
Sort an array of n numbers.

Establish the problem.

• specifications

Task: sort in increasing (non-decreasing) order

Input: array of n numbers

Output: array of n numbers, sorted

• examples

Identify avenues of attack.

• targets

brute force: selection sort Th(n^2)

• approach

Divide-and-conquer.

• paradigms and patterns

Paradigm: divide-and-conquer.

Patterns: easy split: split array into first half, second half / friends sort each half / combine
two sorted lists

easy merge: split array into smaller things, bigger things / friends sort each half / friends
return first half of sorted list (smaller things), second half (bigger things)

Define the algorithm.

• size

n – number of numbers to sort

• generalize / define subproblems

Task: sort A[low..high] (inclusive) in increasing (non-decreasing) order

Input: array A of n numbers to sort, range: low, high

Output: A[low..high] is sorted

• base case(s)

n=0: low=high+1 already sorted! nothing to sort! yay! return→

n=1: low=high already sorted! yay! return→

• main case

// split into smaller, bigger

pivot A[low]←

rearrange elements in A[low..high] so that the first things are < pivot, then the pivot, then >
pivot

// hand off to friends

sort(A,low,pivot slot-1) to one friend

sort(A,pivot slot+1,high) to other friend

// magic! friends already sorted it! (if they are sorting within the first part and second part
of A[low..high])

• top level

◦ initial subproblem

sort(A,0,n-1)

◦ setup

◦ wrapup

• special cases

n=0 done! no subproblem→

duplicates don’t handle pivot being duplicate – change < to <=→

• algorithm

Show termination and correctness.

• termination

◦ making progress

argue: why friends always a smaller prob: we don’t include the pivot in what the friends get

◦ the end is reached

base cases cover 0, 1 element, with n >= 2 then friends get at least 0 elements

• correctness

◦ establish the base case(s)

n=0, n=1 nothing to sort, already sorted→

◦ show the main case

A[low..high] is arranged into < pivot, pivot, > pivot which holds even when < and > parts
are sorted

◦ final answer

0..n-1 covers the entire array, so sort(A,0,n-1) sorts the whole array

Determine efficiency.

• implementation

• time and space

T(n) = 2 T(n/2) + ?? – best case

T(n) = T(n-1) + ?? – worst case

• room for improvement

	Establish the problem.
	Identify avenues of attack.
	Define the algorithm.
	Show termination and correctness.
	Determine efficiency.

