

Understanding Terminology and Concepts

If Alice proves that an algorithm takes $O(n^2)$ worst-case time, is it possible that it takes $O(n)$ time on some inputs?

If Alice proves that an algorithm takes $O(n^2)$ worst-case time, is it possible that it takes $O(n)$ time on all inputs?

If Alice proves that an algorithm takes $\Theta(n^2)$ worst-case time, is it possible that it takes $O(n)$ time on some inputs?

- **yes** – worst-case means no case is slower, but faster is possible
- **yes** – O is an upper bound, so $f(n) = O(n^2)$ says that $f(n)$ doesn't grow any faster than n^2 , but it doesn't preclude it growing slower i.e. $n = O(n^2)$ though typically we want to give the tightest bound we can
- **yes** – Θ means that the worst case won't actually turn out to be better than n^2 , but the worst case is the slowest input of a given size and others (e.g. best case) may be better

O , Ω , or Θ ?

- give as tight as bound as possible
- use Θ if you can
 - e.g. mergesort is $\Theta(n \log n)$
 - e.g. insertion sort is best case $\Theta(n)$ and worst case $\Theta(n^2)$
- can use O if best case running time grows more slowly than the worst case but you don't want to distinguish – only the worst case is important
 - e.g. insertion sort is $O(n^2)$
- can use Ω if worst case running time grows faster than the best case but you don't want to distinguish – only the best case is important
 - e.g. insertion sort is $\Omega(n)$
- can use O (or Ω) if you can't establish a tight bound
 - you don't know if the best case is better or if the worst case is worse

O , Ω , Θ vs Best and Worst Cases

Saying that the worst-case behavior is $O(n^2)$ means –

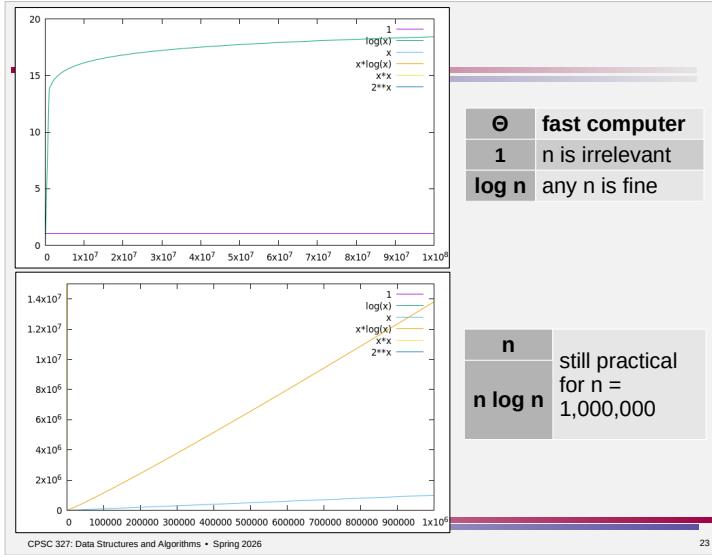
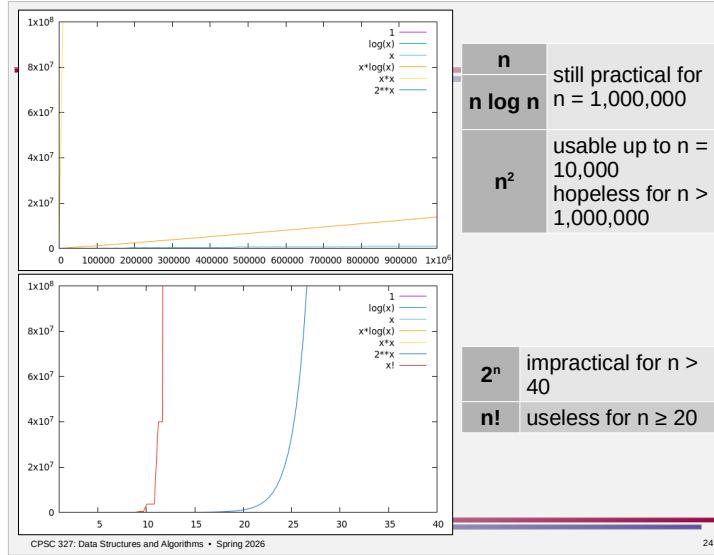
- some inputs could be $O(n)$ because the worst case is the slowest instance for a given size
- all inputs could be $O(n)$ because n grows no faster than n^2 , though one generally tries to give the tightest O possible

