

CPSC 327: Data Structures and Algorithms • Spring 2026 34

Dealing With Sums

from Jeff Edmonds, How to Think About Algorithms CPSC 327: Data Structures and Algorithms • Spring 2026 35

Big-Oh for Sums

CPSC 327: Data Structures and Algorithms • Spring 2026 36

Log Rules

definition of log:
if x = logb(n) then n = bx

log b(x)=
log d(x)
log d(b)

dc log2 (n)=nc log2 (d)

b1 /2=√b

CPSC 327: Data Structures and Algorithms • Spring 2026 37

Logarithms and Exponents

• tips
– know the growth rate ordering of common functions: 1, log n, n,

n log n, n2, 2n, n!
– simplify other functions to make them more familiar

CPSC 327: Data Structures and Algorithms • Spring 2026 38

Solving Recurrence Relations

T(n) = a T(n-b) + f(n) where f(n) = Θ(nc logd n)

Cases are based on the number of subproblems and f(n).

a f(n) behavior solution

> 1 any
base case dominates
(too many leaves) T(n) = Θ(an/b)

1 ≥ 1 all levels are important T(n) = Θ(n f(n))

CPSC 327: Data Structures and Algorithms • Spring 2026 39

Solving Recurrence Relations

T(n) = a T(n/b) + f(n) where f(n) = Θ(nc logd n)

Cases are based on the relationship between the number of
subproblems, the problem size, and f(n).

(log
a)/(log
b) vs c

d behavior solution

< any
top level dominates – more work
splitting/combining than in subproblems
(root too expensive)

T(n) = Θ(f(n))

= > -1
all levels are important – log n steps to
get to base case, and roughly same
amount of work in each level

T(n) = Θ(f(n) log n)

= < -1 base cases dominate – so many
subproblems that taking care of all the
base cases is more work than
splitting/combining (too many leaves)

T(n) = Θ(n(log a)/(log b))
> any

CPSC 327: Data Structures and Algorithms • Spring 2026 40

Big-Oh for Recurrence Relations

CPSC 327: Data Structures and Algorithms • Spring 2026 41

Big-Oh From Algorithms
use the known typical
tasks

sort, then examine each
object a fixed number of
times → Θ(n log n) + Θ(n)
= Θ(n log n)

examine each object a
fixed number of times,
then examine only a fixed
number of things → Θ(n)
+ Θ(1) = Θ(n)

for each object, examine
each object a fixed
number of times → Θ(n) x
Θ(n) = Θ(n2)

CPSC 327: Data Structures and Algorithms • Spring 2026 42

Big-Oh From Algorithms

sum 0←
for i 0..n-1←
 sum += arr[i]
dup sum-n(n-1)/2←

for i 0..n-1←
 for j i+1..n-1←
 if arr[i] == arr[j]
 dup arr[j]←
 break

sort(arr)
for i 0..n-2 ←
 if arr[i] == arr[i+1]
 dup arr[i]←
 break

CPSC 327: Data Structures and Algorithms • Spring 2026 43

Big-Oh From Algorithms

CPSC 327: Data Structures and Algorithms • Spring 2026 44

Big-Oh From Algorithms

CPSC 327: Data Structures and Algorithms • Spring 2026 45

Big-Oh From Algorithms

