Given the price of a stock over an n-day period, determine the best time to have bought and sold 1000 shares
of that stock. (Buy and sell once, on different days.)

120
110 =
100 4
90
80 —
70

60 —— T
0 1

2 -
L
=
LA
o
=]
oo
L=
E 1
—

-
"
=
o
>

Day 0 I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Price 100 113 110 85 105 102 86 63 81 101 94 106 101 79 94 90 97

Establish the problem.
» specifications

Task: determine the buy and sell days (buy < sell) resulting in max profit (or smallest loss if
no profit)

Input: daily stock price over n days
Output: buy day, sell day
+ examples
buy on day 7, sell on day 11 results in max profit of 105-65 = 40

Identify avenues of attack.
* targets

Brute force: check all buy-sell pairs and take max profit/min loss of those - O(n"2)
« approach

Divide-and-conquer.
+ paradigms and patterns

Paradigm: divide-and-conquer.

easy split: split stock prices into first half of the days, second half of the days - get back
best buy-sell pair in the first half, best busy-sell in the second half — ...

easy merge: n/a



Define the algorithm.
+ size

n — the number of stock prices

+ generalize / define subproblems

Task: determine the buy and sell days (buy < sell) resulting in max profit (or smallest loss if
no profit) within the range (low,high)

Input: daily stock price S over n days, range low..high (inclusive)
Output: buy day, sell day, min price day, max price day

* base case(s)
n=2 (low = high-1) - (have to buy/sell on different days, so < 2 days doesn’t make sense)
return (low,high) - buy on low, sell on high

* main case
// split array into first half, second half
mid « (low+high)/2
// find best buy-sell in each half
(buyl,selll,minl,maxl) « stocks(A,low,mid)
(buy2,sell2,min2,max2) « stocks(A,mid+1,high)
/! determine overall best buy-sell
i rrind it half s {hate
return best of: (buyl,selll), (buy2,sell2), and (minl,max2) aHl-efthebuy-first,sel-second-

pairs overall min: min(minl,min2) overall max: max(max1l,max2)
T(n) = 2 T(n/2) + O(1) = T(n) = O(n)

+ top level
o initial subproblem
o setup
o wrapup

* special cases

+ algorithm

Show termination and correctness.
 termination

o making progress



o the end is reached

» correctness
o establish the base case(s)
o show the main case

o final answer

Determine efficiency.
* implementation
+ time and space

T(n) =2T(n/2) + ??

* room for improvement



	Establish the problem.
	Identify avenues of attack.
	Define the algorithm.
	Show termination and correctness.
	Determine efficiency.

