In a group of people, it is to be expected that some of them may not want to work with each other. Assuming that each person has at most d other people that they don't want to work with, divide the people into d+1 groups so that everyone is in exactly one group and no one is in a group with someone they don't want to work with.

Establish the problem.

• specifications

Task: assign people to d+1 groups so that each person is in exactly one group and no one is in a group with someone they don't want to work with

Input: *n* people and, for each, the up to *d* other people they don't want to work with

Output: an assignment of people to groups (i.e. a group number for each person)

examples

Identify avenues of attack.

- targets
- approach
- paradigms and patterns
 - process input
 - produce output
 - narrow the search space

Define the algorithm.

• main steps

for each person, put them into the first group not containing someone they don't want to work with

exit condition

when every person has been added to a group

- setup
- wrapup
- special cases
- algorithm

Show termination and correctness.

- termination
 - measure of progress
 - making progress
 - \circ $\;$ the end is reached
- correctness
 - loop invariant

the first k people have been assigned to groups so that no one is in a group with someone they don't want to work with and there are at most d+1 groups

- establish the loop invariant
- k=1 person 1 is assigned to group 1

- person 1 is the only person in group 1, they cannot be in a group with someone they don't want to work with

- only have 1 group, $d \ge 0$ so we cannot have more than d+1 groups

• maintain the loop invariant

assume the invariant holds for k, show for k+1

assume: the first k people have been assigned to groups so that no one is in a group with someone they don't want to work with and there are at most d+1 groups

show: then first k+1 people have been assigned to groups so that no one is in a group with someone they don't want to work with and there are at most d+1 groups

- alg puts person k+1 into the first group without someone they don't want to work with \rightarrow no one is in a group with someone they don't want to work with

- if person k+1 goes into an existing group \rightarrow don't change the number of groups, still <= d+1

- if person k+1 goes into a new group \rightarrow they have a conflict with someone in each of the existing groups, but there can be at most d of those, so new group makes at most d+1

 final answer: show setup + loop invariant being true when the exit condition is reached + wrapup = correct overall answer

when exit condition is true: k = n, thus the first n people have been assigned to groups so that no one is in a group with someone they don't want to work with and there are at most d+1 groups \rightarrow "first n" = all

Determine efficiency.

• implementation

build a map person \rightarrow group – O(1) assigning group, retrieving a person's group

groups \rightarrow set for each group, allows O(1) contains for that group

for each group, \rightarrow up to d+1 repetitions

for each do-not-work-with person for the current person \rightarrow up to d repetitions

see if they are in the current group \rightarrow contains operation, O(1) for hash set

if so, move on to the next group

(if we haven't moved on, put the current person in the current group) \rightarrow O(1) insert into hash set

• time and space

n repetitions of the main loop x time per repetition

time per repetition: up to d+1 groups x up to d don't-work-with x O(1) to check + 1 O(1) add to group \rightarrow O(d^2) time per repetition

 \rightarrow O(d^2 n) total

room for improvement