Key Points

ADTs vs data structures
Data Structures Toolbox
common categories of ADTs

common container ADTs — characteristics, properties,
operations, applications

two (three) main kinds of data structures

e characteristics and tradeoffs
array, linked list, and binary tree operations

basic implementations of containers

to understand available library implementations, their running
times, and their suitability for particular applications

to be able to build your own

strategies for improving implementations

CPSC 327: Data Structures and Algorithms + Spring 2026

ADTs vs Data Structures Fundamental ADTs

Some categories of standard ADTs —
an abstract data type is defined by its operations (and g

concept) containers provide storage and retrieval of elements
an algorithm's needs determine which standard ADT is independent of value
appropriate, if any, and the operations needed for a custom ADT ordering of elements depends on the structure of the container
rather than the elements themselves
concrete data structures are used to realize the SIMETES G2 |9 @7 2y R
implementation of an ADT dictionaries provide access to elements by value
generally have choices, with different time/space tradeoffs lookup according to an element's key
changing the data structure used to implement a given ADT elements can be of any type; the key type must support equality
does not change the correctness of the algorithm, but may have comparison
a big influence on time/space requirements L . .
choice of implementation data structure goes hand-in-hand with the pI’IOI’Ity queues prowde access to elements in order by
design of the algorithm content

ordered by priority associated with elements

elements can be of any type; priority must be comparable (so
there is an ordering)

CPSC 327: Data Structures and Algorithms + Spring 2026 3 CPSC 327: Data Structures and Algorithms + Spring 2026

ADTs — Common Containers typical operations

Stack linear order, access only ~ * push(x) —insert x at the top of the stack
.~ __ atoneend * top() — return top item (without removal)
U U H E E « LIFO —insert and * pop() — remove and return the top item on the
i w = = =~ removeatthe sameend Stack
Queue linear order, access only ~ * enqueue(x) — insert x at the back of the queue

- at both ends peek() — return front item
variations

. _ « FIFO —insert at one (without removal) -
::r,lzgrl:l?emove end, remove from the dequeue() remove and return < JIIII3
e other the front item in the queue

ADTs — Map/Dictionary and Set typical operations

« searching and lookup (access by value)

Set membership * add(x) — add elt x if not already present
(no duplicate * remove(x) — remove elt x
elements) « contains(x) — return whether x is present

ADTs for Algorithm Design

The kind of access to elements imposed by different types
of containers can be exploited to achieve algorithmic goals.

Vector / List / ‘ ‘
Sequence

Stack

Queue

CPSC 327: Data Structures and Algorithms + Spring 2026 6

CPSC 327: Data Structures and Algorithms + Spring 2026 8

ADTSs — PriorityQueue

 sorting/ordering elements in a dynamic environment when
the elements are not all known in advance

CPSC 327: Data Structures and Algorithms + Spring 2026 9

Choosing Between Collections ADTs

Use a queue when —
you want things out in the same order you put them in

Use a priority queue when —
you want to remove things in sorted order but you don't necessarily
have all of the things at the beginning
Use a stack when —
you want things out in the reverse of the order you put them in
you want to access the most recent thing added

Use a list when —
stacks and queues don't serve your needs
need to insert/remove/access at any position

Use a dictionary when —
you want to associate values with keys and do efficient lookup

Use a set when —
you want to ask questions (only) about membership

°

