

CPSC 327: Data Structures and Algorithms • Spring 2025 55

HW 7

• give a complete statement of the algorithm
– identify the base case (e.g. n=1) and state what the answer is in

that case
– for easy split, explain how to do the combine step with enough

detail to understand...
• ...how to do it (if there’s not an obvious brute force algorithm)

– e.g. “count the inversions involving an element from the first half and an
element from the second half” → since the definition of inversion is a pair (a,b)
where a>b, the obvious brute force algorithm would be to check all pairs of
elements (a,b) where a is in the first half and b is in the second half

• ...how to achieve the claimed/desired running time (if better than brute
force)

– e.g. checking all pairs of elements (a,b) where a is in the first half and b is in
the second half involves n/2 x n/2 pairs → O(n2) … so if you claim O(n) for this
step, you need to explain how

– (for easy merge, do the same for the split step)
– it’s OK to expect the friends to do more, but this needs to be

accounted for –
• include what they do in the definition of the subproblem (task, output)
• include how they do it in the main case steps

CPSC 327: Data Structures and Algorithms • Spring 2025 56

HW 7

• account for special cases – watch for implicit assumptions
– e.g. if a task involves finding the min or the max … what if

there’s not a unique value? (i.e. duplicate values)
• is that possible in a legal input? if so, need to address it

CPSC 327: Data Structures and Algorithms • Spring 2025 57

HW 7

• give the steps of the process from class, not just a
statement of the algorithm or a narrative account of your
reasoning process

• for process issues that occurred in more than one of the problems,
the issue was generally only pointed out once
– the same comments were not repeated for all three problems

– establish the problem
• specifications
• examples

– identify avenues of
attack

• targets
• patterns

– show termination and
correctness

• termination: making
progress, the end is
reached

• correctness: establish the
base case(s), show the
main case, final answer

– determine efficiency
• implementation
• time and space
• room for improvement

– define the algorithm
• size
• generalize / define

subproblems
• base case(s)
• main case
• top level: initial

subproblem, setup,
wrapup

• special cases
• algorithm

CPSC 327: Data Structures and Algorithms • Spring 2025 58

HW 7

• specifications
– be sure to actually state the problem!
– explicitly identify the input and output – don’t just leave them

stated as part of the task

CPSC 327: Data Structures and Algorithms • Spring 2025 59

HW 7

• avenues of attack – targets
– give the obvious brute force algorithm and its running time

• based directly on the definition of the task – you’re not trying to be
efficient, just have a strategy that is clearly correct

– e.g. an inversion is a pair of values (a,b) where a>b → obvious brute force is
to enumerate all the pairs and check each

• the point of many divide-and-conquer algorithms is to improve on the
obvious brute force, so identifying that running time lets you know if
you’ve succeeded...or if you need to improve the efficiency of your divide-
and-conquer

• avenues of attack – patterns
– consider both easy split and easy merge patterns

• for each, is it applicable the this problem?
– goal is to outline the framework for the algorithm, not to figure

out the whole solution
• easy split: split input in half, friends solve, then we figure out how to

combine those results
• easy merge: friends return the two halves of the solution, so we have to

figure out how to split the input to make that possible
CPSC 327: Data Structures and Algorithms • Spring 2025 60

HW 7

• defining the subproblems
– generalizing the problem means going from solving the problem

for the whole input to solving the problem for a portion of the
input

• should be reflected in the statement of the subproblem’s task and in its
input (include how the portion is specified)

– it’s OK for the friends to do/return more than in the original
problem, but this needs to be included in the subproblem
definition (task, output)

• “setup” and “wrapup” refer to anything done before and
after the first recursive call (for the initial subproblem)
– one time things – not what happens in the main case before and

after the recursive calls

CPSC 327: Data Structures and Algorithms • Spring 2025 61

HW 7

• priority #2 –
– the score from the resubmit for #2 will be taken as the score for

all problems originally submitted (assuming improvement)
– encouraged to resubmit other problems – for practice, and to get

the +1 for a resubmit with substantive improvements for those
problems

– submit any missing the first time for credit

