
Chapter 4

Recursive Algorithms

Recursive algorithms rely on friends: to solve a problem, one or more smaller problems are identified and
handed off to others (your friends) to be solved (somehow), and then those subproblem solutions are used
to produce a solution for the current problem.

4.1 Recursive Patterns

Recursive algorithms can be categorized by the number and size of the subproblems.

� 1-friend solutions, where there is only one subproblem at each level

– constant amount
The subproblem is smaller by a fixed amount, typically 1. For example, computing an as aan−1

and n! as n(n− 1)!.

– constant factor
The subproblem is a fixed fraction (typically 1/2) of the size of the original. For example, binary
search (splits in half) and computing an as (an/2)2 if n is even and a(a(n−1)/2)2 if n is odd.

– variable factor
The subproblem is always smaller, but the size reduction varies from one step to the next. For
example, computing gcd(m,n) as gcd(n,m mod n).

� 2+-friend solutions, where there is more than one subproblem at each level

– divide and conquer
Each friend gets a portion of the input: the problem is split into b subproblems of size n/b where
b ≥ 2 (typically 2).

– case analysis
Each friend gets a subproblem resulting from a different alternative for the next step of the
solution: the problem is split into a subproblems of size n−b where a is the number of alternatives
and b is typically 1.

1-friend recursive algorithms are also sometimes called “decrease and conquer” algorithms. They can often
be written more simply and efficiently as an iterative algorithm.

Recursive algorithms can also be categorized by the nature of the subproblem. Two forms are common:

� solve a smaller problem, where the subproblem is treated as a standalone instance of the problem to
be solved, and

� solve the rest of the problem, where the subproblem is solved in the context of actions taken up to this
point — solving the subproblem completes a partial solution already begun.

The 1-friend and divide-and-conquer patterns typically utilize the “solve a smaller problem” form, while case
analysis patterns utilize the “solve the rest of the problem” form.
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4.2 Elements of Recursive Algorithms

4.2.1 Size

Recursion works by solving smaller instances of the original problem, then combining or merging the solutions
from the smaller instances to obtain the solution for the current problem instance. “Size” refers to some
measure of the input that leads to a simpler problem instance when decreased, for example, when the input
is a collection of things, the size is typically the number of elements. For strings or numbers, size is often
the length of the string or the magnitude (value) of the number. For trees, size may be the number of nodes
or the height of the tree. For graphs, size may be the number of vertices or edges.

4.2.2 Subproblems

Defining subproblems means specifying the task, the input, and the output.
A subproblem’s task is a generalized version of the original task — for “solve a smaller problem”, the

original task is to solve the problem for the whole input while the generalized version is to solve the problem
for part of the input. For “solve the rest of the problem”, the original task is to solve the problem from
scratch while the generalized version is to solve the problem in light of the solution so far.

For the subproblem’s input, prefer adding what is needed to specify which part of the input the sub-
problem is to work with rather than assuming the subproblem works with the whole of a smaller instance.
In addition, the input for “rest of the problem” subproblem typically includes at least some aspects of the
partial solution so far.

The subproblem’s output needs to include what is needed for the original problem, but can include
additional things. Every subproblem must returns the same type of output, however, so the additional
things must be appropriate for all subproblems.

4.2.3 Termination and Correctness

Recursion terminates when a base case is reached. As a result, we must be making progress towards a solution
with every handoff to a friend — since the base case is the smallest problem instance, every subproblem
handed to a friend must be smaller than our subproblem. We also have to actually reach a base case — it
can’t be possible to skip over a base case.

Showing correctness for recursive algorithms is based on the proof technique of induction. For induction
it is necessary to show that the correct answer is produced for the base cases and that given correct solutions
for the subproblems, the solution produced for the current instance is correct.

4.2.4 Running Time

A recurrence relation is an equation which is defined in terms of itself; they arise naturally when analyzing
recursive algorithms. In particular, recursive algorithms tend to lead to recurrence relations in one of two
forms: splitting off b elements or dividing into subproblems of size n/b.

