

CPSC 327: Data Structures and Algorithms • Spring 2025 70

HW 9

• #3 – don’t mix up the two versions of the problem
– the original problem is to find an ordering of the print jobs so that

no job misses its deadline, if possible
– an optimization version is to find an ordering of the print jobs

which minimizes the amount by which the most late job misses
its deadline

– the hint says –
• develop a greedy algorithm for the optimization version
• then explain how you can use a schedule with min max lateness to get a

schedule where no job misses its deadline or determine that isn’t possible

– tackling the feasible schedule version directly requires showing
that if the algorithm picks a job which misses its deadline, there
is no other ordering that will work

• this can be tricky because there may be another ordering which gets that
job done on time but some other job misses...

CPSC 327: Data Structures and Algorithms • Spring 2025 71

HW 9

• give the steps of the greedy process from class, not just a
statement of the algorithm or a narrative account of your
reasoning process

• for process issues that occurred in more than one of the problems,
the issue was generally only pointed out once
– the same comments were not necessarily repeated for all of #1-3

– establish the problem
• specifications
• examples

– identify avenues of
attack

• targets
• paradigms and

patterns
• greedy choices and

counterexamples

– show termination and
correctness

• termination: measure of
progress, making
progress, the end is
reached

• correctness: loop
invariant, establish the
loop invariant, maintain the
loop invariant, final answer

– determine efficiency
• implementation
• time and space
• room for improvement

– define the algorithm
• main steps
• exit condition
• setup
• wrapup
• special cases
• algorithm

CPSC 327: Data Structures and Algorithms • Spring 2025 72

HW 9

• patterns and main steps should make it clear what you
are iterating through and what the choice is

for each thing
 make a choice about it

– patterns identify what the choice is about
– main steps address specifically how the choice is made (the

greedy choice)

CPSC 327: Data Structures and Algorithms • Spring 2025 73

HW 9

• typically only consider a process input pattern for labeling
tasks
– for each input item, determine the label

• produce output would be to produce the next (element,label) pair – the
output is the labeling, which is a collection of (element,label) pairs
– ...which could be generated by going through each element and deciding on

its label – but that’s just process input
– ...or by going through each label and determining which element(s) have that

label – but that leads to nested loops when more than one element can have
the same label

• nested loops are more complex to argue termination and correctness for – need
address for each loop

CPSC 327: Data Structures and Algorithms • Spring 2025 74

HW 9

Greedy choices –
• aim for a simple algorithm – does how the choice is made

even matter?
– e.g. the captioning problem has two sets of choices – what

program to caption next and which employee to assign to that
program

– prove that the choice matters with a counterexample – is there a
wrong choice to pick?

– if you aren’t using some aspect of your algorithm’s choice in the
correctness proof (establishing and maintaining the invariant),
either your proof is incorrect or the choice doesn’t matter

• if several alternatives could satisfy the greedy choice,
make sure that picking any of them is OK
– if there’s a wrong choice, it must be excluded

CPSC 327: Data Structures and Algorithms • Spring 2025 75

HW 9

Greedy choices –
• for identifying avenues of attack, identify what all you

have to base the greedy choice on
– don’t just jump immediately to what you think is the right choice –

you might be wrong...
– focusing prematurely on one choice often means you don’t try

very hard (or at all) to find counterexamples – and it’s hard to
prove correct what isn’t

CPSC 327: Data Structures and Algorithms • Spring 2025 76

HW 9

For all algorithms (not just greedy ones), describe the
algorithm with an appropriate level of detail.

– too much detail is worse than not helpful – it obscures
understanding

• consider the purpose of the description
– to address correctness, you only need to know the result of an

action, not how it is carried out
• e.g. for each person in alphabetical order …
• e.g. 2-coloring of a graph whose vertices represent regions and edges

connect adjacent region
• e.g. assign a currently-available employee

– to convey the algorithm to another person, you only need to give
more specific steps if they don’t know how to do something

• well-known problems – your audience would generally know an algorithm
(or how to locate an algorithm) e.g. traverse a graph, shortest path, MST

• obvious brute force

CPSC 327: Data Structures and Algorithms • Spring 2025 77

HW 9

For all algorithms (not just greedy ones), describe the
algorithm with an appropriate level of detail.

