Understanding Terminology and Concepts

If Alice proves that an algorithm takes O(n?) worst-
case time, is it possible that it takes O(n) time on
some inputs?

If Alice proves that an algorithm takes O(n2) worst-
case time, it is possible that it takes O(n) time on all
inputs?

If Alice proves that an algorithm takes O(n?) worst-
case time, is it possible that it takes O(n) time on
some inputs?

CPSC 327: Data Structures and Algorithms + Spring 2026

0O, Q, or ©?

give as tight as bound as possible

use O if you can
e.g. mergesort is ©(n log n)

yes — worst-case means no case
Is slower, but faster is possible

yes — O is an upper bound, so
f(n) = O(n?) says that f(n) doesn't
grow any faster than n?, but it
doesn't preclude it growing slower
i.e. n = O(n?) though typically we
want to give the tightest bound
we can

yes — © means that the worst
case won't actually turn out to be
better than n?, but the worst case
is the slowest input of a given
size and others (e.g. best case)
may be better

19

0O, Q, © vs Best and Worst Cases

Saying that the worst-case behavior is O(n?) means —

some inputs could be O(n) because the worst case is the
slowest instance for a given size

all inputs could be O(n) because n grows no faster than n?,
though one generally tries to give the tightest O possible

Saying that the worst-case behavior is ®(n?) means —

some inputs could be O(n) because the worst case is the
slowest instance for a given size

not all inputs could be O(n) because then the worst case
instances would also be O(n) and n does not grow at the same
rate as n?

CPSC 327: Data Structures and Algorithms + Spring 2026 20

Implications for Algorithm Design

(©) fast computer 1000x faster
1 n is irrelevant n is irrelevant
logn anynis fine any n is fine

e.g. insertion sort is best case ©(n) and worst case ©(n?)

can use O if best case running time grows more slowly
than the worst case but you don't want to distinguish —
only the worst case is important

e.g. insertion sort is O(n?)
can use Q if worst case running time grows faster than
the best case but you don't want to distinguish — only the
best case is important

e.g. insertion sort is Q(n)

can use O (or Q) if you can't establish a tight bound

you don't know if the best case is better or if the worst case is =
worse) n

n still practical for n =
nlog n 1,000,000

n? usable up to n = 10,000

hopeless for n > 1,000,000

2" impractical for n > 40
n! useless for n = 20

CPSC 327: Data Structures and Algorithms + Spring 2026

still practical for n =
1,000,000,000

usable up to n = 300,000
hopeless for n > 30,000,000

impractical for n > 50
useless for n = 22

20

x*log(x)

2%

g
x

© fast computer
1 nisirrelevant
] log n any nis fine

0 L

.
o 1x107 2x107 3x107 4x107 5x107 6x107 7x107 8x107 9x107 1x10f|

T
1.4x107 -

1.2¢107 [-

1x107 [

8x10° |

6x10° |-

4x10°

2x10° |-

1

1og(x)

X
*og(x)

i

still practical

forn =
nlogn ;1 500,000

0
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1x109

CPSC 327: Data Structures and Algorithms + Spring 2026

Implications for Algorithm Design

log n

nlogn

nz
n3
2n
n!

running time on fast
computer

n is irrelevant

any nis fine

still practical for
n = 1,000,000

usable up to n = 10,000
hopeless for n > 1,000,000

impractical for n > 40
useless for n = 20

characteristics of typical
tasks with the specified
running time

examine only a fixed number of
things regardless of input size

repeatedly eliminate a fraction of
the search space

examine each object a fixed
number of times

divide-and-conquer with linear
time per step
mergesort, quicksort

examine all pairs
insertion sort, selection sort

examine all triples
enumerate all subsets
enumerate all permutations

1x10° T T
P —

log(x)
x

8x107 - x*log(x)
XFX
2%%x

still practical for
nlog n n= 1,000,000

6x107 - B
; usable upton =
4x107 - -
n? 10,000
a0’ |- i hopeless for n >
1,000,000
° o 10(;000 20(;000 EOL;ODO 40(;000 50(;000 60(;000 70(;000 BOL;OOD 90(;000 1x10°|
1x108 T T T T T T T
| 1
| log(x)
8x107 | ‘\‘ x"lugix); B
| o . . S
ol | | on impractical for n
| 40
a0’ | , n! useless for n = 20
| /
|
2x107 |- | / 4
“ /
0 I I I ,«f/ I I I
5 10 15 20 25 30 35 e

CPSC 327: Data Structures and Algorithms + Spring 2026

Big-Oh From Algorithms

use the table on the
previous slide

An array contains each of the numbers 1..n plus one duplicate
value. Which value is duplicated?

