
Chapter 3

Iterative Algorithms

Iterative algorithms involve loops. There are two main concerns when developing an iterative algorithm –

� figuring out what the repeated step is, and
� convincingly arguing the algorithm’s correctness.

3.1 Iterative Patterns

Iterative algorithms solve problems by moving towards the solution one iteration at a time. This observation
allows for a categorization of iterative algorithms based on the focus of each iteration, including:

� process input, where each iteration processes the next input element
� produce output, where each iteration produces the next piece of the otuput
� narrow the search space, where each iteration gets closer to the answer by eliminating non-answers

Insertion sort is an example of the process input pattern — each input element is taken in turn and
inserted into the group of sorted elements. Selection sort illustrates the produce output pattern — the
output is the sorted list, and selection sort finds the smallest remaining element to append to the sorted list
so far. Binary search is a prime example of narrowing the search space — each iteration reduces the range
within the array where an element might be by eliminating the half where the element isn’t.

3.2 Elements of Iterative Algorithms

3.2.1 Main Loop

The core of an iterative algorithm is the main loop — the loop body and the exit condition. The iterative
pattern shapes the form that these elements take:

pattern loop structure exit condition

process input for each input element, process that
element and incorporate it into the
solution so far

when all of the input elements have been
processed

produce output repeatedly produce the next output
element
repeatedly produce the next piece of the
solution

when all of the output elements have
been produced
when the solution is complete

narrow the
search space

repeatedly eliminate some non-solutions when the solution has found or there are
no solutions left

9



3.3. HOW TO DESIGN ITERATIVE ALGORITHMS CHAPTER 3. ITERATIVE ALGORITHMS

3.2.2 Loop Invariants

A loop invariant is a condition that is true a each time the loop condition is tested, including the last time
when the exit condition is reached.

Showing that a loop invariant holds is based on the proof technique of induction. This has two parts:
showing the the loop invariant is true at the beginning and showing that if the loop invariant is true at
the beginning of one iteration, it continues to hold at the beginning of the next iteration. Since the loop
invariant is often trivially true at the beginning of the first iteration, it is useful to include the whole first
iteration in the notion of “at the beginning” and show that the invariant holds at the beginning of both the
first and second iterations.

3.2.3 Termination and Correctness

A loop terminates when the exit condition is reached. As a result, we must be making progress towards
the exit condition with every iteration. This can be done by identifying a measure of progress connected to
the exit condition and showing that each iteration advances this value towards eventually making the exit
condition true.

These elements often take standard forms based on the iterative pattern:

pattern measure of progress making progress termination argument

process
input

number of input
elements processed

each iteration
processes one
more element

repeatedly processing one more input
element means that eventually all will
have been processed

produce
output

number of elements in
the solution

each iteration
produces one
more element

repeatedly producing one more output
element or one more piece of the solution
means that eventually all will have been
produced

narrow the
search space

size of the current range
or (alternatively) the
number of solutions still
in the current range

each iteration
reduces the size
of the search
space

repeatedly reducing the size of the
current range or the number of solutions
still in the current range means that
eventually there will be no solutions left if
the solution hasn’t been found

Showing correctness for iterative algorithms is based on the loop invariant. In the simplest form, the
loop invariant is a statement that the solution so far is correct — then the combination of the loop invariant
being true (the solution so far is true) when the exit condition is reached (the solution is complete) yields
the desired result (the complete solution is correct).

The loop invariant often takes a standard form based on the iterative pattern:

pattern loop invariant

process input have a correct solution for the first k input elements, or (alternatively)
haven’t gone wrong yet (solution so far is consistent with a solution for the
whole problem)

produce output have produced the first k elements of the correct output
narrow the search space either the element is within the current search space / set of solutions or it

was never present at all, or (alternatively) not all of the solutions (if there
are any) have been eliminated

3.3 How to Design Iterative Algorithms

The steps outlined in section 2.3 apply broadly to all types of algorithms. Specializations for iterative
algorithms are outlined below.

March 27, 2025 10



3.3. HOW TO DESIGN ITERATIVE ALGORITHMS CHAPTER 3. ITERATIVE ALGORITHMS

Identify avenues of attack.

� Paradigms and patterns.
Consider the iterative patterns defined in section 3.1.

Define the algorithm. The core of an iterative algorithm is defining the loop.

� Main steps.
This is the core of the algorithm — the loop body. What’s being repeated?

� Exit condition.
When does the loop end?

� Setup.
Whatever must happen before the loop begins.

� Wrapup.
Whatever must happen to get the final answer after the loop ends.

� Special cases.
Make sure the algorithm works for all legal inputs — identify the cases that need to be handled and
address how that handling is incorporated into the previous steps (if not already accounted for).

� Algorithm.
Assemble the algorithm from the previous steps and state it.

There shouldn’t be new elements here, instead bring together the main steps, exit condition, setup,
and wrapup along with any handling needed for special cases and state the whole algorithm.

Show termination and correctness. Show that the algorithm produces a correct solution.

� Termination. Show that the loop — and thus the algorithm — always terminates.

– Measure of progress.
Identify a quantity and the direction of change that leads towards the exit condition.

– Making progress.
Explain why every iteration of the loop advances the measure of progress towards the exit condi-
tion.

– The end is reached.
Explain why making progress ensures that the exit condition is always reached.

� Correctness. Show that the algorithm is correct.

– Loop invariant.
State a loop invariant.

– Establish the loop invariant.
Explain why the loop invariant holds at the beginning of the first and second iterations of the
loop.

– Maintain the loop invariant.
Explain why the loop invariant continues to be true after each iteration — assuming that it holds
at the beginning of iteration k, explain why it also holds at the beginning of the next iteration
(k + 1).

– Final answer.
Explain why the whole algorithm — setup, loop, wrapup — means that the final result is a correct
answer to the problem.

March 27, 2025 11


