

CPSC 327: Data Structures and Algorithms • Spring 2025 115

0-1 Knapsack

• frame as a series of choices – choose next item to take

• partial solution – set of items taken so far
• alternatives – items not yet chosen which fit in the pack
• subproblem – knapsack(S’,W')

– input: set S’ of items left to consider, remaining unfilled capacity
of the knapsack W'

– output: items chosen, total value of those items
– task: find the highest-value set of items whose total weight does

not exceed the remaining capacity of the knapsack

• should we bother to solve knapsack(S’,W')?
– pruning: no, if the smallest item in S’ exceeds W' nothing else

will fit – the partial solution is actually a complete solution (treat
as a base case)

– branch and bound: no, if the best way to fill the pack from this
point isn't better than the best solution already found

• need an estimate of the best solution obtainable from this point
• need an initial value for the best solution already found (until we find the first solution) CPSC 327: Data Structures and Algorithms • Spring 2025 116

0-1 Knapsack

Bound function – upper bound or lower bound?
– maximization problem, so bigger is better
– prune if solutions aren't good enough → “safe” is an estimate

which is too good → “too good” is bigger → looking for upper
bound on the solution value

CPSC 327: Data Structures and Algorithms • Spring 2025 117 CPSC 327: Data Structures and Algorithms • Spring 2025 118

Bound Function Quality
range 1-100
capacity ~half of the total
weight of all items

CPSC 327: Data Structures and Algorithms • Spring 2025 119

Bound Function Quality
(compare the range on the scales
in this to the previous slide)

CPSC 327: Data Structures and Algorithms • Spring 2025 120

Strategies

A good bound function depends on the specific nature of
the problem and what you can exploit about its structure.

But there are a few general tactics that might serve as
starting points –
• value so far + best single choice ✕ number of choices left
• value so far + best single next choice ✕ number of

choices left
– only safe if all choices are available at each stage (e.g. knapsack

but not TSP)
• value so far + greedy solution from that point

– only safe if greedy can do better than the actual solution (true for
knapsack, not for TSP and max independent set)

• consider trivial bound and what is over/undercounted
– e.g. max independent set - |S| overcounts because a vertex and

its neighbor can't both be in the set; |S|-mindeg(S) addresses
that for one vertex picked

CPSC 327: Data Structures and Algorithms • Spring 2025 121

0-1 Knapsack

Initial solution value – upper bound or lower bound?
– maximization problem, so bigger is better
– update if solution is better → “safe” is an estimate which is not

good enough → “not good enough” is smaller → looking for
lower bound on the solution value

CPSC 327: Data Structures and Algorithms • Spring 2025 122

fill the pack with as much of each item as will fit (fractional amounts allowed),
considering items in order of decreasing value/weight ratio

CPSC 327: Data Structures and Algorithms • Spring 2025 123

Initial Solution Estimate

Upper or lower bound?
• safe = conservative = worse than the optimal

– if your estimate is better than the optimal, you'll prune away the
branch containing the optimal as not good enough

Note: bound is on the value of the optimal solution, not the
value of any legal solution

– e.g. “upper bound” does not mean that it needs to be worse than
all possible legal solutions – and that wouldn't help you prune
anything at all​

CPSC 327: Data Structures and Algorithms • Spring 2025 124

Initial Solution Estimate

Any legal solution is a safe estimate – it will be no better
than the optimal.
• greedy can be a good strategy

– e.g. greedy TSP – take cheapest edge to not-yet-included vertex
– e.g. maximal independent set – take any legal vertex until there

are no more

But you may be able to get a tighter estimate without having
an actual solution in mind.
(Then safety is important to establish.)

– e.g. 2*MST ≥ optimal TSP solution