= Algorithm A uses quicksort or mergsort to sort all of the

sort, then examine each
object a fixed number of

—
numbers, then makes one pass through the array looking times - ©(n log n) + ©(n)

for adjacent slots with the same value.

s Algorithm B makes one pass through the array to sum the

n(n—1)

= O(n log n)

examine each object a

! . f
numbers, then uses the formula 3 to calculate the I fixed number of tlmes,

sum of the numbers 1..n and subtracts that from the sum
of the array’s value.

makes one pass

Algorithm C
through the array and for each value, makes a pass
through the rest of the array to see if another copy of that
value is found i.e. each value in the array is compared to
each other value to find the duplicate.

then examine only a fixed
number of things - ©(n)
+ 0(1) = ©(n)

% for each object, examine
each object a fixed
number of times » ©(n) x
O(n) = 6(n?)

CPSC 327: Data Structures and Algorithms + Spring 2026

B A @

n lgn n n” P

10 0.003 pus 001 ps
20 0.004 ps 0.02 us

01 s T s
0.4 pus 1 ms

ars
30 0.005 ps 003 ps 0.9 ps 1 sec 8.4 % 10 yrs
10 0.005 ps 0.04 ps 1.6 pus 18.3 min
50 0.006 pes | 0.05 s 2.5 ps 13 days
100 0.007 ps 0.1 ps 0.644 ps 10 us 1% 107 yrs
1,000 0.010 ges || 100 us | 9966 ps | 1ms

10,000 0.013 ps 10 ps 130 ps 100 ms
100000 0.017 s 010 ms 1.67 ms 10 sec

1,000,000 0.020 ps 1 ms 19.93 ms 16.7 min
10,000,000 0.023 ps 0.01 sec 0.23 sec 1.16 days
L00.000.000 0.027 ps 010 sec 2.66 sec 116.7 days

1,000,000,000 0.030 ps 1 sec 29.90 sec 31.7 years

suitability for n = 25, 2500, 250,000, 250,000,000

CPSC 327: Data Structures and Algorithms + Spring 2026 27

Questions

O(n log n) is pretty practical — why couldn’t you just use
mergesort or quicksort for a very large array?

examine each object a fixed

n "
still practical for n_ur_nber CH{fime> e
n = 1.000.000 divide-and-conquer with linear
nlogn T time per step

mergesort, quicksort

real systems have only a limited amount of memory
if the array is too large to fit into memory, it is kept on disk and
parts are swapped into memory when needed
if successive accesses are scattered throughout the
array, the system spends all of its CPU time swapping
things in and out of memory instead of actually sorting
the assumption that each memory access is one time step also
breaks down
need algorithms exhibiting /ocality of access to minimize
swaps

Questions

How do you choose between multiple algorithms with
suitable big-Ohs?

examine each object a fixed

n .
still practical for n_uljnber otjomes —
n = 1,000,000 divide-and-conquer with linear
nlogn time per step
mergesort, quicksort
5 usable up to n = 10,000 examine all pairs
n

hopeless for n > 1,000,000 insertion sort, selection sort

if n = 1,000, all three of these are potentially suitable

consider other factors
is there already a library implementation?

if you have to implement something, which is simpler to
implement (and implement correctly)?

are there significant differences in memory usage?

CPSC 327: Data Structures and Algorithms + Spring 2026 28

Key Points

the running time of a series of simple operations is ©(1)

the running time of a loop is the sum of the time taken by
each iteration

if the time is the same for each iteration, the total time reduces to
the number of repetitions times the time per iteration

the running time of a recursive function is expressed with
a recurrence relation

logs and exponents come into play when something is
repeatedly divided or multiplied

CPSC 327: Data Structures and Algorithms + Spring 2026 30

The following table outlines the few easy rules with which you will be able to compute
(31, fi)) for functions with the basic form f(r) = ®(b*" - n - log® n). (We consider
= more general functions at the end of this section.)

b | d e Type of Sum Y i1 f() | Examples
> 1|Any |Any | Geometric Increase | ©(f(n)) Y22 ml.2"
l(t:lolr:linat)et:l by Yr,bt =8
ast term, T —een
=1|> -1 | Any || Arithmetic-like en. fin) | 0, i = G- nd) =6nhT)
(ha.lfoftermsl v, =8 = 8
approximately B - _ ¥
squsd) hIaH =0(n-n =0
YLl =en-1)=eMm
o =0 Hy) = 0r)
=-1|=0 || Harmonic O(nn) Yt =log,(n) + 6(1)
< —1| Any || Bounded tail a(l) T mor =00
(dominated by - _
first term) Lz =0m
<1[Any |Any LG =6
bt =8

CPSC 327: Data Structures and Algorithms + Spring 2026

from Jeff Edmonds, How to Think About Algorithms 31

Big-Oh for Sums

for the sum > 7 | i log i.

Use the big-Oh for sums table to find the © approximation

2. [W] Give the © approximation for each of the following sums. Use the big-Oh for sums

table.
a. Yi=1.n (Iog.i)
b. Zj=1.n (1/2")

C. Zi=1.logn (N i2)
d. Zi=1.n Zj=1..2 (ij log i)

CPSC 327: Data Structures and Algorithms + Spring 2026

