The following table outlines the few easy rules with which you will be able to compute
(31, fi)) for functions with the basic form f(r) = ®(b*" - n - log® n). (We consider
= more general functions at the end of this section.)

b | d e Type of Sum Y i1 f() | Examples
>1|Any |Any || Geometric Increase | ©(f(n)) Y22 ml.2"
l(dominated by b =eWmM
ast term) T2 —een
=1|> —1]Any || Arithmetic-like an. fln) | L, i@ = G- nd) =6nhT)
iy T =8n-m) =0
approximately s B ol el
squsd) hIaH =0(n-n =0
Tl =8n-1)=8Mm
o =0 Hy) = 0r)
=-1|=0 || Harmonic O(nn) Yt =log,(n) + 6(1)
< —1| Any || Bounded tail a(l) T mor =00
(dominated by _ _
first term) Lz =84
<1[Any [Any w3 =6
rabt =8

CPSC 327: Data Structures and Algorithms + Spring 2026

Exponent Rules

Assume that a and b are nonzero real
numbers, and m and n are any integers.

1) Zero Property of Exponent

0
b’ =1
2) Negative Property of Exponent
1 1
b =5 *® P =b"

3) Product Property of Exponent
(bm)(bn)= P p2=\p

4) Quotient Property of Exponent

k
LApr—

n

5) Power of a Power Property of Exponent

(")" p
6) Power of a Product Property of Exponent
m mym
(ab) =a"b
7) Power of a Quotient Property of Exponent
m
al _a"
b b"

from Jeff Edmonds, How to Think About Algorithms 34

Log

Rule1:

log,,(x)

definition of log:
if X = logy(n) then n = bx

M
Rule2: log, (E) =log, M—log, N

Rule3: log, (Mk) =k-log, M

Rule4: log, (1)=0

Rules: log, (b) =1

RuleG: log, (b") =k

T

Where: b>1,and M, N and k can be any real numbers

but M and N must be positive!

Rules

log,, (M-N) =log, M+log, N

:IOEJ(X) €10Bln) — pelos(d)
log,(b

Big-Oh for Sums

Use the big-Oh for sums table to find the © approximation
for the sum > 7 | i log i.

2. [W] Give the © approximation for each of the following sums. Use the big-Oh for sums
table.
a. Yi=1.n (Iog.i)
b. Zj=1.n (1/2")

C. Zi=1.logn (N i2)
d. Zi=1.n Zj=1..2 (ij log i)

L —————————
35

CPSC 327: Data Structures and Algorithms + Spring 2026

Logarithms and Exponents

For the following pairs of functions, indicate whether f=0(g),

=£2(g), or F=O(g).
o I
o I
I

n) = logn?, g(n) = M08 T [ajra]
n) = log;, n. g(n) = 10n [pairB]
n) = log,, n. g(n) = log, 2n [pairC]

* tips
know the growth rate ordering of common functions: 1, log n, n,
nlogn, n? 2", n!
simplify other functions to make them more familiar

CPSC 327: Data Structures and Algorithms + Spring 2026 a7

Solving Recurrence Relations

T(n) = a T(n-b) + f(n) where f(n) = ©(n° log® n)

Cases are based on the number of subproblems and f(n).

a f(n) behavior solution

base case dominates
(too many leaves)

1 =1 all levels are important T(n) = ©(n f(n))

>1 any T(n) = ©(a"")

CPSC 327: Data Structures and Algorithms + Spring 2026 38

Big-Oh for Recurrence Relations

Use the big-Oh for recurrence relations tables to find the ©
approximation for the recurrence relation

T (n) = 3T (%) + 0 (n).

T(n) = 2T(n/2) + O(log n)
T(n) = 3T(n/9) + ©(n)
T(n) = 8T(n/2) + ©(n?)
T(n) = T(n-1) + ©(1)

e —m————————————————
e —
40

CPSC 327: Data Structures and Algorithms + Spring 2026

Solving Recurrence Relations

T(n) = a T(n/b) + f(n) where f(n) = ©(n° log® n)

Cases are based on the relationship between the number of
subproblems, the problem size, and f(n).

