0-1 Knapsack

» frame as a series of choices — choose next item to take

« partial solution — set of items taken so far

« alternatives — items not yet chosen which fit in the pack

* subproblem — knapsack(S’,W")
input: set S’ of items left to consider, remaining unfilled capacity
of the knapsack W'
output: items chosen, total value of those items

task: find the highest-value set of items whose total weight does
not exceed the remaining capacity of the knapsack

« should we bother to solve knapsack(S’,W'")?
pruning: no, if the smallest item in S’ exceeds W' nothing else
will fit — the partial solution is actually a complete solution (treat
as a base case)
branch and bound: no, if the best way to fill the pack from this
point isn't better than the best solution already found

« need an estimate of the best solution obtainable from this point
+ need an initial value for the best solution already found (until we find the first solution) 5

Which of the following would be safe choices for a bound function? Use the value of the
items chosen so far plus ...

= filling the pack with the items will fitin their entirety (no fractional amounts),
considered in order of decreasing value/weight ratio

filling the pack with as much as possible of each of the remaining items (a fractional
amount is allowed), in order of increasing value

the lowest value/weight ratio of any item times the remaining capacity of the pack

filling the pack with as much as possible of each of the remaining items (a fractional
amount is allowed), in order of decreasing value

the lowest value/weight ratio of any remaining (not yet considered) item times the
remaining capacity of the pack

filling the pack with as much as possible of each of the remaining items (a fractional
amount is allowed), in order of increasing value/weight ratio

the highest value/weight ratio of any item times the remaining capacity of the pack

* filling the pack with as much as possible of each of the remaining items (a fractional
amount is allowed), in order of decreasing value/weight ratio

filling the pack with the items will fit in their entirety (no fractional amounts),
considered in order of increasing value/weight ratio

the highest value/weight ratio of any remaining (not yet considered) item times the
remaining capacity of the pack

0-1 Knapsack

Bound function — upper bound or lower bound?
maximization problem, so bigger is better

prune if solutions aren't good enough - “safe” is an estimate
which is too good - “too good” is bigger — looking for upper
bound on the solution value

CPSC 327: Data Structures and Algorithms + Spring 2025 116

. : range 1-100
Bound Function Quality capacity ~half of the total

weight of all items

100000 ; ; ; . '
upper bound = infinity (no pruning) knapsackd ——
40000 upper bound = partial solution's value + fill with bestitem knapsackl —<—
upper bound = partial solution's value + fill withitem k/2 knapsacklb —e— |
20000 F upper bound = partial solution's value + fill with best remaining knapsack2 —s— 4
upper bound = partial solution's value + greedy fractional knapsack3 /
i
70000 | H
/
/
60000 - =
o
E 50000
40000
30000 |-
20000
10000
5 | \ \ . \
2 4 6 8 10 12 14 16 18 20
n

CPSC 327: Data Structures and Algorithms + Spring 2025 118

(compare the range on the scales

Bound Function Quallty in this to the previous slide)

5000 T T T T T T

4000 ml

3000

time

2000

1000

450 500

CPSC 327: Data Structures and Algorithms + Spring 2025 119

0-1 Knapsack

Initial solution value — upper bound or lower bound?
maximization problem, so bigger is better

update if solution is better - “safe” is an estimate which is not
good enough - “not good enough” is smaller — looking for
lower bound on the solution value

CPSC 327: Data Structures and Algorithms + Spring 2025 121

Strategies

A good bound function depends on the specific nature of
the problem and what you can exploit about its structure.

But there are a few general tactics that might serve as
starting points —

 value so far + best single choice X number of choices left
 value so far + best single next choice X number of
choices left

only safe if all choices are available at each stage (e.g. knapsack
but not TSP)

« value so far + greedy solution from that point
only safe if greedy can do better than the actual solution (true for
knapsack, not for TSP and max independent set)

« consider trivial bound and what is over/undercounted

e.g. max independent set - |S| overcounts because a vertex and
its neighbor can't both be in the set; |S|-mindeg(S) addresses
that for one vertex picked

Which of the following would be safe choices for an initial solution estimate? Choose all that
apply.

consider the items in any order, taking each item if it fits in the pack

0

the lowest value/weight ratio of any item times the capacity of the pack
the highest value/weight ratio of any item times the capacity of the pack

consider the items in increasing order of value/weight ratio, taking each item if it fits in
the pack

X X

consider the items in decreasing order of value/weight ratio, taking each item if it fits
in the pack

fill the pack with as much of each item as will fit (fractional amounts allowed),
considering items in order of decreasing value/weight ratio

CPSC 327: Data Structures and Algorithms + Spring 2025 122

Initial Solution Estimate

Upper or lower bound?

safe = conservative = worse than the optimal

if your estimate is better than the optimal, you'll prune away the
branch containing the optimal as not good enough

Note: bound is on the value of the optimal solution, not the
value of any legal solution
e.g. “upper bound” does not mean that it needs to be worse than
all possible legal solutions — and that wouldn't help you prune
anything at all

CPSC 327: Data Structures and Algorithms + Spring 2025 123

Initial Solution Estimate

Any legal solution is a safe estimate — it will be no better
than the optimal.
greedy can be a good strategy
e.g. greedy TSP — take cheapest edge to not-yet-included vertex

e.g. maximal independent set — take any legal vertex until there
are no more

But you may be able to get a tighter estimate without having
an actual solution in mind.

(Then safety is important to establish.)
e.g. 2*MST = optimal TSP solution

CPSC 327: Data Structures and Algorithms + Spring 2025

