

CPSC 327: Data Structures and Algorithms • Spring 2025 37

HW 6

• two corrections / clarifications

– #1 (Bellman-Ford) – starting vertex should be A
– #3 (Prim) – starting vertex should be A

– this has been corrected in the handout – use that if resubmitting
• no penalty for a different choice on the initial handin

CPSC 327: Data Structures and Algorithms • Spring 2025 38

HW 6

• #1 – Bellman-Ford
– go through every edge and update according to the current dist

values for each iteration of the repeat loop
• for simplicity go through the edges in alphabetical order – go through the

vertices in alphabetical order and then each vertex’s neighbors in
alphabetical order

• remember to consider both directions for undirected edges

– document at least the current dist labels after the end of each
iteration of the repeat loop, but showing more of your work
doesn’t hurt!

edge visit order –

AB
AE
AH
BA
BC
BF
CB
CD
DC
DF
DG

EA
EF
EH
EJ
FB
FC
FD
FE
FJ
GE
GI
GJ

HA
HI
IG
IH
JE
JF
JG

CPSC 327: Data Structures and Algorithms • Spring 2025 39

HW 6

• #5 – wedding guest seating arrangement

– the desired goal is an acceptable seating arrangement – an
assignment of people to tables avoiding pairs of guests on bad
terms with each other – not (only) whether such an assignment
is possible

CPSC 327: Data Structures and Algorithms • Spring 2025 40

HW 6

• graph modeling (#4-6)

– the graph captures the problem setup and input (only)

• make sure all of the information relevant to the solution of the problem is
represented

– e.g. for #4, winning the game means a series of moves to go from cell 1 to cell
n – make sure all of the possible moves are represented in the graph

» how are the dice rolls represented?

– e.g. for #4, want to know the fewest dice rolls to win – make sure chutes and
ladders aren’t counted if these are separate moves from dice rolls

• don’t incorporate a solution strategy into the construction of the graph
– e.g. for #4, omitting chutes from the possible moves because moving

backwards won’t help get to the end faster or only including cells at the ends
of ladders because you’ll always want to take a ladder

» these may be correct strategies, but then you have to prove that…

• don’t build the graph to represent the solution or the objective
– e.g. for #4, only have edges from cell i to cell i+1 plus for chutes and ladders

because the player progresses through the cells in sequence (except due to
chutes and ladders)

CPSC 327: Data Structures and Algorithms • Spring 2025 41

HW 6

• graph modeling (#4-6)

– “what is the solution to the problem in terms of the graph” means
to translate the original problem’s solution into the graph
structures

• e.g. for #6, you want a winning pickup order for the cards – how are the
cards represented in the graph, and what does a winning pickup order
correspond to?

• not asking about the algorithm for solving the problem!

– for “give an efficient algorithm for solving the problem” (only)
identify the well-known problem or algorithm that can be used as
a black box to solve the problem

• you do not need to describe the algorithm for anything we’ve discussed in
class: BFS, DFS, cut vertices, MST, Dijkstra’s, …

• if you need to modify the well-known algorithm or explain something about
how to use it in this particular case, don’t! (modify the graph instead)

• make sure there’s a clear connection between the well-known
algorithm/problem and what the solution looks like in the graph

– e.g. if you say Dijkstra’s will solve the problem, make sure that you’ve identified that the
solution to the problem in terms of the graph is a shortest path (and that you have a
directed graph with weights > 0)

CPSC 327: Data Structures and Algorithms • Spring 2025 42

HW 6

• graph modeling (#4-6)

– the graph properties (simple or not, sparse or dense, acyclic or
not, etc) depend on the nature of the problem, not the solution or
what is needed for a solution to exist

• e.g. topological sort requires a DAG, but whether or not the graph you
want to apply topological sort to is a DAG depends on the edges and
whether it is possible for them to form cycles

CPSC 327: Data Structures and Algorithms • Spring 2025 43

HW 6

• simple means no self-loops or multiedges

– a self loop is an edge that connects a vertex to itself
– multiedges are multiple edges between the same pair of vertices

– a simple graph can have cycles, or not
– a simple graph can contain more than one edge (it most likely

does!)
– a simple graph can be directed, or not

• in a directed graph, edges (u,v) and (v,u) are not multiedges

https://commons.wikimedia.org/wiki/File:Example_of_simple_undirected_graph_2.svg

self loop

multiedges

edges AB, BC,
AC form a cycle

CPSC 327: Data Structures and Algorithms • Spring 2025 44

HW 6

• embedded vs topological

– embedded means the vertices and edges have geometric
positions

• a drawing of a graph is an embedding

– for our purposes, the distinction is that embedded graphs have
geometry and the geometry is significant to the task, while for
topological graphs only the connections between vertices matter

• e.g. a graph representing a road network is embedded if the real-world
spatial layout matters – e.g. if a turn at an intersection is a right turn or a
left turn – and topological if all that matters is which roads connect at
intersections

CPSC 327: Data Structures and Algorithms • Spring 2025 45

HW 6

• implicit vs explicit

– can you determine incident edges and adjacent vertices without
directly storing what is connected to what?

• yes → implicit, no → explicit

– e.g. a graph representing a road network is explicit because the
intersections and which roads connect which intersections must be
stored

– e.g. the graph used to find the fewest moves to get from one
configuration to another is implicit because we can compute the
adjacent configurations by adding/subtracting 1 from each value

– you can get in-between situations where some information must be
stored but the rest can be computed

• e.g. the forbidden configurations
CPSC 327: Data Structures and Algorithms • Spring 2025 46

HW 6

• be careful not to mix up similar-sounding
terms and tasks

– a bipartite graph is one whose vertices can
be divided into two groups so that no edge
connects two vertices in the same group

– a 2-coloring is an assignment of two colors to
vertices so that no edge connects two
vertices of the same color

• a graph with a 2-coloring is bipartite, and a
bipartite graph has a 2-coloring – finding a 2-
coloring (or failing to do so) is a way of showing
that a graph is bipartite (or not)

– bipartite matching refers to finding a set of
edges in a bipartite graph such that no edges
in the set share a vertex

• typically the goal is the largest such set

https://commons.wikimedia.org/wiki/File:Simple_bipartite_graph;_two_layers.svg
https://commons.wikimedia.org/wiki/File:Halls_theorem_matching_graph_theory.svg

bipartite graph with a
2-coloring

blue edges form a
maximum matching

