

CPSC 327: Data Structures and Algorithms • Spring 2025 93

key elements of a
backtracking
formulation –

– series of choices,
seek to limit the
branching factor

– friends complete
the current partial
solution, in light of the
choices made so far

– base case is a
complete (legal)
solution

CPSC 327: Data Structures and Algorithms • Spring 2025 94

CPSC 327: Data Structures and Algorithms • Spring 2025 95 CPSC 327: Data Structures and Algorithms • Spring 2025 96

Running Time

How long does this take?

• DFS is O(n+m)
– n = number of vertices, m = number of edges

How big is the state space graph?

• branching factor b – number of next choices
• longest path h – largest number of decisions needed to

reach a base case

→ worst case n = O(bh), m = O(bh+1)
– if there are multiple paths to the same vertex, n can be much

smaller – but without storing discovered vertices, repeat visits
are handled the same as new visits (and storing discovered vertices
takes exponential space)

This...is not good.

CPSC 327: Data Structures and Algorithms • Spring 2025 97

Key Points – Making Backtracking Practical

• recursive backtracking is generally not practical without
additional effort
– DFS is O(n+m) where n = O(bh)

• b = branching factor – number of next options for each choice
• h = length of longest path – (maximum) number of choices made to get to

a complete solution

CPSC 327: Data Structures and Algorithms • Spring 2025 98

Key Points – Making Backtracking Practical

• while reducing how much is explored is the dominating
factor, it is also important to be efficient in what is done
for each subproblem
– determining whether or not to prune must be efficient
– modify/restore rather than copying for generating subproblems

and partial solutions
– exploit clever representations

CPSC 327: Data Structures and Algorithms • Spring 2025 99

Generating New Partial Solutions and Subproblems

• making a choice typically means an incremental change
to the current partial solution and subproblem

• generating the new by copying the old may be expensive
– copying a collection takes time proportional to the size of the

collection

Instead, it may be more efficient to modify the current partial
solution and subproblem and then undo.

 for each legal next choice
 add choice to partial solution and remove
 from subproblem
 result = solve(modified partial solution,
 modified subproblem)
 remove choice from partial solution and add
 to subproblem

CPSC 327: Data Structures and Algorithms • Spring 2025 100

Generating New Subproblems

An appropriate framing of alternatives and a clever
representation may also be effective.

• e.g. 0-1 knapsack
– subproblem requires the set of items remaining to consider

• if the items left to be considered are all at one end of an array, a single
index k + the original collection of items is sufficient to define S for the
subproblem

– the series of choices and the alternatives
• take or not take the next item (process input)

– S is defined by k+1 for the subproblems
• which item to take next (produce output)

– combine with considering items in some order → S is defined by k+1, k+2,
k+3, … for the subproblems

