

You're planning to drive from Boston to Seattle on I-90 this summer, and have a GPS programmed with the locations of gas stations along the way. Assuming that your car can go 400 miles on a tank of gas, determine where you should stop for gas in order to make as few stops as possible.

main steps: repeat pick which gas station to stop at next until we get within 400 miles of Seattle

Complete the loop invariant: After k iterations	after k iterations means	after the first <i>k</i>	stops	
Choose everything that should be part of the invariant	need to address bot and optimality	n legality (valio	1 solution)	
the solution-so-far is still valid	3 respondents	60 %	too vague – state specifi	
the solution-so-far is optimal	🔺 not	 not staying ahead 		
the set of stops chosen so far is valid	3 respondents	60 %	language fo the problem	
the number of stops the algorithm has made is no more than the stops the optimal has made	number of 2 respondents	40 %	trivial – comparing solutions after k stop	
the number of stops is the fewest possible	2 respondents	40 %	not a staying	
the kth stop is as far from Boston as possible	1 respondent	20 %	ahead argument	
the algorithm's partial solution is at least as good as any optimal s after k steps	olution 1 respondent	20 %	too vague – state speci language for the proble	
the algorithm's kth stop is farther from Boston than the optimal's	kth stop	0 %	an only claim at leas	
the algorithm's kth stop is at least as far from Boston as the optic stop	nal's kth 1 respondent	20 %	as good as, not bette	
no stops are more than 400 miles apart	4 respondents	80 %	\sim	