

CPSC 327: Data Structures and Algorithms • Spring 2025 87

Greedy Isn't Always Good

Greedy algorithms are typically efficient (polynomial time)
but there are many situations where they don't work –

• it may not be possible to obtain a globally
optimal solution via only locally optimal
choices
– e.g. 0-1 knapsack

• it may be hard to come up with a plausible
greedy choice
– e.g. n queens – place n queens on an nxn chess

board so that no row, column, or diagonal contains more
than one queen

• you may want to enumerate all possibilities
– e.g. generating anagrams

https://commons.wikimedia.org/wiki/File:Solution_C_for_8_Queen_Puzzles.png CPSC 327: Data Structures and Algorithms • Spring 2025 88

Backtracking

• applicable for series-of-choices problems when greedy
doesn’t work

– it is necessary to consider more than one alternative

• implementation is recursive, using case analysis

CPSC 327: Data Structures and Algorithms • Spring 2025 89

Backtracking Formulation

We choose each alternative for the current decision in turn and
then ask the friend to solve the rest of the problem in light of that
choice.

– if the friend succeeds, we have a solution

• the friend's solution is constrained by the partial solution
– partial solution is passed explicitly or implicitly (by the construction of

the subproblem)

The other way around – we ask the friend to solve a smaller
version of the problem and then we choose an alternative and
add that to the solution – doesn't work.

– if we have several legal alternatives, which do we pick?
• the discovery that our choice was bad comes after we've returned our answer

• the friend's choices are only constrained by the partial
solution, so we have no way to direct them to come up with a
different solution

CPSC 327: Data Structures and Algorithms • Spring 2025 90

Key Points – Backtracking

• (essentially) exhaustive search applies when greedy fails – the right
choice at the moment depends on what else can happen later

• development process
– very similar to the general recursive process
– structure of the main case for case analysis
– adds “partial solution” and “alternatives” as part of generalize /

define subproblems
– emphasis is on establishing the problem, assembling the

algorithm, showing the main case, and time
• most of the proving correctness steps are either trivial or always the same

given our development process framework

• the formulation of the series of choices determines the
branching factor and the longest path length
– this impacts the running time – need to take into account during

formulation of the algorithm and not only at the end

• the three structural variations (one solution, best solution, all
solutions) and the corresponding code structure

CPSC 327: Data Structures and Algorithms • Spring 2025 91

