

Analysis of Algorithms

CPSC 327: Data Structures and Algorithms • Spring 2026 2

Motivation

A good algorithm is
correct,
efficient, and
easy to implement.

• answering “how much time/space does this algorithm
take?” and “can we do better?” requires a measure of the
time/space requirements

CPSC 327: Data Structures and Algorithms • Spring 2026 3

Key Points

We want to compare algorithms, not programs.

• the elapsed time of a running program depends on many
factors unrelated to the algorithm
– speed of computer
– computer architecture
– choice of language, skill/cleverness of programmer, compiler

optimizations

• implementing and debugging a program is time
consuming
– requires too many details

CPSC 327: Data Structures and Algorithms • Spring 2026 4

RAM Model of Computation

Assumptions –

• each simple operation takes exactly one time step
– arithmetic, boolean, logical operations; =; if; subroutine calls

=, if is the assignment or branch itself, not the evaluation of expressions
or the execution of the body of a branch
subroutine call is just the call and return, not the execution of the
subroutine body

• each memory access takes exactly one time step

• expressions and blocks are not simple operations
• loops are not simple operations

– composed of (many) simple operations
– time required is the sum of the time required for each simple

operation

CPSC 327: Data Structures and Algorithms • Spring 2026 5

Key Points

Those assumptions are actually false with respect to real
computers.

Even though our analyses will be based on a model of
computation that is not how real computers work, all is not
lost –

• still meaningful
– it is difficult to find a case where it gives misleading results

• simplifies analysis
– allows for reasoning about algorithms in a language- and

machine-independent manner

CPSC 327: Data Structures and Algorithms • Spring 2026 6

Key Points

We are actually more interested in how quickly the
running time of an algorithm increases as the size of
the input increases than in how long the algorithm will take
on a particular input instance.

• still meaningful
– a single input instance may not be all that informative anyway
– any algorithm will is fine when the input is small – it's what

happens for big inputs that matters

• simplifies analysis
– means we don't need to count precisely – can focus on how the

number of steps depends on aspects of the input
– can consider (only) best and worst-case bounds

• fewer cases to consider, and easier to work with an input instance with
specific properties

CPSC 327: Data Structures and Algorithms • Spring 2026 7

Key Points

We are actually even more interested in categorizing
algorithms into a few common classes than determining
specific growth rate functions.

• still meaningful
– the differences within one class are far less than the differences

between classes

• simplifies analysis
– can drop constant factors and lower order terms (eliminating

distracting bumps)
– can analyze algorithm at a higher level of abstraction

(pseudocode or even natural language description rather than
code)

CPSC 327: Data Structures and Algorithms • Spring 2026 8

Understanding Limitations

• be careful not to confuse growth rate with speed
– the speed refers to the running time for a particular input

• faster speed = takes less time
– the growth rate refers to how quickly the running time increases

• slower growth rate means the running time doesn’t increase as quickly –
the running time is smaller/shorter/faster for longer

– the question is how an algorithm with a slower growth rate could
take more time on an input than one with a faster growth rate

faster
time

faster
growth
rate

CPSC 327: Data Structures and Algorithms • Spring 2026 9

Understanding Limitations

• n is small – constant factors and lower-order
terms have a greater impact on running time
for small n

• there could be different environments –
language, programmer cleverness, compiler
optimizations, computer speed, …

• “growth rate of algorithm” typically
refers to the growth rate of the worst-
case running time
– input instance used may not be worst case

for B

how can an algorithm A with a slower growth
rate take more time on an input than algorithm
B with a faster growth rate?

A

B

worst
case

best case

CPSC 327: Data Structures and Algorithms • Spring 2026 10

Understanding Limitations

Or it might not have been a fair test –
• different inputs used e.g. A’s input was bigger
• (really) inefficient implementation of A

– e.g. looping through whole array instead of only accessing one
slot

• A takes more space, making it slower
– each memory access is assumed to take one time step so the

running time puts a limit on how much space A can use
– A’s computer could be pushed into swapping while B’s is not

• constant factors could mean that A’s memory usage exceeds B’s
• A’s computer could have less memory

how can an algorithm A with a slower growth
rate could take more time on an input than
algorithm B with a faster growth rate?