Split off b elements. For recurrence relations of the form T (n) = aT (n − b) + f(n) where f(n) = 0 or
f(n) = Θ(nc logd n):

a f(n) behavior solution

> 1 any base case dominates T (n) = Θ(an/b)
1 ≥ 1 all levels are important T (n) = Θ(nf(n))

The solution cases are based on the number of subproblems and f(n). There are two behaviors:

� Base case dominates — there are too many leaves.

� All levels are important — there are O(n) steps to get to the base case, and roughly the same amount
of work in each level.
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Divide into subproblems of size n/b. For recurrence relations of the form T (n) = aT (n/b) + f(n)
where f(n) = Θ(nc logd n):

(log a)/(log b) vs c d behavior solution
< any top level dominates T (n) = Θ(f(n))
= > −1 all levels are important T (n) = Θ(f(n) log n)
= < −1 base cases dominate T (n) = Θ(n(log a)/(log b))
> any base cases dominate T (n) = Θ(n(log a)/(log b))

The solution cases are based on the relationship between the number of subproblems, the problem size,
and f(n). There are three behaviors:

� Top level dominates — there is more work splitting/combining than in subproblems, making the root
too expensive.

� All levels are important — there are log n steps to get to the base case, and roughly the same amount
of work in each level.

� Base cases dominate — there are so many subproblems that taking care of all the base cases is more
work than splitting/combining (too many leaves).

4.2.5 Room For Improvement

The running time for recursive algorithms comes from the number and size of the subproblems as well as the
amount of work done in addition to the recursive calls themselves. Strategies for reducing the additional work
done include seeking a more efficient implementation and leveraging the work the friends are already doing by
having them hand back something additional that saves us computation. For divide and conquer, reducing
the number and size of the subproblems means a decrease-and-conquer approach — can a guaranteed number
of elements not be passed along to a friend? For case analysis, reducing the number of subproblems means
being able to eliminate some cases from consideration because they are redundant or won’t lead to a viable
solution.

4.3 How to Design Recursive Algorithms

The steps outlined in section 2.3 apply broadly to all types of algorithms. Specializations for recursive
algorithms are outlined below.

Identify avenues of attack.

� Paradigms and patterns.
Consider the recursive patterns defined in section 4.1.

Define the algorithm. The core of a recursive algorithm is defining the subproblems.

� Size.
What is the size of the problem, and what constitutes a smaller problem? What is the simplest/smallest
instance of the problem?

� Generalize / define subproblems.
Define the subproblem — the task, the input, and the output. Write this as a function definition where
parameters and return values are explicitly identified.

� Base case(s).
Address how to solve the smallest problem(s). This is often trivial, or is solved via brute force.
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� Main case.
Address how to solve a typical large problem instance (one that is not a base case). Specify how many
friends are needed and what subproblem is handed to each friend, as well as how the results the friends
hand back are combined to solve the problem.

� Top level.
The top level puts the context around the recursion.

– Initial subproblem.
Specify the inputs and parameters for the initial subproblem — the one whose solution solves the
original problem.

– Setup.
Whatever must happen before the initial subproblem is solved.

– Wrapup.
Whatever must happen to get the final answer after the solution for the initial subproblem is
obtained.

� Special cases.
Make sure the algorithm works for all legal inputs — identify the cases that need to be handled and
address how that handling is incorporated into the previous steps (if not already accounted for).

� Algorithm.
Assemble the algorithm from the previous steps and state it.

There shouldn’t be new elements here, instead bring together the base case(s), main case, and top level
with any handling needed for special cases and state the whole algorithm.

Show termination and correctness. Show that the algorithm produces a correct solution.

� Termination. Show that the recursion — and thus the algorithm — always terminates.

– Making progress.
Explain why what each of your friends get is a smaller instance of the problem.

– The end is reached.
Explain why a base case is always reached.

� Correctness. Show that the algorithm is correct.

– Establish the base case(s).
Explain why the solution is correct for each base case.

– Show the main case.
Assume that the friends return the correct results for their subproblem, and explain why the
correct answer is then produced from those results.

– Final answer.
Explain why the top level — the setup plus a correct solution to the initial subproblem followed
by the wrapup — means that the final result is a correct answer to the problem.

Determine efficiency. Evaluate the running time and space requirements of the algorithm.

� Room for improvement.
Are the targets met? Is it necessary to do better? If improvements in running time and/or space are
needed, consider the strategies in section 4.2.5.
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