Before a Program Runs

* acompiler translates C code into an executable
containing machine instructions

System Architecture

printf.o

hello.c Pre- hello.i |Comp\[erl hello.s |Assemb|er hello.o Linker hello

Source PP Modified Assembly Relocatable Executable

program source program object object
(text) program (text) programs program
(text) (binary) (binary)

Figure 1.3 The compilation system.

* the executable is loaded from disk to main memory when
the program starts
or as needed

https://medium.com/@wangwei09310931/notes-of-csapp-1-a-tour-of-computer-systems-3ab14138fbd7,
CPSC 229: Foundatio from Computer Systems: A Programmer’s Perspective

When a Program Runs

repeat —

« fetch
get the current instruction from main memory and store it in a
register

» decode
determine which instruction it is

° execute
carry out the instruction (add two numbers, access memory,
check a condition, jump to another instruction, ...)

* next instruction
update the program counter to the next instruction

CPSC 229: Foundations of Computation + Spring 2026 12

Figure 1.4 CPU
Hardware organization
of a typical system. CPU:

Central Processing Unit, g ALU

Register file

ALU: Arithmetic/Logic |
Unit, PC: Program counter,
USB: Universal Serial Bus.

System bus Memory bus

[0] Main
1/0 bus Ll LI Ll

Expansion slots for
other devices such

UsSB Graphics Disk as network adapters
controller adapter controller
Mouse Keyboard Display <)

hello executable
w stored on disk

https://medium.com/@wangwei09310931/notes-of-csapp-1-a-tour-of-computer-systems-3ab14138fbd7,
CcPsc 229: Foundatio from Computer Systems: A Programmer’s Perspective

Operating Systems

The OS is responsible for ensuring that the system operates
correctly and efficiently.

The OS —

* makes it easy to run programs

« facilitates running many programs at once
« allows programs to share memory

+ enables programs to interact with devices

CPSC 229: Foundations of Computation + Spring 2026 13

Operating Systems

The OS is a virtual machine.
provides abstractions of physical resources (CPU, memory, disk)
« allows applications to reuse common facilities
« provides a common interface to different devices
« can provide higher-level functionality

provides a standard library (system calls) to applications for
running programs and accessing memory and devices

The OS is a resource manager.
manages system resources (CPU, memory, disk)

allows programs to share resources
« protects applications from one another
« provides efficient access to resources
« provides fair access to resources

L ————————————————
L ——
14

CPSC 229: Foundations of Computation + Spring 2026

Demo: Virtualizing the CPU

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <assert.h>
#include "common.h"

int
main(int argc, char +argvl[])
{
if (argc != 2) {
fprintf(stderr, "usage: cpu <string>\n");
exit(l);

char =str = argv[l];

while (1) { prompt> gcc -0 Cpu cpu.c -Wall
Spin(l); prompt> ./cpu "A"
printf("%s\n", str); A
} A
return 0; A
} A
prompt>
e ———
CPSC 229: Foundations of Computation + Spring 2026 16

Three Key Pieces — 1

« virtualization

the OS makes each application think it has the system resources
(CPU, memory) to itself

the CPU abstraction is the process

the memory abstraction is the virtual address space

* physical memory is a shared resource, but memory references within one
process do not affect the address spaces of other processes

CPSC 229: Foundations of Computation + Spring 2026 15

Demo: Virtualizing the CPU

prompt> gcc -0 cpu cpu.c —Wall
prompt> ./cpu "A"
A

B
A
A

prompt>

prompt> ./cpu A & ./cpu B & ./cpu C & ./cpu D &
[1] 7353
[2] 7354
[3] 7355
[4] 7356

Boomip oo D

L —m———————————
17

CPSC 229: Foundations of Computation + Spring 2026

Demo: Virtualizing Memory

#include <unistd.h>

int
main{int arge, char *argv(])
{

int +p = malloc(sizeof (int)); /1 a1

assert (p != NULL);

printf("(%d) address pointed to by p: %¥p\n",
getpid(), p)i // az
i /] a3

sp = +p + 1;
printf("(3d) p: ¥d\n", getpid(), *p); // ad
return 0;
} prompt> ./mem & ./mem &
[1] 24113
[2] 24114

(24113) address pointed to by p:
(24114) address pointed to by p:
(24113) p: 1

(24114) p:

(24114) p:
(24113) p:
(24113) p:
(24114) p:
(24113) p:

_? (28114) p: 4
CPSC 229: Foundations of Computation + Spring 2026 e 8

R]
PFARIRN Sy T

Demo: Multiple Threads

#include <stdio.h>
#include <stdlib.h>

#include "common.n” prompt> gcc -o threads threads.c -Wall -pthread
#include "common_threads.h" prompt> ./threads 1000
i Initial value : 0
volatile int counter = 0; Final value + 2000
int loops; ‘
void sworker (void +arg) | prompt> ./threads 100000
Initial value : 0
for (i = 0; i < loops; i++) { Final value : 143012 // huh??
counter++; prompt> ./threads 100000
} Initial value : O
return NULL; Final value : 137298 // what the??

int main(int argc, char =argv[]} {
if (argc != 2) {
intf(stderr, "usage: threads <value>\n");

pthread_t pl, p2;
printf("Initial value : %d\n", counter);

Pthread_create (&pl, NULL, worker, NULL);
ad_create (sp2, NULL, worker, NULL);
ad_join(pl, NULL);
ad_join(p2, NULL);
ntf("Final value : %d\n", counter);

Three Key Pieces — 2

¢ concurrency

the OS must juggle many processes at once, and programs can
be multithreaded

OS hides the concurrency from independent processes

OS provides tools to manage the concurrency with interacting
processes

 provides abstractions (locks, semaphores, ...) to processes
« ensures processes don't deadlock

CPSC 229: Foundations of Computation + Spring 2026 19

Three Key Pieces — 3

 persistence

data typically needs to outlive individual processes

main memory is volatile — the data is lost when the system
crashes or is turned off

the disk abstraction is the file system (files, directories)

the OS takes care of low-level details

« disk management — the OS figures out where to store data, issues /0
requests

« reliability — protection against failures during writes
+ optimized performance — disks are slow

CPSC 229: Foundations of Computation + Spring 2026

L —m—————————————————
21