Saying that the worst-case behavior is $\Theta(n^2)$ means –

- some inputs could be $O(n)$ because the worst case is the slowest instance for a given size
- not all inputs could be $O(n)$ because then the worst case instances would also be $O(n)$ and n does not grow at the same rate as n^2

Implications for Algorithm Design

Θ	fast computer	1000x faster
1	n is irrelevant	n is irrelevant
$\log n$	any n is fine	any n is fine
n	still practical for $n = 1,000,000$	still practical for $n = 1,000,000,000$
$n \log n$		
n^2	usable up to $n = 10,000$ hopeless for $n > 1,000,000$	usable up to $n = 300,000$ hopeless for $n > 30,000,000$
2^n	impractical for $n > 40$	impractical for $n > 50$
$n!$	useless for $n \geq 20$	useless for $n \geq 22$



Implications for Algorithm Design

	Θ running time on fast computer	characteristics of typical tasks with the specified running time
1	n is irrelevant	examine only a fixed number of things regardless of input size
$\log n$	any n is fine	repeatedly eliminate a fraction of the search space
n	still practical for $n = 1,000,000$	examine each object a fixed number of times
$n \log n$		divide-and-conquer with linear time per step mergesort, quicksort
n^2	usable up to $n = 10,000$ hopeless for $n > 1,000,000$	examine all pairs insertion sort, selection sort
n^3		examine all triples
2^n	impractical for $n > 40$	enumerate all subsets
$n!$	useless for $n \geq 20$	enumerate all permutations

Big-Oh From Algorithms

use the table on the previous slide

An array contains each of the numbers $1..n$ plus one duplicate value. Which value is duplicated?

- Algorithm A uses quicksort or mergesort to sort all of the numbers, then makes one pass through the array looking for adjacent slots with the same value. $\rightarrow \Theta(n \log n) + \Theta(n) = \Theta(n \log n)$
- Algorithm B makes one pass through the array to sum the numbers, then uses the formula $\frac{n(n-1)}{2}$ to calculate the sum of the numbers $1..n$ and subtracts that from the sum of the array's value.
- Algorithm C makes one pass through the array and for each value, makes a pass through the rest of the array to see if another copy of that value is found i.e. each value in the array is compared to each other value to find the duplicate. $\rightarrow \Theta(n) + \Theta(1) = \Theta(n)$

sort, then examine each object a fixed number of times $\rightarrow \Theta(n \log n) + \Theta(n) = \Theta(n \log n)$

examine each object a fixed number of times, then examine only a fixed number of things $\rightarrow \Theta(n) + \Theta(1) = \Theta(n)$

for each object, examine each object a fixed number of times $\rightarrow \Theta(n) \times \Theta(n) = \Theta(n^2)$

	B	A	C			
n	$\lg n$	n	$n \lg n$	n^2	2^n	$n!$
10	0.003 μ s	0.01 μ s	0.033 μ s	0.1 μ s	1 μ s	3.63 ms
20	0.004 μ s	0.02 μ s	0.086 μ s	0.4 μ s	1 ms	77.1 years
30	0.005 μ s	0.03 μ s	0.147 μ s	0.9 μ s	1 sec	8.4×10^{15} yrs
40	0.005 μ s	0.04 μ s	0.213 μ s	1.6 μ s	18.3 min	
50	0.006 μ s	0.05 μ s	0.282 μ s	2.5 μ s	13 days	
100	0.007 μ s	0.1 μ s	0.644 μ s	10 μ s	4×10^{13} yrs	
1,000	0.010 μ s	1.00 μ s	9.966 μ s	1 ms		
10,000	0.013 μ s	10 μ s	130 μ s	100 ms		
100,000	0.017 μ s	0.10 ms	1.67 ms	10 sec		
1,000,000	0.020 μ s	1 ms	19.93 ms	16.7 min		
10,000,000	0.023 μ s	0.01 sec	0.23 sec	1.16 days		
100,000,000	0.027 μ s	0.10 sec	2.66 sec	115.7 days		
1,000,000,000	0.030 μ s	1 sec	29.90 sec	31.7 years		

suitability for $n = 25, 2500, 250,000, 250,000,000$

Questions

How do you choose between multiple algorithms with suitable big-Ohs?

