

CPSC 327: Data Structures and Algorithms • Spring 2025 75

Tactics

• dodge the bullet
– you may not need to solve for large inputs
– you may only need to solve for a special class of inputs which

have an efficient algorithm

• bite the bullet
– recursive backtracking – clever pruning!
– branch-and-bound – clever bound functions!

• settle for good enough
– heuristics – clever tricks which seem to work well, but without

guarantees on runtime or solution quality
– approximation algorithms – with bounds on the quality of the

approximation

CPSC 327: Data Structures and Algorithms • Spring 2025 76

Best-First Search

• recursive backtracking uses depth-first search

• if the goal is only a single solution (whether any or
optimal), best-first search can speed up finding that
solution
– for optimization problems, combine with branch-and-bound

• best-first search explores the most promising subproblem
first
– standard best-first uses the cost of the partial solution

• favors shorter partial solutions first
• can end up exploring a lot if there's a late expensive choice

– A* uses the cost of the partial solution + estimate of cost of the
remaining solution

• estimate must be safe (pessimistic)

(*) ADM refers to best-first search as branch-and-bound
but the order in which you address subproblems (ADM)
is distinct from pruning away non-optimal solutions
(our usage) – though the two can go nicely together

CPSC 327: Data Structures and Algorithms • Spring 2025 77

Best-First Search

• a major drawback of best-first search is memory usage
– DFS only stores the ancestors of the current subproblem

• depends on the height of tree
– best-first search stores up to the width of the tree

• A* can make enough of an improvement to be usable

To get an answer from a slow program you just have to be
patient enough, but a program that crashes because of lack of
memory will not give an answer no matter how long you wait.

– ADM p 302

CPSC 327: Data Structures and Algorithms • Spring 2025 79

Heuristics – Local Search

One family of heuristics involves local search.

The idea.
• apply small changes to a solution, keeping the changes

that result in improvements

An example.
• TSP – replace edges (u,v) and (u',v') in a solution with

edges (u,v') and (u',v)

CPSC 327: Data Structures and Algorithms • Spring 2025 80

Heuristics – Local Search

Local search can be effective when –
• there is great coherence in the solution space

– nearby solutions are a little better or a little worse
– ideally only one hill

• incremental evaluation is much cheaper than global
evaluation
– e.g. updating cost of TSP solution when swapping two edges is

O(1) vs O(n) to compute cost of a cycle in the first place

Hazards.
• local minima

– solutions for which no small change results in improvement, but
which are not optimal

CPSC 327: Data Structures and Algorithms • Spring 2025 81

Dealing with Local Minima

• randomization and restarts
– choose a random starting solution
– randomly select the local move from amongst the available

choices
– repeat and take the best result

• quickly increases the probability of finding a good local optimum, but there
may be many more bad local optima than good ones...

• simulated annealing
– occasionally allow moves that make the current solution worse

• increases the time needed to find a local optimum
– decrease the probability of bad moves as time goes on

• coming up with a good annealing schedule is not necessarily easy

• other tactics
– e.g. genetic algorithms – maintain a population of solutions,

allow crossover between parts of solutions

CPSC 327: Data Structures and Algorithms • Spring 2025 82

Random Sampling

• repeatedly choose a random solution, keeping the best
one found so far

To be effective, requires
• a high proportion of legal solutions

– so you can stumble on one

• no coherence in the solution space
– coherence means there can be a notion of getting closer to a

solution, which would be advantageous to exploit (local search)

CPSC 327: Data Structures and Algorithms • Spring 2025 84

Approximation Algorithms

Heuristics are hopefully fast and result in hopefully good
(though not necessarily optimal) solutions, without
guarantees.

Approximation algorithms yield a guaranteed “close enough”
solution.

CPSC 327: Data Structures and Algorithms • Spring 2025 85

Approximation Algorithms

But even approximation can be hard.

• the good: polynomial-time approximation algorithms
which get arbitrarily close to the optimal solution
– e.g. 0-1 knapsack – based on the idea of scaling and rounding

weights so W is polynomial in n, then using dynamic
programming (approximation comes from roundoff)

• the OK: polynomial-time approximation algorithms, but
with limits on how close the approximation can get to the
optimal solution
– e.g. MST approximation for TSP satisfying the triangle inequality

(cost at most twice optimal)

• the bad: any polynomial-time approximation algorithm can
be arbitrarily far from the optimal solution
– e.g. general TSP

CPSC 327: Data Structures and Algorithms • Spring 2025 86

Developing Approximation Algorithms

• simple procedures are not necessarily useless
– e.g. vertex cover – repeatedly pick an edge (u,v), add u and v to

the cover, remove edges incident on u and v
• at most twice as large as optimal cover (any cover must include at least

one vertex per edge picked)
• can do slightly better with a more complex algorithm, but can't get

arbitrarily close

• greedy is not necessarily advantageous
– e.g. vertex cover – picking highest degree vertex can lead to

worse worst-case performance

• even heuristics that don't impact the worst case can still
improve performance in practice

• can get the best of both worlds
– use both the approximation algorithm and a heuristic, and take

the best

CPSC 327: Data Structures and Algorithms • Spring 2025 87

Key Takeaways

• what tactics exist for making things manageable
– realize that you have an easier special case
– embrace exhaustive search and work on pruning
– let go of optimality

• a brief introduction to those tactics so you have a starting
point for brainstorming and for further study

• the importance of experience and good references
– recognizing your problem as a known problem in disguise means

you can leverage what is known about the other problem