– too much detail is worse than not helpful – it obscures
understanding

• consider the purpose of the description
– to assess running time, implementation details are needed – but

only when there is a choice or the specifics aren’t well known
• for data structures, reference high-level ADTs where possible

– e.g. priority queue instead of heap

CPSC 327: Data Structures and Algorithms • Spring 2025 78

HW 9

• special cases
– for greedy algorithms, be alert to any situations where the

greedy choice is not a unique alternative
• e.g. duplicate values could lead to a tie in the greedy choice
• if there’s a wrong choice about how to resolve a tie, the greedy choice

needs to be revised to ensure no ties

– avoid overly special cases
• e.g. all n programs have identical start/end times vs two programs have

same start or same end – every element is the same is a very specific
version of duplicate elements exist

CPSC 327: Data Structures and Algorithms • Spring 2025 79

HW 9

Loop invariants for greedy algorithms –
– the invariant needs to address both legality and optimality

• legality is what makes a legal solution e.g. no employee is assigned to
caption two shows at the same time

• addressing optimality is what allows you to conclude that the solution
produced is the best such legal solution

– for optimality, use a staying ahead argument – the algorithm’s
solution so far is at least as good as a comparable portion of an
optional solution

• an outright claim that the partial solution so far is the best can be too
much to prove with too few concrete things to reason about

– can lead to the invariant holds because the algorithm made the right choice as
“justification” – but that the algorithm made the right choice is what we are
trying to show

• “comparable portion” requires an apples-to-apples comparison
– e.g. for subset tasks, compare the first k items the algorithm picks to the first k

items in the optimal solution – when considered in the same order as the
algorithm’s picks

CPSC 327: Data Structures and Algorithms • Spring 2025 80

HW 9

Loop invariants for greedy algorithms –
– the staying ahead quantity can’t be the optimization quantity if

the optimization quantity is the number of loop iterations
• e.g. Boston to Seattle, repeatedly pick the next gas station to stop at

– one stop is picked with each iteration, so minimizing the number of stops
means minimizing the number of loop iterations

– the algorithm’s partial solution is the stops after k iterations

CPSC 327: Data Structures and Algorithms • Spring 2025 81

HW 9

Maintaining the invariant – assuming that the invariant is true
after k iterations, show that it is still true after k+1 iterations.

Critical key point –
• we want to show that what our algorithm does in this iteration

means that if the invariant was true at the beginning of this
iteration, it is still true afterwards

• but – the argument is not: the algorithm made the right choice,
therefore the invariant holds
– that the algorithm’s choice is the right one is what we are trying to

show, not something we can assume
• the argument is: the algorithm’s choice could not have

resulted in breaking the invariant, therefore the invariant holds
– ...and the algorithm’s choice is the right one because those choices

resulted in the invariant still being true after the last iteration and the
invariant being true for a complete solution means we have a correct
solution

CPSC 327: Data Structures and Algorithms • Spring 2025 82

HW 9

Maintaining the invariant –
• use proof by contradiction to show that the algorithm’s choice

could not have resulted in breaking the invariant
– assume that the algorithm’s choice broke the invariant
– think about what that means and what you can deduce about the

situation
– find a contradiction
– ...and thus the algorithm’s choice can’t have broken the invariant

• compare only the algorithm’s partial solution and a
comparable part of an optimal solution, not process
– the optimal solution must select at least one program per iteration –

we have no idea how the optimal solution was generated (iterative
algorithm, recursive algorithm, an oracle, ...)

CPSC 327: Data Structures and Algorithms • Spring 2025 83

HW 9

Maintaining the invariant –
• be careful of stealth the-algorithm-made-the-right-choice

arguments
– e.g. the algorithm only assigned a new employee to caption a program

if there weren’t any available, therefore the minimum number of
employees have been used

• but this conclusion requires establishing that there aren’t any other ways
those same employees could have been assigned to the programs that
would have allowed an existing employee to caption the current program

–

CPSC 327: Data Structures and Algorithms • Spring 2025 84

HW 9

• the “final answer” step of showing correctness bridges the
gap between the loop invariant and a correct solution
– if the loop invariant is the algorithm’s partial solution is at least as

good as the comparable part of the optimal solution in terms of
the quantity being optimized, then the step is direct –

• the exit condition says that the partial solution is complete
• combining the exit condition and the loop invariant yields: the algorithm’s

complete solution is at least as good as the complete optimal solution in
terms of the quantity being optimized

• and since it is impossible for the algorithm to have a better solution than
the optimal, its solution must be optimal

CPSC 327: Data Structures and Algorithms • Spring 2025 85

HW 9

• the “final answer” step of showing correctness bridges the
gap between the loop invariant and a correct solution
– if the optimization goal is the number of iterations, we need to

show that the algorithm had the right number of iterations –
• there are three possible outcomes

– the algorithm had more iterations / produced a bigger solution than the optimal
(|A| > |O|)

– the algorithm had fewer iterations / produced a smaller solution than the
optimal (|A| < |O|)

– the algorithm had the same number of iterations / produced the same size
solution as the optimal (|A| = |O|)

• show that |A| = |O| (that the algorithm’s solution is optimal) by showing
that the other cases are impossible

– one is impossible because the algorithm can’t do better than the optimal
(nothing can)

– for the other –
» combining the exit condition and the loop invariant to get: the algorithm’s complete

solution is at least as good as the complete optimal solution in terms of some
quantity

» explain why that statement means the algorithm couldn’t have resulted in a shorter
/ longer solution than the optimal

