

CPSC 327: Data Structures and Algorithms • Spring 2022 2

Recursive Algorithms

To solve a problem of size n –
• split the size n problem into one or more smaller problems

of the same kind
• recursively solve the smaller problems
• compute the solution for the size n problem from the

solution of the smaller problems

CPSC 327: Data Structures and Algorithms • Spring 2022 3

Running Time for Recursive Algorithms

Let T(n) be the running time to solve a problem of size n.

Recursive algorithms tend to have one of two forms:

• split off b elements to create smaller problems
– T(n) = a T(n-b) + f(n) where f(n) = 0 or Θ(nc logd n)

• divide into subproblems of size n/b
– T(n) = a T(n/b) + f(n) where Θ(nc logd n)
–
– a ≥ 1 is the number of smaller problems
– f(n) is the work to split the size n problem into smaller problems

and to combine the solutions to the smaller problems into the
solution for the size n problem

CPSC 327: Data Structures and Algorithms • Spring 2022 4

Solving Recurrence Relations

T(n) = a T(n-b) + f(n) where f(n) = Θ(nc logd n)

Cases are based on the number of subproblems and f(n).

a f(n) behavior solution

> 1 any
base case dominates
(too many leaves) T(n) = Θ(an/b)

1 ≥ 1 all levels are important T(n) = Θ(n f(n))

CPSC 327: Data Structures and Algorithms • Spring 2022 5

Solving Recurrence Relations

T(n) = a T(n/b) + f(n) where f(n) = Θ(nc logd n)

Cases are based on the relationship between the number of
subproblems, the problem size, and f(n).

(log a)/
(log b)

vs c
d behavior solution

< any
top level dominates – more work
splitting/combining than in subproblems
(root too expensive)

T(n) = Θ(f(n))

= > -1
all levels are important – log n steps to
get to base case, and roughly same
amount of work in each level

T(n) = Θ(f(n) log n)

= < -1 base cases dominate – so many
subproblems that taking care of all the
base cases is more work than
splitting/combining (too many leaves)

T(n) = Θ(n(log a)/(log b))
> any

