
Establish the problem.

• specifications – task, input, output, legal solution, optimal solution

• examples

Identify avenues of attack.

• targets

• approach

Series of choices.

• paradigms and patterns

Paradigm: dynamic programming

Flavor:

Pattern:

process input has a lower branching factor (2)

– for the next item, take it or not?

Define the algorithm.

• size

• generalize / define subproblems

◦ partial solution

items picked so far and their total value

◦ alternatives – for the next choice

take the next item or not

◦ subproblem – solve the rest of the problem, returning the solution for the rest of
the problem (only)

◦ memoization

set of items S’

remaining capacity W’ – if W’ (and wi weights) are integers…

goal: V[k][w] - S’ is items S[k..n-1], remaining capacity w

• base case(s)

when k=n

V[n][w] = 0

• main case

V[k][w] = max { V[k+1][w-w_k]+v_k, V[k+1][w] }

// take

 value1 knapsack(k+1,w-w_k) + v_k←
// don’t take

 value2 knapsack(k+1,w)←
return max(value1,value2)

• top level

◦ initial subproblem - V[0][W]

◦ setup

◦ wrapup

• special cases

• algorithm – determine the order of computation and write the loops

algorithm knapsack(S,W) –

for w = 0 to W

 V[n][w] = 0

for k = n-1 downto 0

 for w = 0 to W

 V[k][w] = max { V[k+1][w-w_k]+v_k, V[k+1][w] }

return V[0][W]

Show termination and correctness.

• termination

◦ making progress

◦ the end is reached

• correctness

◦ establish the base case(s)

◦ show the main case

◦ final answer

Determine efficiency.

• implementation

• time and space

array is n x W

O(nW) space,

O(1) per subproblem O(nW) time→
• room for improvement

	Establish the problem.
	Identify avenues of attack.
	Define the algorithm.
	Show termination and correctness.
	Determine efficiency.

