
CPSC 327, Spring 2026 Homework #1

This homework covers big-Oh and analysis of algorithms. It is due in class
Wednesday, February 4.

Write your solutions carefully — your work should be neat, readable, and
organized. Be sure to show your work / provide support for your answers
— don’t simply state an answer without any indication of where it came
from.

See the Policies page on the course website for information about revise-
and-resubmit, late work, and academic integrity as it applies to homework.

1. Do the homework #1 drill problems on Canvas. (Look for hw1 drill in the
Quizzes section.) Keep track of your scratch work since #2–4 ask you to write
up your solutions for some of the drill problems.

2. For each of the following functions, find a simple function g such that f(n) =
Θ(g(n) (or T (n) = Θ(g(n))). Provide support for your answers — show your
work, state what rule you are applying or step you are doing, etc. Don’t just
write down g by itself!

Keep in mind the various strategies — algebraic simplification (including simpli-
fying logs and exponents), using the sums and recurrence relations tables, and
dropping constant multipliers and lower-order terms.

10n3 + 2n5(i) 2n−1(ii)

n log10 n
2(iii) n1/3 + log n(iv)

n∑
i=1

3n
i

(v)

n
2∑

i=1

(i+ log n)(vi)

log2

(
n∑

i=0

2i
)

(vii) T (n) = 2T (n/2) + n log2 n(viii)

T (n) = 2T (n/3) + 1(ix) T (n) = 9T (n/4) + n2(x)

T (n) = T (n− 2) + 1(xi)

3. For each of the following pairs of functions, indiate which is the faster growing.
For functions not in the known ordering of common functions from class, provide
support for your answers — indicate how you decided which function is faster
growing.

Keep in mind strategies for comparing growth rates to determine O, Ω, Θ —
eliminating common factors, plotting the functions, and identifying c and n0

according to the definitions.

n log n, n1.5(a) n log2 n, n2 log n(b) n
1
3 , log n(c)

CPSC 327, Spring 2026 Homework #1

4. Give the worst-case running time for the following set of loops. Explicitly utilize
that the total time for a loop is the sum of the time taken by each iteration —
write the sum(s) and use the sums table to get the big-Oh for each. Assume that
the [loop body] steps take Θ(1) time.

Hint: if a sum doesn’t follow the pattern needed for the sums table (sum range
starts at 1, f(n) has only multiplicative terms), try rewriting the sum — write out
the terms of the sum, simplify them as appropriate, and look for a new pattern
that lets you write an equivalent but simpler sum.

for i = 1 to n do

for j = 1 to i do

for k = j to i+j do

for m = 1 to i+j-k do

[loop body]

5. Bubble sort is a simple sorting algorithm which works by repeatedly comparing
adjacent elements and swapping them if they are out of order.

algorithm bubbleSort (A, n) :

input: array A storing n items

output: items in A are sorted in increasing order

repeat

swapped � false

for (j � 0 ; j < n-1 ; j++) do

if A[j] > A[j+1] then // if elements are reversed...

temp � A[j] // ...swap them

A[j] � A[j+1]

A[j+1] � temp

swapped � true

until swapped is false

Give the Θ running time for bubble sort. Identify the best- and worst-case times
separately if there is a difference. Show your work / provide support for your
answer(s) — don’t just give a Θ without explanation.

6. We might try to improve bubble sort by allowing elements that are far out of
place to move more than one spot at a time — ’gap’ defines this amount, and
shrinks as elements (presumably) get closer to their final spots as the algorithm
progresses. The idea is to repeatedly “comb” through the array with increasingly
finer-toothed combs, swapping elements hit by the comb’s teeth if they are out
of order.