A

B

CPSC 327: Data Structures and Algorithms • Spring 2026 11

Definitions

• O gives an upper bound on a function's growth rate
• Ω gives a lower bound on a function's growth rate
• Θ gives a tight bound on a function's growth rate

notation meaning definition
f(n) = O(g(n)) c g(n) is an upper

bound on f(n)
there exists c > 0 and n0 > 0 such
that f(n) ≤ c g(n) for all n ≥ n0

f(n) = Ω(g(n)) c g(n) is an lower
bound on f(n)

there exists c > 0 and n0 > 0 such
that f(n) ≥ c g(n) for all n ≥ n0

f(n) = Θ(g(n)) c1 g(n) is an upper
bound on f(n)
c2 g(n) is an lower
bound on f(n)

there exists c1 > 0, c2 > 0, and
n0 > 0 such f(n) ≤ c1 g(n) and
f(n) ≥ c2 g(n) for all n ≥ n0

CPSC 327: Data Structures and Algorithms • Spring 2026 12

Understanding Definitions

notation meaning definition

f(n) = O(g(n)) c g(n) is an upper bound on f(n) there exists c > 0 and n0 > 0 such that
f(n) ≤ c g(n) for all n ≥ n0

f(n) = Ω(g(n)) c g(n) is an lower bound on f(n) there exists c > 0 and n0 > 0 such that
f(n) ≥ c g(n) for all n ≥ n0

f(n) = Θ(g(n)) c1 g(n) is an upper bound on f(n)
c2 g(n) is an lower bound on f(n)

there exists c1 > 0, c2 > 0, and n0 > 0
such that f(n) ≤ c1 g(n) and f(n) ≥ c2 g(n)
for all n ≥ n0

O gives an upper bound on a function's growth rate
Ω gives a lower bound on a function's growth rate
Θ gives a tight bound on a function's growth rate

CPSC 327: Data Structures and Algorithms • Spring 2026 13

3n+100 = O(10n-log n)

because
3n+100 ≤ c(10n-log n)
for c = 1 and n > 15

3n+100 = Ω(10n-log n)

because
3n+100 ≥ c(10n-log n)
for c = 0.25 and n > 0

thus
3n+100 = Θ(10n-log n)

because
3n+100 ≤ c1(10n-log n) and
3n+100 ≥ c2(10n-log n) for
c1 = 1, c2 = 0.25, and n > 15 CPSC 327: Data Structures and Algorithms • Spring 2026 14

(log n)2 + 5n log n = Ω(2n)

because
(log n)2 + 5n log n ≥ 2n
for c = 1 and n > 5

3n2+n3 = O(3n-5n3)

because
3n2+n3 ≤ c(3n-5n3)
for c = 1 and n > 8

CPSC 327: Data Structures and Algorithms • Spring 2026 15

O, Ω, Θ vs Best and Worst Cases

The big-Oh notation compares growth rates of functions –
comparing shapes of curves.

– f(n) = O(g(n)) says that f(n) grows no faster than g(n)
• g(n) is an upper bound on the growth rate

– f(n) = Ω(g(n)) says that f(n) grows no slower than g(n)
• g(n) is a lower bound on the growth rate

– f(n) = Θ(g(n)) says that f(n) grows at the same rate as g(n)
• g(n) is a tight bound on the growth rate

The best (or worst) case is the specific input instance that
yields the fastest (or slowest) running time over all possible
input instances of a given size – comparing the actual
number of steps required.

– no input instance will take longer than the worst case for that
size, or take less time than the best case for that size

CPSC 327: Data Structures and Algorithms • Spring 2026 16

Understanding Terminology and Concepts

• yes – Θ means that the worst
case won't actually turn out to be
better than n2, but the worst case
is the slowest input of a given
size and others (e.g. best case)
may be better

• yes – O is an upper bound, so
f(n) = O(n2) says that f(n) doesn't
grow any faster than n2, but it
doesn't preclude it growing slower
i.e. n = O(n2) though typically we
want to give the tightest bound
we can

• yes – worst-case means no case
is slower, but faster is possible

CPSC 327: Data Structures and Algorithms • Spring 2026 17

O, Ω, Θ vs Best and Worst Cases

Saying that the worst-case behavior is O(n2) means –
– some inputs could be O(n) because the worst case is the

slowest instance for a given size
– all inputs could be O(n) because n grows no faster than n2,

though one generally tries to give the tightest O possible

Saying that the worst-case behavior is Θ(n2) means –
– some inputs could be O(n) because the worst case is the

slowest instance for a given size
– not all inputs could be O(n) because then the worst case

instances would also be O(n) and n does not grow at the same
rate as n2

CPSC 327: Data Structures and Algorithms • Spring 2026 18

O, Ω, or Θ?

• give as tight as bound as possible

• use Θ if you can
– e.g. mergesort is Θ(n log n)
– e.g. insertion sort is best case Θ(n) and worst case Θ(n2)

• can use O if best case running time grows more slowly
than the worst case but you don't want to distinguish –
only the worst case is important
– e.g. insertion sort is O(n2)

• can use Ω if worst case running time grows faster than
the best case but you don't want to distinguish – only the
best case is important
– e.g. insertion sort is Ω(n)

• can use O (or Ω) if you can't establish a tight bound
– you don’t know if the best case is better or if the worst case is

worse

