
Chapter 1

Big-Oh From Code

� We grow an array by increasing its length by 1 each time.

double[] numbers = new double[1];

for (int i = 0 ; i < n ; i++) {

if (i >= numbers.length) {

numbers = Arrays.copyOf(numbers,numbers.length+1);

}

numbers[i] = Math.random();

}

Outside (before) the loop is just simple operations, so that contributes Θ(1).

For the loop, observe that everything in the loop body is Θ(1) except Arrays.copyOf(), which we
expect to take time proportional of the number of elements copied i.e. Θ(numbers.length). The total
amount of time taken for the loop is the sum of the time taken by each iteration. Step through the
code: on the first iteration i = 0, numbers.length = 1, and the if condition is false so nothing is
copied and numbers.length doesn’t change. On the next iteration i = 1, numbers.length = 1, and
the if condition is true so numbers is copied and its length increases by 1. And so forth:

i 0 1 2 3 4 5 . . . n− 1
numbers.length 1 1 2 3 4 5 . . . n− 1
work to copy 0 1 2 3 4 5 . . . n− 1
other work Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) . . . Θ(1)

The total time taken is the sum of the “work to copy” and “other work” entries:
n−1∑
j=0

j + nΘ(1).

Using the sums table gives Θ(n2) for the sum, which is faster-growing than n, so the overall running
time is Θ(n2).

2

CHAPTER 1. BIG-OH FROM CODE

� We grow an array by doubling its length each time.

double[] numbers = new double[1];

for (int i = 0 ; i < n ; i++) {

if (i >= numbers.length) {

numbers = Arrays.copyOf(numbers,2*numbers.length);

}

numbers[i] = Math.random();

}

Outside (before) the loop is just simple operations, so that contributes Θ(1).

For the loop, observe that everything in the loop body is Θ(1) except Arrays.copyOf(), which we
expect to take time proportional of the number of elements copied i.e. Θ(numbers.length). The total
amount of time taken for the loop is the sum of the time taken by each iteration. Step through the
code: on the first iteration i = 0, numbers.length = 1, and the if condition is false so nothing is
copied and numbers.length doesn’t change. On the next iteration i = 1, numbers.length = 1, and
the if condition is true so numbers is copied and its length is doubled. And so forth:

i 0 1 2 3 4 5 6 7 8 9 . . . n− 1
numbers.length 1 1 2 4 4 8 8 8 8 16 . . .
work to copy 0 1 2 0 4 0 0 0 8 0 . . .
other work Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) . . . Θ(1)

The total time taken is the sum of the “work to copy” and “other work” entries. For “work to copy”,
observe that it is a sum of powers of 2:

∑
j=0

2j . But what’s the upper limit for the sum? Assume n

is a power of 2, so the last time the array grows and is copied is when 2j = n/2. Solving for j yields
j = log n− 1.

Thus, the total time taken is
logn−1∑
j=0

2j +nΘ(1). This is a “geometric increase” sum, so using the sums

table yields Θ(2logn−1) + nΘ(1). 2logn−1 simplifies to n/2, so the total time is Θ(n).

(This means that over the time it takes to insert n elements, doubling the array results in only O(n)
additional work in total — while the worst case behavior of a single insert is O(n), when the growing
time is spread over a series of n operations (a process called amortized analysis) each insert is effectively
O(1).)

January 27, 2026 3

CHAPTER 1. BIG-OH FROM CODE

� void hanoi (int n, int src, int dst, int spare) {

if (n == 1) {

System.out.println("move disk from "+src+" to "+dst);

} else {

hanoi(n-1,src,spare,dst);

System.out.println("move disk from "+src+" to "+dst);

hanoi(n-1,spare,dst,src);

}

}

Let T (n) be the time for hanoi(n,...). Then

T (1) = Θ(1)

For the recursive case, the time taken is the time for two hanoi(n-1,...) calls plus Θ(1) additional
time — the only non-simple steps in the body of hanoi are the recursive calls. This means

T (n) = 2T (n− 1) + Θ(1)

Using the recurrence relations table gives Θ(an/b) = Θ(2n).

� Mergesort.

void mergesort (int[] arr, int left, int right) {

if (right > left) {

int middle = (left+right)/2;

mergesort(arr,left,middle);

mergesort(arr,middle+1,right);

merge(arr,left,middle,right);

}

}

void merge (int[] arr, int left, int middle, int right) {

int[] merged = new int[right-left+1];

int int i = left, j = middle+1, k = 0;

for (; i <= middle && j <= right ; k++) {

if (arr[i] < arr[j]) { merged[k] = arr[i]; i++; }

else { merged[k] = arr[j]; j++; }

}

for (; i <= middle ; i++, k++) {

merged[k] = arr[i];

}

for (; j <= right ; j++, k++) {

merged[k] = arr[i];

}

System.arraycopy(merged,0,arr,left,merged.length);

}

For mergesort, the base case is Θ(1) (only the if condition is checked). For the recursive case

T (n) = 2T (n/2) + Θ(n)

where n = right − left + 1. (right and left denote the range of arr being sorted.) For merge,
observe that every loop iteration increments either i or j and that i counts from left to middle

(inclusive) and j counts from middle+1 to right (inclusive) — thus the total work for the three loops
is Θ(n). System.arraycopy is also Θ(n) making merge Θ(n) overall.

Using the recurrence relations table gives T (n) = Θ(n log n).

January 27, 2026 4