n	still practical for $n = 1,000,000$	examine each object a fixed number of times divide-and-conquer with linear time per step mergesort, quicksort
n^2	usable up to $n = 10,000$ hopeless for $n > 1,000,000$	examine all pairs insertion sort, selection sort

- if $n = 1,000$, all three of these are potentially suitable
- consider other factors
 - is there already a library implementation?
 - if you have to implement something, which is simpler to implement (and implement correctly)?
 - are there significant differences in memory usage?

Questions

$O(n \log n)$ is pretty practical – why couldn't you just use mergesort or quicksort for a very large array?

n	still practical for $n = 1,000,000$	examine each object a fixed number of times divide-and-conquer with linear time per step mergesort, quicksort
$n \log n$		

- real systems have only a limited amount of memory
 - if the array is too large to fit into memory, it is kept on disk and parts are swapped into memory when needed
- if successive accesses are scattered throughout the array, the system spends all of its CPU time swapping things in and out of memory instead of actually sorting
 - the assumption that each memory access is one time step also breaks down
- need algorithms exhibiting *locality of access* to minimize swaps

Key Points

- the running time of a series of simple operations is $\Theta(1)$
- the running time of a loop is the sum of the time taken by each iteration
 - if the time is the same for each iteration, the total time reduces to the number of repetitions times the time per iteration
- the running time of a recursive function is expressed with a recurrence relation
- logs and exponents come into play when something is repeatedly divided or multiplied

The following table outlines the few easy rules with which you will be able to compute $\Theta(\sum_{i=1}^n f(i))$ for functions with the basic form $f(n) = \Theta(b^{an} \cdot n^d \cdot \log^e n)$. (We consider more general functions at the end of this section.)

b^a	d	e	Type of Sum	$\sum_{i=1}^n f(i)$	Examples
> 1	Any	Any	Geometric Increase (dominated by last term)	$\Theta(f(n))$	$\sum_{i=0}^n 2^i \approx 1 \cdot 2^{2^e}$ $\sum_{i=0}^n b^i = \Theta(b^n)$ $\sum_{i=0}^n 2^i = \Theta(2^n)$
$= 1$	> -1	Any	Arithmetic-like (half of terms approximately equal)	$\Theta(n \cdot f(n))$	$\sum_{i=1}^n i^d = \Theta(n \cdot n^d) = \Theta(n^{d+1})$ $\sum_{i=1}^n i^2 = \Theta(n \cdot n^2) = \Theta(n^3)$ $\sum_{i=1}^n i = \Theta(n \cdot n) = \Theta(n^2)$ $\sum_{i=1}^n 1 = \Theta(n \cdot 1) = \Theta(n)$ $\sum_{i=1}^n \frac{1}{n^{0.99}} = \Theta(n \cdot \frac{1}{n^{0.99}}) = \Theta(n^{0.01})$
$= -1$	$= 0$		Harmonic	$\Theta(\ln n)$	$\sum_{i=1}^n \frac{1}{i} = \log_e(n) + \Theta(1)$
< -1	Any		Bounded tail (dominated by first term)	$\Theta(1)$	$\sum_{i=1}^n \frac{1}{i^{1.01}} = \Theta(1)$ $\sum_{i=1}^n \frac{1}{i^2} = \Theta(1)$ $\sum_{i=1}^n (\frac{1}{2})^i = \Theta(1)$ $\sum_{i=0}^n b^{-i} = \Theta(1)$
< 1	Any	Any			

Big-Oh for Sums

Use the big-Oh for sums table to find the Θ approximation for the sum $\sum_{i=1}^n i \log i$.

2. [W] Give the Θ approximation for each of the following sums. Use the big-Oh for sums table.

- $\sum_{i=1..n} (\log i)$
- $\sum_{i=1..n} (1/2^i)$
- $\sum_{i=1..n} \log n (n i^2)$
- $\sum_{i=1..n} \sum_{j=1..i^2} (ij \log i)$