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Greedy Isn't Always Good

Greedy algorithms are typically efficient (polynomial time) 
but there are many situations where they don't work – 

• it may not be possible to obtain a globally                
optimal solution via only locally optimal                        
choices
– e.g. 0-1 knapsack

• it may be hard to come up with a plausible                          
greedy choice
– e.g. n queens – place n queens on an nxn chess                                  

board so that no row, column, or diagonal contains more                            
than one queen

• you may want to enumerate all possibilities
– e.g. generating anagrams
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Backtracking

• applicable for series-of-choices problems when greedy 
doesn’t work

– it is necessary to consider more than one alternative

• implementation is recursive, using case analysis
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Backtracking Formulation

We choose each alternative for the current decision in turn and 
then ask the friend to solve the rest of the problem in light of that 
choice.

– if the friend succeeds, we have a solution

• the friend's solution is constrained by the partial solution
– partial solution is passed explicitly or implicitly (by the construction of 

the subproblem)

The other way around – we ask the friend to solve a smaller 
version of the problem and then we choose an alternative and 
add that to the solution – doesn't work.

– if we have several legal alternatives, which do we pick?
• the discovery that our choice was bad comes after we've returned our answer

• the friend's choices are only constrained by the partial 
solution, so we have no way to direct them to come up with a 
different solution
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Key Points – Backtracking

• (essentially) exhaustive search applies when greedy fails – the right 
choice at the moment depends on what else can happen later

• development process
– very similar to the general recursive process
– structure of the main case for case analysis
– adds “partial solution” and “alternatives” as part of generalize / 

define subproblems
– emphasis is on establishing the problem, assembling the 

algorithm, showing the main case, and time
• most of the proving correctness steps are either trivial or always the same 

given our development process framework

• the formulation of the series of choices determines the 
branching factor and the longest path length
– this impacts the running time – need to take into account during 

formulation of the algorithm and not only at the end

• the three structural variations (one solution, best solution, all 
solutions) and the corresponding code structure
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