

CPSC 327: Data Structures and Algorithms • Spring 2026 19

Understanding Terminology and Concepts

• yes – Θ means that the worst
case won't actually turn out to be
better than n2, but the worst case
is the slowest input of a given
size and others (e.g. best case)
may be better

• yes – O is an upper bound, so
f(n) = O(n2) says that f(n) doesn't
grow any faster than n2, but it
doesn't preclude it growing slower
i.e. n = O(n2) though typically we
want to give the tightest bound
we can

• yes – worst-case means no case
is slower, but faster is possible

CPSC 327: Data Structures and Algorithms • Spring 2026 20

O, Ω, Θ vs Best and Worst Cases

Saying that the worst-case behavior is O(n2) means –
– some inputs could be O(n) because the worst case is the

slowest instance for a given size
– all inputs could be O(n) because n grows no faster than n2,

though one generally tries to give the tightest O possible

Saying that the worst-case behavior is Θ(n2) means –
– some inputs could be O(n) because the worst case is the

slowest instance for a given size
– not all inputs could be O(n) because then the worst case

instances would also be O(n) and n does not grow at the same
rate as n2

CPSC 327: Data Structures and Algorithms • Spring 2026 21

O, Ω, or Θ?

• give as tight as bound as possible

• use Θ if you can
– e.g. mergesort is Θ(n log n)
– e.g. insertion sort is best case Θ(n) and worst case Θ(n2)

• can use O if best case running time grows more slowly
than the worst case but you don't want to distinguish –
only the worst case is important
– e.g. insertion sort is O(n2)

• can use Ω if worst case running time grows faster than
the best case but you don't want to distinguish – only the
best case is important
– e.g. insertion sort is Ω(n)

• can use O (or Ω) if you can't establish a tight bound
– you don’t know if the best case is better or if the worst case is

worse CPSC 327: Data Structures and Algorithms • Spring 2026 22

Implications for Algorithm Design

Θ fast computer 1000x faster
1 n is irrelevant n is irrelevant

log n any n is fine any n is fine
n still practical for n =

1,000,000
still practical for n =
1,000,000,000n log n

n2 usable up to n = 10,000
hopeless for n > 1,000,000

usable up to n = 300,000
hopeless for n > 30,000,000

2n impractical for n > 40 impractical for n > 50
n! useless for n ≥ 20 useless for n ≥ 22

CPSC 327: Data Structures and Algorithms • Spring 2026 23

Θ fast computer
1 n is irrelevant

log n any n is fine

n
still practical
for n =
1,000,000n log n

CPSC 327: Data Structures and Algorithms • Spring 2026 24

n
still practical for
n = 1,000,000n log n

n2

usable up to n =
10,000
hopeless for n >
1,000,000

2n impractical for n >
40

n! useless for n ≥ 20

CPSC 327: Data Structures and Algorithms • Spring 2026 25

Implications for Algorithm Design

Θ running time on fast
computer

characteristics of typical
tasks with the specified
running time

1 n is irrelevant examine only a fixed number of
things regardless of input size

log n any n is fine repeatedly eliminate a fraction of
the search space

n
still practical for
n = 1,000,000

examine each object a fixed
number of times

n log n
divide-and-conquer with linear
time per step
mergesort, quicksort

n2 usable up to n = 10,000
hopeless for n > 1,000,000

examine all pairs
insertion sort, selection sort

n3 examine all triples

2n impractical for n > 40 enumerate all subsets

n! useless for n ≥ 20 enumerate all permutations
CPSC 327: Data Structures and Algorithms • Spring 2026 26

Big-Oh From Algorithms
use the table on the
previous slide

sort, then examine each
object a fixed number of
times → Θ(n log n) + Θ(n)
= Θ(n log n)

examine each object a
fixed number of times,
then examine only a fixed
number of things → Θ(n)
+ Θ(1) = Θ(n)

for each object, examine
each object a fixed
number of times → Θ(n) x
Θ(n) = Θ(n2)

CPSC 327: Data Structures and Algorithms • Spring 2026 27

 B A C

suitability for n = 25, 2500, 250,000, 250,000,000

CPSC 327: Data Structures and Algorithms • Spring 2026 28

Questions

How do you choose between multiple algorithms with
suitable big-Ohs?

• if n = 1,000, all three of these are potentially suitable
• consider other factors

– is there already a library implementation?
– if you have to implement something, which is simpler to

implement (and implement correctly)?
– are there significant differences in memory usage?

CPSC 327: Data Structures and Algorithms • Spring 2026 29

Questions

O(n log n) is pretty practical – why couldn’t you just use
mergesort or quicksort for a very large array?

• real systems have only a limited amount of memory
– if the array is too large to fit into memory, it is kept on disk and

parts are swapped into memory when needed
• if successive accesses are scattered throughout the

array, the system spends all of its CPU time swapping
things in and out of memory instead of actually sorting
– the assumption that each memory access is one time step also

breaks down
• need algorithms exhibiting locality of access to minimize

swaps
CPSC 327: Data Structures and Algorithms • Spring 2026 30

Key Points

• the running time of a series of simple operations is Θ(1)

• the running time of a loop is the sum of the time taken by
each iteration
– if the time is the same for each iteration, the total time reduces to

the number of repetitions times the time per iteration

• the running time of a recursive function is expressed with
a recurrence relation

• logs and exponents come into play when something is
repeatedly divided or multiplied

CPSC 327: Data Structures and Algorithms • Spring 2026 31

Dealing With Sums

from Jeff Edmonds, How to Think About Algorithms CPSC 327: Data Structures and Algorithms • Spring 2026 32

Big-Oh for Sums

