Demo: Virtualizing the CPU

prompt> gcc -o cpu cpu.c -Wall
gromp—_b ./cpu "A"
Processes x
A
, char sargv[]) p;DmPi‘)
if (arge 1= 2) | Tf?w};g;l.fc§'J A& ./cpu B & ./cpu C & ./epu D &
fprintf(stderr, "usage: CPU <String® (5 35y
exit (1), [31 7355
[4] 7356
str = argv[l]; A
e ————————————————— W] (1) B
S —— Spin(l); D
printf("%s\n", str); [+
A
return 0; B
)] D
5
the OS makes each application think it has the system resources
(CPU, memory) to itself
the CPU abstraction is the process
CPSC 229: Foundations of Computation + Spring 2026 2
Processes Processes
° @ process is a running program . .
but programs and processes are distinct — multiple copies of the * mechanisms vs policies
same program can be running simultaneously, each as a low-level mechanisms support the implementation of
Sepal’ate process functiona”ty
- the machine state of a process includes high-level policies are algorithms for making decisions
memory

« the address space of the process is the memory it can access
« holds code+data from the executable, stack and heap for runtime use
execution context of the process

« values stored in registers — PC and process data mechanism policy
system resources allocated to the process vs
- e.g. open file descriptors context switch which process should run now

security attributes
* e.g. its owner and its set of permissions

« switching from one process to another requires a context

switch - . ——————

©

CPSC 229: Foundations of Computation + Spring 2026 a

Process State Process State Transition o) (1)

1o: milih A;: done

Three main states — @

* running — the process is running on the CPU (instructions Time ;3;:;;:; et Notes
are being executed) D Ranine e - two processes, no I/0
° ready — the process is ready to run but is not currently 3 Rumning Ready = Processo now done both are always ready
< g
running 6 = Running to run
7 - Runnin;
« blocked — the process is not ready to run (it is waiting for 8 - Running Process; now done

an 1/0O request to complete)

Time Processo Process: Notes
1 Running Ready
2 Running Ready
Descheduled 3 Running Ready Process initiates I/O
—_ 4 Blocked Running Processy is blocked, O tWO processes, one
Scheduled 5 Blocked Running so Process; runs does I /O
\ / 6 Blocked Running
- inii . 7 Read Runnin, 1/0 done
Vo: nitate 10z done 8 Read§ Run_ning Processi now done
" 9 Running -

10 Running - Processo now done

CPSC 229: Foundations of Computation + Spring 2026 5 CPSC 229: Foundations of Computation + Spring 2026 6

Linux Processes Linux Processes

¢ Viewing processes ° process states and state transitions
ps By default, ps selects all processes with the same effective user ID)
‘top (euid=EUID) as the current user and associated with the same terminal uninterruptible sleep (usually I0)
as the invoker. It displays the process ID (pid=PID), the terminal Idle kernel thread

running or runnable (on run queue)
interruptible sleep (waiting for an event to complete)
stopped by job control signal

associated with the proc a CPU time in
[DD-]hh:mm:ss format (ti IME nd the executable name (ucmd=CMD).
t.

e e
Qutput 1s unsorted by defaul stopped by debugger during the tracing
paging (not valid since e 2.6.xx kernel)
dead (should ni be se:
defunct ("zombie") process, terminated but not reaped by its parent

To see every process on the system using BSD syntax:
ps ax
ps axu

a— lift the "only yourself" restriction (show

illi processes from all users) uninterruptable sleep

‘ kllllng processes x — lift the "must have a tty" restriction (show all o

kill, k (ln top) processes, not just the ones associated with this

terminal) interruptable sleep
g u — display user-oriented format o

U Cpu info woken / signal

cat /proc/cpuinfo

nproc

CPSC 229: Foundations of Computation » Spring 2026 7 GPSC 229: Foundations of Gomputation + Spring 2026 https://idea.popcount.org/2012-12-11-linux-process-states/ o

Process Control Block (PCB)

« the process control block is a kernel data structure storing
all of the info about a process
process identifier (PID)
process state (running, ready, blocked, terminated, ...)
pointers to other related processes (parent, children)
saved CPU context (registers) of process when it is not running
information related to memory locations of a process
information related to ongoing I/O communication

* known as task struct in Linux

CPSC 229: Foundations of Computation + Spring 2026 9

Process Creation

Steps —

* load the program code and any static
data into memory (in the address
space of the process)

reads from disk

+ allocate memory for the stack and initialize it with the
parameters for main
includes memory for parameters, declared variables (local
variables), return value, return address
« allocate memory for the heap
heap is for dynamically allocated memory

+ set up open file descriptors
stdin, stdout, stderr

CPSC 229: Foundations of Computation + Spring 2026 1

Process API

Create: An operating system must include some method to cre-
ate new processes. When you type a command into the shell, or
double-click on an application icon, the OS is invoked to create a
new process to run the program you have indicated.

Destroy: As there is an interface for process creation, systems also
provide an interface to destroy processes forcefully. Of course, many
processes will run and just exit by themselves when complete; when
they don’t, however, the user may wish to kill them, and thus an in-
terface to halt a runaway process is quite useful.

Wait: Sometimes it is useful to wait for a process to stop running;
thus some kind of waiting interface is often provided.
Miscellaneous Control: Other than killing or waiting for a process,
there are sometimes other controls that are possible. For example,
most operating systems provide some kind of method to suspend a
process (stop it from running for a while) and then resume it (con-
tinue it running).

Status: There are usually interfaces to get some status information
about a process as well, such as how long it has run for, or what
state it is in.

|

|

running a
program

kill
signals

- SIGKILL
- SIGSTOP
- SIGCONT
- SIGINT

ps, top, etc

CPSC 229: Foundations of Computation + Spring 2026

