How to Design Algorithms and Data Structures

) _ Really understand the problem —
How to Design Algorithms and Data specifications

Structures in Practice what exactly does the input consist of?

what exactly are the desired results / output?

construct a small input example — what happens when you try to
solve it by hand?

is the problem sulfficiently well defined to actually have a correct
solution?

assess the requirements
how large is a typical instance?

is it necessary to find the optimal solution? is close good
enough?

how important is speed? how long is it acceptable to wait?
how much time and effort do you have to spend?
identify a strategy

what kind of problem is it? (numerical, graph, geometric, string,
set, ...) what kind of formulation seems easiest? =

How to Design Algorithms and Data Structures How to Design Algorithms and Data Structures

Try a simple solution —
basic properties

In a simple solution is insufficient, start trying on hats —
how do you measure the quality of a solution once constructed?

brute force — straightforward implementation of definition, can you recognize the problem as something familiar?
search through all possible solutions and pick the best identify the essence of the problem _
will this work correctly? if so, why are you sure of that? consult the Hitchhiker's Guide / Stony Brook Algorithm
is the running time polynomial or exponential? is the typical REpISIEny (@7 EeiiEr SEES) Rl o R S S
input size small enough that it doesn't matter? . . L '
. . is the problem a special case of something familiar?
heuristic — repeatedly apply a simple rule about what to
do next if so, what is known about the problem? is there an
for what kinds of inputs does this strategy work well enough? do implementation that you can use?

you need to solve the problem for other inputs?

. i . . if not, did you look in the right place?
for what kinds of inputs does this strategy work poorly? if you

can't find any examples, can you prove that it always works browse the H|tchh||§er's Guide IIBIRE cargfully
well? look under all possible keywords in the index
how quickly does this strategy find an answer? is the search other algorithms resources and the Internet

implementation simple? =

©

CPSC 327: Data Structures and Algorithms + Spring 2025 a

How to Design Algorithms and Data Structures How to Design Algorithms and Data Structures

If the problem isn't recognizable as something familiar — + design a solution
. . L. is there something that can be sorted? does that make it easier
 consider special cases to gain insight to find the answer?
can you simplify the problem enough to solve it efficiently? e.g. is there a way to split the problem into two smaller problems?
ignore some parameters, set some parameters to trivial values, can divide-and-conquer be used?
ignore some aspects of the task _ do the input elements or solution have a natural left-to-right
why can't the special-case solution be generalized? order? can the problem be formulated as a series of decisions?

can dynamic programming be used to exploit this order?

are certain operations done repeatedly, such as searching or
finding max/min? can a data structure (map, PQ) be used to
speed this up?

does the problem sound like an NP-complete problem?
« consult a list of NP-complete problems
« try tactics for dealing with NP-complete problems
5

CPSC 327: Data Structures and Algorithms + Spring 2025 CPSC 327: Data Structures and Algorithms + Spring 2025

How to Design Algorithms and Data Structures

Other strategies —

+ consider randomness
e.g. randomly choosing the next item to consider
e.g. random sampling
e.g. simulated annealing

 can the problem be formulated as a linear program? an
integer program?

e —m—m—m—————— e —m—mr——————————————
s
7

CPSC 327: Data Structures and Algorithms + Spring 2025 CPSC 327: Data Structures and Algorithms + Spring 2025

Course Takeaways Course Takeaways

» knowledge of how to think about algorithms and data
structures

developing an efficient data structure for a problem, based on an
analysis of the problem (including adapting typical ADTs/data having a sense whether the time and space requirements are
structures as needed) good or whether improvements seem likely (and where to look

developing an efficient and correct algorithm for a problem, for them)
including any necessary data structures

justifying decisions made, demonstrating a thorough
consideration of the implications of the choices made, tradeoffs,
and alternatives that were dismissed

» a working knowledge of algorithmic efficiency

determining the time and space requirements of data structures
and algorithms (both iterative and recursive)

L ——————————————
———
9

CPSC 327: Data Structures and Algorithms + Spring 2025 CPSC 327: Data Structures and Algorithms + Spring 2025 10

Data Structures

Dictionaries, Priority Queues, Suffix Trees and Arrays, Graph Data Struclures, Set
Data Structures, Kd-Trees

Course Takeaways

Numerical Problems

Solving Linear Equations, Bandwidth Reduction, Matrix Multiplication, Determinants
and Permanents, Constrained and Unconstrained Optimization, Linear Programming,
. . Random Number Generation, Factoring and Primality Testing, Arbitrary-Precision
°ca t00|bOX Of ADTS, data Structures, and algo”thmlc Arithmetic, Knapsack Problem, Discrete Fourier Transform

Strategles Combinatorial Problems

a—nf a a Sorting, St hing, Medi d Selection, Gi ting P tations, Gi ti
know the characteristic operations of the ADTs studied, and be Subsels, Ganeraing Pariions. Generating Graphs, Galencrical Galculations, Job
able to identify ADT(s) appropriate for a given application

Graph: Polynomial-time Problems

Scheduling, Satisfiability
know the time and space requirements of typical operations in
the data structures studied, and be able to select an appropriate
implementation for a given application

know what characteristics make a problem suitable for a
particular algorithmic technique (and be able to recognize when
a problem is not suitable for a particular technique)

know the "templates" or patterns for applying the algorithmic
techniques studied to develop an algorithm and prove it correct

CPSC 327: Data Structures and Algorithms + Spring 2025 1

Connected Components, Topological Sorting, Minimum Spanning Tree, Shortest Path,
Transitive Closure and Reduction, Matching. Eulerian Cycle/Chinese Postman, Edge
and Vertex Connectivity, Network Flow, Drawing Graphs Nicely, Drawing Trees,
Planarity Detection and Embedding

Graph: Hard Problems

Clique, Independent Set, Vertex Cover, Traveling Salesman Problem, Hamiltonian
Cycle, Graph Partition, Vertex Coloring, Edge Coloring, Graph Isomorphism, Steiner
Tree, Feedback Edge/Vertex Set

Computational Geometry

Robust Geometric Primitives, Convex Hull, Triangulation, Voronoi Diagrams, Nearest
Neighbor Search, Range Search, Point Location, Intersection Detection, Bin Packing,
Medial-Axis Transform, Polygon Partitioning, Simplifying Polygons, Shape Similarity,
Motion Planning, Maintaining Line Arrangements, Minkowski Sum

Set and String Problems

Set Cover, Set Packing, String Matching, Approximate String Matching, Text
Compression, Cryplographﬁ/, Finite State Machine Minimization, Longest Common
Substring/Subsequence, Shortest Common Superstring

https://
www.algorist.com/
algorist.html

—

