

Data Structures Toolbox

CPSC 327: Data Structures and Algorithms • Spring 2026 2

Key Points

• ADTs vs data structures

• common categories of ADTs
– common container ADTs – characteristics, properties,

operations, applications

• two (three) main kinds of data structures
– characteristics and tradeoffs
– array, linked list, and binary tree operations

• basic implementations of containers
– to understand available library implementations, their running

times, and their suitability for particular applications
– to be able to build your own

• strategies for improving implementations

CPSC 327: Data Structures and Algorithms • Spring 2026 3

ADTs vs Data Structures

• an abstract data type is defined by its operations (and
concept)
– an algorithm's needs determine which standard ADT is

appropriate, if any, and the operations needed for a custom ADT

• concrete data structures are used to realize the
implementation of an ADT
– generally have choices, with different time/space tradeoffs
– changing the data structure used to implement a given ADT

does not change the correctness of the algorithm, but may have
a big influence on time/space requirements

• choice of implementation data structure goes hand-in-hand with the
design of the algorithm

CPSC 327: Data Structures and Algorithms • Spring 2026 4

Fundamental ADTs

Some categories of standard ADTs –
• containers provide storage and retrieval of elements

independent of value
– ordering of elements depends on the structure of the container

rather than the elements themselves
– elements can be of any type

• dictionaries provide access to elements by value
– lookup according to an element's key
– elements can be of any type; the key type must support equality

comparison

• priority queues provide access to elements in order by
content
– ordered by priority associated with elements
– elements can be of any type; priority must be comparable (so

there is an ordering)

CPSC 327: Data Structures and Algorithms • Spring 2026 5

ADTs – Common Containers
Vector / List /
Sequence

linear order, access by
rank (index) or position

rank-based operations
● add(x), add(r,x) – add x at the end / with rank r
● get(r) – get element with rank r
● remove(r) – remove (and return) elt with rank r
● replace(r,x) – replace elt at rank r with x
position-based operations
● first, last() – get first/last position
● before(p), after(p) – get position before/after p
● addBefore(p,x), addAfter(p,x) – insert x

after/before position p
● get(p) – get element at position p
● remove(p) – remove (and return) elt at pos p
● replace(p,x) – replace elt at pos p with x
bridge operations
● atRank(r) – get pos at rank r
● rankOf(p) – get rank of pos p

Stack linear order, access only
at one end
● LIFO – insert and

remove at the same end

● push(x) – insert x at the top of the stack
● top() – return top item (without removal)
● pop() – remove and return the top item on the

stack

Queue
variations
● Deque –

insert/remove
at either end

linear order, access only
at both ends
● FIFO – insert at one

end, remove from the
other

● enqueue(x) – insert x at the back of the queue
● peek() – return front item

(without removal)
● dequeue() – remove and return

the front item in the queue

typical operations

CPSC 327: Data Structures and Algorithms • Spring 2026 6

ADTs for Algorithm Design

The kind of access to elements imposed by different types
of containers can be exploited to achieve algorithmic goals.

ADT some applications of the ADT
Vector / List /
Sequence

general-purpose container
round-robin scheduling, taking turns

Stack match most recent thing, proper nesting, reversing
DFS – go deep before backing up
has ties to recursive procedures – supports iterative
implementation of recursive ideas

Queue when order is important – FIFO order minimizes waiting time
BFS – spread out in levels
round-robin scheduling, taking turns

CPSC 327: Data Structures and Algorithms • Spring 2026 8

ADTs – Map/Dictionary and Set

Map / Dictionary

variations
● OrderedDictionary –

also supports
min/max,
predecessor(k)/
successor(k) based on
an ordering of the
keys

lookup
(no duplicate keys)

● find(k) – find elt with key k if it exists
● insert(k,v) – add elt v with key k
● delete(k) – remove elt, key with key k (may

return elt)

Set membership
(no duplicate
elements)

● add(x) – add elt x if not already present
● remove(x) – remove elt x
● contains(x) – return whether x is present

• searching and lookup (access by value)

typical operations

CPSC 327: Data Structures and Algorithms • Spring 2026 9

ADTs – PriorityQueue

PriorityQueue maintain removal
order when there
are out-of-order
additions

● insert(x,p) – insert elt x with priority p
● findMin() or findMax() – find elt with min/max

priority
● deleteMin() or deleteMax() – remove (and

return) elt with min/max key

note: a PQ is either a min-PQ or a max-PQ – it
does not support both min and max operations
simultaneously

• sorting/ordering elements in a dynamic environment when
the elements are not all known in advance

CPSC 327: Data Structures and Algorithms • Spring 2026 10

Choosing Between Collections ADTs

Use a queue when –
• you want things out in the same order you put them in

Use a priority queue when –
• you want to remove things in sorted order but you don't necessarily

have all of the things at the beginning

Use a stack when –
• you want things out in the reverse of the order you put them in
• you want to access the most recent thing added

Use a list when –
• stacks and queues don't serve your needs
• need to insert/remove/access at any position

Use a dictionary when –
• you want to associate values with keys and do efficient lookup

Use a set when –
• you want to ask questions (only) about membership

