Analysis of Algorithms

Key Points

We want to compare algorithms, not programs.

* the elapsed time of a running program depends on many
factors unrelated to the algorithm
speed of computer
computer architecture

choice of language, skill/cleverness of programmer, compiler
optimizations

* implementing and debugging a program is time

consuming
requires too many details

CPSC 327: Data Structures and Algorithms + Spring 2026

Motivation

A good algorithm is
correct,

(efficient) and

easy to implement.

+ answering “how much time/space does this algorithm
take?” and “can we do better?” requires a measure of the
time/space requirements

CPSC 327: Data Structures and Algorithms + Spring 2026

RAM Model of Computation

Assumptions —

+ each simple operation takes exactly one time step

arithmetic, boolean, logical operations; =; if; subroutine calls

A = if is the assignment or branch itself, not the evaluation of expressions
or the execution of the body of a branch

& subroutine call is just the call and return, not the execution of the
subroutine body

« each memory access takes exactly one time step

+ expressions and blocks are not simple operations
* loops are not simple operations
composed of (many) simple operations

time required is the sum of the time required for each simple
operation

CPSC 327: Data Structures and Algorithms + Spring 2026

Key Points

Those assumptions are actually false with respect to real
computers.

Even though our analyses will be based on a model of
computation that is not how real computers work, all is not
lost —

still meaningful
it is difficult to find a case where it gives misleading results

simplifies analysis
allows for reasoning about algorithms in a language- and
machine-independent manner

CPSC 327: Data Structures and Algorithms + Spring 2026

Key Points

We are actually even more interested in categorizing
algorithms into a few common classes than determining
specific growth rate functions.

still meaningful

the differences within one class are far less than the differences
between classes

simplifies analysis
can drop constant factors and lower order terms (eliminating
distracting bumps)
can analyze algorithm at a higher level of abstraction
(pseudocode or even natural language description rather than
code)

CPSC 327: Data Structures and Algorithms + Spring 2026

Key Points

We are actually more interested in how quickly the
running time of an algorithm increases as the size of
the input increases than in how long the algorithm will take
on a particular input instance.

still meaningful
a single input instance may not be all that informative anyway

any algorithm will is fine when the input is small — it's what
happens for big inputs that matters

simplifies analysis
means we don't need to count precisely — can focus on how the
number of steps depends on aspects of the input

can consider (only) best and worst-case bounds
fewer cases to consider, and easier to work with an input instance with
specific properties

CPSC 327: Data Structures and Algorithms + Spring 2026 6

Understanding Limitations

Alice and Bob each implement different algorithms for

solving a particular problem. When they run their) 4 g’:fﬁ{h
programs, they find that the one with the slower growth rate

rate takes longer. What could be going on?

be careful not to confuse growth rate with speed sty
the speed refers to the running time for a particular input
faster speed = takes less time
the growth rate refers to how quickly the running time increases
slower growth rate means the running time doesn't increase as quickly —
the running time is smaller/shorter/faster for longer

the question is how an algorithm with a slower growth rate could
take more time on an input than one with a faster growth rate

CPSC 327: Data Structures and Algorithms + Spring 2026 8

Understanding Limitations

1B
how can an algorithm A with a slower growth

rate take more time on an input than algorithm
B with a faster growth rate?

n is small — constant factors and lower-order
terms have a greater impact on running time
for small n —

there could be different environments —
language, programmer cleverness, compiler
optimizations, computer speed, ...

worst

“growth rate of algorithm” typically —, case
refers to the growth rate of the worst-
case running time _ -
input instance used may not be worst case best case
for B e
Definitions

O gives an upper bound on a function's growth rate
Q gives a lower bound on a function's growth rate
© gives a tight bound on a function's growth rate

notation meaning definition

f(n) = O(g(n)) c g(n)is an upper there exists ¢ > 0 and n, > 0 such
bound on f(n) that f(n) < c g(n) for all n = n,

f(n) = Q(g(n)) cg(n)is an lower there exists c >0 and n, > 0 such
bound on f(n) that f(n) = c g(n) for all n = n,

f(n) = ©(g(n)) c, g(n) is an upper there exists c, >0, ¢, > 0, and
bound on f(n) n, > 0 such f(n) < ¢, g(n) and

C, g(n) is an lower f(n) >c, g(n) for all n > n,
bound on f(n)

CPSC 327: Data Structures and Algorithms + Spring 2026 1

Understanding Limitations

B

how can an algorithm A with a slower growth
rate could take more time on an input than
algorithm B with a faster growth rate?

