Given n items, each with a value v; and weight ;. find the masimum value set of items that fit in a
knapsack with capacity W. Only whole items can be taken.

Establish the problem.
+ specifications - task, input, output, legal solution, optimal solution
Given n items, each with a value v; and weight w;, find the maximum value set of items that fit in a
knapsack with capacity W. Only whole items can be taken.
Input: n items, each with a value v; > 0 and weight w; > 0; knapsack capacity W = 0
Output: a subset of the items
Legal solution: a subset of items with total weight < W

Optimization goal: maximize total value of items taken

+ examples

Identify avenues of attack.
+ targets
e approach
Series of choices.
+ paradigms and patterns
Paradigm: dynamic programming
Flavor:
Pattern:
process input has a lower branching factor (2)
— for the next item, take it or not?

Define the algorithm.
+ size
* generalize / define subproblems
o partial solution
items picked so far and their total value
o alternatives - for the next choice
take the next item or not

o subproblem - solve the rest of the problem, returning the solution for the rest of
the problem (only)



The subproblem’s task is to solve the rest of the problem in light of the choices made so far
picking of items from amongst those not vet considered as to maximize the total value of those
items, given the remaining capacity of the pack.

Task: knapsack(S’,W') find the highest-value subset of items in §" whose total weight does
not exceed the remaining capacity W' of the knapsack

Input: set §" of items left to consider, remaining (unfilled) capacity of the knapsack W'

Output: total value (of those picked from S7)

Legal solution: a subset of items with total weight < W'

Optimization eoal: highest value
I o (o)

o memoization
set of items S’
remaining capacity W’ — if W’ (and wi weights) are integers...
goal: V[k][w] - S’ is items S[k..n-1], remaining capacity w
* base case(s)
when k=n
Vin]l[w] =0
* main case
VIk][w] = max { V[k+1][w-w_k]+v_k, V[k+1][w] }
// take
valuel « knapsack(k+1,w-w k) + v_k
/] don’t take
value2 « knapsack(k+1,w)
return max(valuel,value2)

+ top level
o initial subproblem - V[0][W]
o setup
o wrapup

+ special cases
+ algorithm - determine the order of computation and write the loops
algorithm knapsack(S,W) -
forw=0toW
Vin]w] =0
for k = n-1 downto O
forw=0toW
V[kI[w] = max { V[k+1][w-w_k]+v_k, V[k+1][w] }
return V[O][W]



Show termination and correctness.
+ termination
o making progress
o the end is reached
» correctness
o establish the base case(s)
o show the main case

o final answer

Determine efficiency.
* implementation
+ time and space
array isnx W
O(nW) space,
O(1) per subproblem - O(nW) time

+ room for improvement



	Establish the problem.
	Identify avenues of attack.
	Define the algorithm.
	Show termination and correctness.
	Determine efficiency.