CPSC 327, Spring 2026 Homework #1

algorithm combSort (A, n) :

input: array A storing n items

output: items in A are sorted in increasing order

gap � n

repeat

gap � gap/s

swapped � false

for (j � 0 ; j < n-gap ; j++) do

if A[j] > A[j+gap] then // if elements are reversed...

temp � A[j] // ...swap them

A[j] � A[j+gap]

A[j+gap] � temp

swapped � true

until gap == 1 and swapped is false

Give the Θ running time for comb sort. Identify the best- and worst-case times
separately if there is a difference. Show your work / provide support for your
answer(s) — don’t just give a Θ without explanation.

7. A matrix is a 2D array of numbers. A key operation involving matrices is matrix
multiplication.

This problem involves two algorithms for matrix multiplication. Both algorithms
involving partitioning, in which an n × n matrix is split into four n/2 × n/2
matrices as shown.

A =

[
A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]
, C =

[
C11 C12

C21 C22

]
The operations extractBlock, assembleBlocks, add, and subtract referenced
in the pseudocode below all take Θ(n2) time when applied to n× n matrices.

(a) The basic algorithm for multiply(A,B) computes C as follows:[
C11 C12

C21 C22

]
=

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
This can be written in pseudocode as shown:

algorithm basicMultiply (A, B) :

input: A, B are nxn arrays

output: C = AxB

A11 = extractBlock(A,0,0)

CPSC 327, Spring 2026 Homework #1

A12 = extractBlock(A,0,n/2)

A21 = extractBlock(A,n/2,0)

A22 = extractBlock(A,n/2,n/2)

B11 = extractBlock(B,0,0)

B12 = extractBlock(B,0,n/2)

B21 = extractBlock(B,n/2,0)

B22 = extractBlock(B,n/2,n/2)

C11 = add(basicMultiply(A11,B11),basicMultiply(A12,B21))

C12 = add(basicMultiply(A11,B12),basicMultiply(A12,B22))

C21 = add(basicMultiply(A21,B11),basicMultiply(A22,B21))

C22 = add(basicMultiply(A21,B12),basicMultiply(A22,B22))

C = assembleBlocks(C11,C12,C21,C22)

Write the recurrence relation for and give the running time of basicMultiply.

(b) A more clever approach for multiply(A,B) instead computes C as follows:[
C11 C12

C21 C22

]
=

[
M1 +M4 −M5 +M7 M3 +M5

M2 +M4 M1 −M2 +M3 +M6

]
where the Mi are n/2× n/2 matrices computed as follows:

M1 = (A11 + A22)(B11 +B22)
M2 = (A21 + A22)B11

M3 = A11(B12 −B22)
M4 = A22(B21 −B11)
M5 = (A11 + A12)B22

M6 = (A21 − A11)(B11 +B12)
M7 = (A12 − A22)(B21 +B22)

This can be written in pseudocode as shown:

algorithm cleverMultiply (A, B) :

input: A, B are nxn arrays

output: C = AxB

A11 = extractBlock(A,0,0)

A12 = extractBlock(A,0,n/2)

A21 = extractBlock(A,n/2,0)

A22 = extractBlock(A,n/2,n/2)

B11 = extractBlock(B,0,0)

B12 = extractBlock(B,0,n/2)

B21 = extractBlock(B,n/2,0)

CPSC 327, Spring 2026 Homework #1

B22 = extractBlock(B,n/2,n/2)

M1 = cleverMultiply(add(A11,A22),add(B11,B22))

M2 = cleverMultiply(add(A21,A22),B11)

M3 = cleverMultiply(A11,subtract(B12,B22))

M4 = cleverMultiply(A22,subtract(B21,B11))

M5 = cleverMultiply(add(A11,A12),B22)

M6 = cleverMultiply(subtract(A21,A11),add(B11,B12))

M7 = cleverMultiply(subtract(A12,A22),add(B21,B22))

C11 = subtract(add(M1,M4),add(M5,M7))

C12 = add(M3,M5)

C21 = add(M2,M4)

C22 = add(subtract(M1,M2),add(M3,M6))

C = assembleBlocks(C11,C12,C21,C22)

Write the recurrence relation for and give the running time of cleverMultiply.