Or it might not have been a fair test —

different inputs used e.g. A’s input was bigger
(really) inefficient implementation of A

e.g. looping through whole array instead of only accessing one
slot

A takes more space, making it slower

each memory access is assumed to take one time step so the

running time puts a limit on how much space A can use

A’s computer could be pushed into swapping while B’s is not
constant factors could mean that A's memory usage exceeds B’s -
A’s computer could have less memory 10

Understanding Definitions

For each of the following pairs of functions, indicate
whether f = O(g), f = {2(g), or f = O(g).

a. f(n) = 3n + 100, g(n) = 10n — logn [pairA]

b. f(n) = (log n)2 +5n log n.g(n) =2n [pairB]
c.f(n) =3n®> +n® g(n) =3" —5n’ [pairC]

O gives an upper bound on a function's growth rate
Q gives a lower bound on a function's growth rate
O gives a tight bound on a function's growth rate

notation meaning definition

f(n) = O(g(n)) cg(n)is an upper bound on f(n) there exists ¢ > 0 and n, > 0 such that
f(n) <c g(n) for all n = n,
f(n) = Q(g(n)) cg(n)is an lower bound on f(n) there exists ¢ > 0 and n, > 0 such that
f(n) = c g(n) for all n = n,
f(n) = ©(g(n)) c, g(n) is an upper bound on f(n) there exists ¢, >0, ¢,>0, and n, > 0
¢, g(n) is an lower bound on f(n) such that f(n) < ¢, g(n) and f(n) = ¢, g(N) ==

foralln=n, .

‘ -
3%+100 ——

1onclogg ~<— J f(n) =3n+100,g(n) = 10n — logn ‘

1 | 3n+100 = O(10n-log n)

because
3n+100 < c(10n-log n)
forc=1andn>15

o 5 10 15 20 25 30
1000 " i i 100 3n+100 = Q(10n-log n)
1400 | 0.25+10*x-log(x), i
because
1200 - 7 3n+100 = c(10n-log n)
1000 |] forc=0.25andn>0
800 _ - i
o0 |- _ | thus
_— 3n+100 = ©(10n-log n)
400 _~ 4
_— because
s g 1 3n+100 < ¢,(10n-log n) and
o 00 00 s 0 00 1= 3n+100 2 c,(10n-log n) for =
CPSC 327: Data Structures and Algorithms « Spring 2026 C, = 1, C, = 0.25, andn>15 s

0O, Q, © vs Best and Worst Cases

The big-Oh notation compares growth rates of functions —
comparing shapes of curves.
f(n) = O(g(n)) says that f(n) grows no faster than g(n)
= g(n) is an upper bound on the growth rate
f(n) = Q(g(n)) says that f(n) grows no slower than g(n)
* g(n) is a lower bound on the growth rate
f(n) = ©(g(n)) says that f(n) grows at the same rate as g(n)
= g(n) is a tight bound on the growth rate

The best (or worst) case is the specific input instance that
yields the fastest (or slowest) running time over all possible
input instances of a given size — comparing the actual
number of steps required.

no input instance will take longer than the worst case for that
size, or take less time than the best case for that size

CPSC 327: Data Structures and Algorithms + Spring 2026 15

- ‘j(n) = (log n)* +5n log n,g(n) = Qn‘

6000 T

log(x)*log(x)+5+x*log(x)
2%x

5000 -

4000 -

(log n)? + 5n log n = Q(2n)

because
(log n)?+5nlog n = 2n

forc=1landn>5
1000 | / 4

2000

[R L
o 50 100 150 200
60000 T T T T ‘
IO XN ———
s0000 |- s —— \ f(n) =3n% +nd g(n) =3" — 5n
40000 -~
3n?+n® = O(3"-5n°)
30000
20000 - ya because
3n2+n® < ¢(3"-5n%)
s /]| forc=1landn>8
o —_— — —
-10000 L L L L

0 2 4 6 8 A eeeee————

CPSC 327: Data Structures and Algorithms + Spring 2026 14

Understanding Terminology and Concepts

If Alice proves that an algorithm takes O(n?) worst- ° yes — worst-case means no case
case time, is it possible that it takes O(n) time on Is slower, but faster is pOSSIb|e

some inputs?

« yes — O is an upper bound, so
f(n) = O(n?) says that f(n) doesn't
grow any faster than n?, but it

If Alice proves that an algorithm takes O(n?) worst-
case time, it is possible that it takes O(n) time on all

inputs? doesn't preclude it growing slower
i.e. n = O(n?) though typically we
want to give the tightest bound
we can

If Alice proves that an algorithm takes ©(n?) worst- © yes— © means that the worst

case won't actually turn out to be
better than n?, but the worst case
is the slowest input of a given
size and others (e.g. best case)
may be better

case time, is it possible that it takes O(n) time on
some inputs?

CPSC 327: Data Structures and Algorithms + Spring 2026 16

0O, Q, © vs Best and Worst Cases

Saying that the worst-case behavior is O(n?) means —
some inputs could be O(n) because the worst case is the
slowest instance for a given size

all inputs could be O(n) because n grows no faster than n?,
though one generally tries to give the tightest O possible

Saying that the worst-case behavior is ®(n?) means —
some inputs could be O(n) because the worst case is the
slowest instance for a given size

not all inputs could be O(n) because then the worst case
instances would also be O(n) and n does not grow at the same
rate as n?

CPSC 327: Data Structures and Algorithms + Spring 2026 17

0O, Q, or ©?

give as tight as bound as possible

use O if you can
e.g. mergesort is O(n log n)
e.g. insertion sort is best case ©(n) and worst case ©(n?)

can use O if best case running time grows more slowly
than the worst case but you don't want to distinguish —
only the worst case is important

e.g. insertion sort is O(n?)
can use Q if worst case running time grows faster than
the best case but you don't want to distinguish — only the
best case is important

e.g. insertion sort is Q(n)

can use O (or Q) if you can't establish a tight bound

you don't know if the best case is better or if the worst case is
worse

8