(log
a)/(log d behavior
b) vs c

solution

top level dominates - more work
< any splitting/combining than in subproblems T(n) = ©(f(n))

(root too expensive)

all levels are important - log n steps to
= > -1 get to base case, and roughly same T(n) = ©(f(n) log n)

amount of work in each level

= < -1 base cases dominate - so many
subproblems that taking care of all the T(n) = ©(nloa a¥tiog b))

> any base cases is more work than

Big-Oh From Algorithms

tting/combining (too many leaves)

)

use the known typical
tasks

An array contains each of the numbers 1..n plus one duplicate
value. Which value is duplicated?

= Algorithm A uses quicksort or mergsort to sort all of the

numbers, then makes one pass through the array looking

for adjacent slots with the same value.
s Algorithm B makes one pass through the array to sum the
numbers, then uses the formula m‘nz_

sum of the numbers 1..n and subtracts that from the sum

of the array’s value.

Algorithm C makes one pass
through the array and for each value, makes a pass
through the rest of the array to see if another copy of that
value is found i.e. each value in the array is compared to
each other value to find the duplicate.

1
L to calculate the |

sort, then examine each
object a fixed number of

> times — O(n log n) + ©(n)
= O(n log n)

examine each object a

» fixed number of times,
then examine only a fixed
number of things - ©(n)
+ 0(1) = 0(n)

% for each object, examine
each object a fixed
number of times - ©(n) x

O(n) = 0(n?)

CPSC 327: Data Structures and Algorithms + Spring 2026

Big-Oh From Algorithms sort(arr)

An array contains each of the numbers 1..n plus one dupli .

for i « 0..n-2
if arr[i] == arr[i+l]
dup « arr[i]

Big-Oh From Algorithms

o We grow an array by increasing its length by 1 cach time.

double[] numbers = new double[1];
for (int i =0 ; i <mn; i++) {
if (i >= numbers.length) {
numbers = Arrays.copy0f (numbers ,numbers.length+1);
by
numbers[i] = Math.random() ;

+

value. Which value is duplicated? b
reak
* Algorithm A uses quicksort or mergsort to sort all of the
numbers, then makes one pass through the array looking
for adjacent slots with the same value.
« Algorithm B makes one pass through the array to sum the sum « 0
numbers, then uses the formula m‘nz_l‘l to calculate the — | fO ril e« 0 c o= 1
sum of the numbers 1..n and subtracts that from the sum sum += arr [1]
of the array's value. dup - Sum_n(n_l)/z
* Algorithm C _ makes one pass
through the array and for each value, makes a pass
through the rest of the array to see if another copy of that
wvalue is found i.e. each value in the array is compared to
each other value to find the duplicate. \ fO r 1 . 0 n- 1

CPSC 327: Data Structures and Algorithms + Spring 2026

for j « i+l..n-1
if arr[i] == arr[j]

dup < arr[j]
break

e We grow an array by doubling its length each time.

double[] numbers = new double[1];
for (int i =0 ; i <n ; i++) {
if (i >= numbers.length) {
numbers = Arrays.copyOf (numbers, 2*numbers.length);

numbers[i] = Math.random();

}

Big-Oh From Algorithms

e void hanoi (int n, int src, int dst, int spare) {
if (n==1) {

} else {
hanoi(n-1,src,spare,dst);

hanoi(n-1,spare,dst,src);
X
}

System.out.println("move disk from "+src+" to "+dst);

System.out.println("move disk from "+src+" to "+dst);

CPSC 327: Data Structures and Algorithms + Spring 2026

CPSC 327: Data Structures and Algorithms + Spring 2026

Big-Oh From Algorithms

e Mergesort.

void mergesort (int[] arr, int left, int right) {
if (right > left) {
int middle = (left+right)/2;
mergesort (arr,left,middle);
mergesort (arr,middle+1,right);
merge(arr,left,middle,right);
3
s

void merge (int[] arr, int left, int middle, int right) {

int[] merged = new int[right-left+1];
int int i = left, j = middle+l, k = 0;
for (; i <= middle && j <= right ; k++) {
if (arr[i] < arr[j]) { merged[k] = arr[il; i++; }
else { merged[k] = arr[j]; j++; }
3
for (; i <= middle ; i++, k++) {
merged[k] = arr[i];
X
for (; j <= right ; j++, k++) {
merged[k] = arr[i];
g
System.arraycopy (merged,0,arr,left,merged.length);

?

