
  

 

CPSC 327: Data Structures and Algorithms  •  Spring 2025 87

HW 10

• give the steps of the backtracking process from class, not 
just a statement of the algorithm or a narrative account of 
your reasoning process

• only #3, #4 were graded (or a different problem if you didn’t hand in 
#3, #4)
– review those comments and consider their application to the other 

problems

– establish the problem
• specifications
• examples

– identify avenues of 
attack

• targets
• paradigms and 

patterns
• the series of choices

– show termination and 
correctness

• termination: making 
progress, the end is 
reached

• correctness: establish the 
base case, show the main 
case, final answer

– determine efficiency
• implementation
• time and space
• room for improvement

– define the algorithm
• size
• generalize / define 

subproblems: partial 
solution, alternatives, 
subproblem

• base case(s)
• main case
• top level: initial 

subproblem, setup, 
wrapup

• special cases
• algorithm

CPSC 327: Data Structures and Algorithms  •  Spring 2025 88

HW 10

• there are different ways to structure elements of 
backtracking algorithms – be careful to be consistent with 
your choices 
– the subproblem solution can be either a complete solution 

(including the partial solution) or just the solution for the rest of 
the problem (not including the partial solution)

• the framework and examples discussed in class use the former (complete 
solution) for backtracking and the latter (rest of the problem) for dynamic 
programming

– for find-the-best-solution tasks, either return the best solution or 
update a global best-so-far

• return the best: base case returns the complete solution it got, main case 
maintains a best-so-far solution from amongst the subproblems it 
generates and returns that

• update global: base case checks its complete solution against the global 
best so far and updates accordingly, nothing is returned

CPSC 327: Data Structures and Algorithms  •  Spring 2025 89

HW 10

• for any algorithm, highly detailed pseudocode is not 
helpful in understanding the concept and its correctness
– words are good!
– introduce notation only when it is clearer than words
– especially stick with words when notation forces you into 

unnecessary implementation decisions
– don’t be tempted to overload notation with additional meanings
– e.g.

• good: “remove contractor c from the available contractors” or “mark 
contractor c as unavailable” or “available.remove(c)”

– all convey that c is no longer available
• confusing: unavailable  c←   

– ← is a common convention in pseudocode for assignment, so using it to mean 
adding c to a collection is confusing

CPSC 327: Data Structures and Algorithms  •  Spring 2025 90

HW 10

• pruning
– pruning if the partial solution cost > best-so-far cost is safe (and 

cheap)...
• ...but any partial solution cost will generally be lower than a complete 

solution cost because there are fewer jobs with contractors assigned in a 
partial solution (unassigned jobs have a cost of 0)

– pruning based on some estimate of the cost of the rest of the 
solution is branch and bound



  

 

CPSC 327: Data Structures and Algorithms  •  Spring 2025 91

HW 10

• bound functions
– be aware of running time – the bound function must be evaluated for 

every subproblem even if no pruning occurs
• global best value ✕ number of choices left is O(1) to compute
• summing something over the remaining choices is Ω(n-k)  (k choices made, n-k 

choices left)
– O(n-k) if the value being summed can be determined in O(1) for each choice

– there is often a tradeoff between pruning quality and speed – find the 
best balance

• global best value ✕ number of choices left is O(1) to compute – but may not be 
very close to the actual solution cost

– possible Ω(n-k) strategies
• choose the best alternative for each of the remaining choices ignoring legality 

– safe – no legal alternative can be better than the best possible one
• choose the best legal alternative (based on the current partial solution) for each of 

the remaining choices 
– safe – later alternatives, when fewer alternatives are available, can’t be better than the 

best alternative now
• greedy solution

– not safe – picking a good alternative now may force a worse alternative later


