Process API

Create: An operating system must include some method to cre-
ate new processes. When you type a command into the shell, or
double-click on an application icon, the OS is invoked to create a
new process to run the program you have indicated.

Destroy: As there is an interface for process creation, systems also
provide an interface to destroy processes forcefully. Of course, many
processes will run and just exit by themselves when complete; when
they don’t, however, the user may wish to kill them, and thus an in-
terface to halt a runaway process is quite useful.

Wait: Sometimes it is useful to wait for a process to stop running;
thus some kind of waiting interface is often provided.
Miscellaneous Control: Other than killing or waiting for a process,
there are sometimes other controls that are possible. For example,
most operating systems provide some kind of method to suspend a
process (stop it from running for a while) and then resume it (con-
tinue it running).

Status: There are usually interfaces to get some status information
about a process as well, such as how long it has run for, or what
state it is in.

fork
exec

kill

wait

kill
signal

[W N)

CPSC 331: Operating Systems + Spring 2026

man pages

« if there are pages for thing in multiple sections,
man thing finds the page in the lowest-numbered
section

be aware of what section what you are looking for should be in,
and if that's not what you get, use man section thing instead

Executable programs or shell commands

System calls (functions provided by the kernel)
Library calls (functions within program libraries)
Special files (usually found in /dev)

File formats and conventions, e.g. fetc/passwd

Games

Miscellaneous (including macro packages and conventions), e.g. man(7), groff(7),

man-pages(7)
System administration commands (usually only for root)
Kernel routines [Non standard]

CPSC 331: Operating Systems + Spring 2026

Process Creation

stack |

hrocess

Steps —

* load the program code and any static
data into memory (in the address
space of the process)

reads from disk

« allocate memory for the stack and initialize it with the

parameters for main
includes memory for parameters, declared variables (local
variables), return value, return address

« allocate memory for the heap

heap is for dynamically allocated memory

 set up open file descriptors
stdin, stdout, stderr

CPSC 331: Operating Systems + Spring 2026 14

fork()

* creates a new process (child) that is a near-identical
clone of the current one (parent)
same: child process has its own address space, registers, PC,

etc which are a copy of the parent's

« same PC means the child's execution begins with the return from fork(),
not at the start of main()

same: child inherits thread-related state, open file descriptors
different: pid

different: return value from fork() — parent gets pid of child,
child gets 0

for other details, man fork

* not deterministic — either parent or child could run next
after the fork()
CPU scheduler determines which ready process runs next

CPSC 331: Operating Systems + Spring 2026 16

fork()

#include <stdioc.h>
#include <stdlib.h>
#include <unistd.h>

int main(int arge, char sargv[]) {
printf("helle (pid:%d)\n", (int) getpid(});
int re = fork();
if (re < 0) {
// fork failed
fprintf (stderr, "fork failed\n");
exit (1);
else if (rc == 0) |
// child (new process)
printf("child (pid:%d)\n", (int) getpid());
else |{
// parent goes down this path (main)
printf("parent of %d (pid:%d)‘\n",
rc, (int) getpid());

}

return 0;

}

CPSC 331: Operating Systems + Spring 2026

wait()

prompt> ./pl
helle (pild:29146)

parent of 29147 (pid:29146)
child (pid:28147)

prompt>

ps --forest
to see the process
hierarchy

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int main(int argc, char sargv[]) {
printf("hello (pid:%d)\n", (int) getpid());

int rc = fork();

< 0) // fork failled; exit

ntf(stderr, "fork failed\n");

} else if (rc == 0) { // child (new process)
intf("child (pid:%d)\n", (int) getpid());
) Se parent goes down this

t rc_wait = waift (NULL);)

rc, rc_wailt, (int) getpid())s

printf ("parent of %d (rc_wait:%d) (pid:%d)\n"

path

wait(), waitpid()

* blocks the caller's process until another process has
finished

pid_t wait(int *wstatus);

pid_t waitpid(pid_t pid, int *wstatus, int options);

wait (NULL) waits for any child process to terminate
waitpid(pid,&wstatus,options) allows specification of the
process(es) to wait for (pid), access to status info about the
waited-for child (wstatus), and what status change to wait for
(options)

waiting for a child to terminate allows the system to release
resources associated with the child after it terminates — without
wait (), the terminated child remains in a zombie state until the
parent terminates

7 CPSC 331: Operating Systems + Spring 2026 18

exec()

° runs a new program in the current process

loads the new program, overwriting the current code segment
with the new program'’s code

re-initializes the heap and stack

return 0;

prompt> ./p2

} hello (pid:29266)

prompt>

child (pid:29267)
parent of 29267 (rc_wait:28267)

(pid:29266)

« ensures child's output is printed before the parent's, even

if the parent runs first

- L —m———————————
20

) CPSC 331: Operating Systems + Spring 2026

exec()

execl{const char *pathname, const char *arg,
/* (char *) NULL */);
execlp(const char *file, const char *
/* (char #*) NULL */);
execle(const char *pathname, censt char *arg,

/*, (char *) NULL, char *const envp[] */);
execv(const char *pathname, char *const argv[l);
1

execvp(const char * char *const argv([]);
execvpe(const char *file, char *const argv(],
char *const envp[]);

first argument (pathname or file) is the name of the executable
file to run
execv () vs execl() —execv takes an array of the program's
arguments (argv), execl takes a list of separate parameters
(arg0, argl, arg2, ..)

+ argv[0], argo are the filename of the executable
execvp (), execlp(), execvpe() —p means they use the shell's
PATH environment variable to locate the executable

CPSC 331: Operating Systems + Spring 2026 21

exec()

#include <stdio.h>
#include <stdlib.h>

prompt> ./p3
helle (pid:29383)
child (pid:29384)

#include <unistd.h> 29 107 1030 p3.c

4include <string.h>
$include <sys/wait.h>

int main(int argc, char +argv([]) {

}

parent of 29384 (rc_wailt:29384)
prompt>

(p1d:29383)

printf("hello (pid:%d)\n", (int) getpid());

int rc = fork();

if (rc < 0) { // fork falled; exit
fpri f(stderr, "fork failed\n");

(rc == 0) { // child (new process)
f("child (pid:%d)\n", (int)} getpid());:
yargs[3];
1 strdup // program: "wc"
strdup("p3.c"}; // input file
NULL; I f array
execvp (myargs[0], myargs); // runs word count
printf("this shouldn’t print ou ;

// parent goes down this path
rc_wait = wait (NULL);
printf("parent of %d (rc_wait:%d) (pid:%d)\n",
rc, rc_wailt, (int) getpid());

1
return 0;

CPSC 331: Operating Systems + Spring 2026

