exec()

° runs a new program in the current process

loads the new program, overwriting the current code segment
with the new program's code

re-initializes the heap and stack

CPSC 331: Operating Systems + Spring 2026 21

exec()

exec()

execl{const char *pathname, const char *
/* (char *) NULL */);
execlp(const char *file, const char *arg, ...
/* (char #*) NULL #*/);
execle(const char *pathname, censt char *arg, ...

/*, (char *) NULL, char *const envp[] */);
execv(const char *pathname, char *const argv[l);
execvp(const char *f char *const argv[]);
execvpe(const char *file, char *const argv(],

char *const envp[]);

first argument (pathname or file) is the name of the executable
file to run
execv () vs execl() —execv takes an array of the program's
arguments (argv), execl takes a list of separate parameters
(arg0, argl, arg2, ..)

= argv[0], arg0 are the filename of the executable
execvp(), execlp(), execvpe() —p means they use the shell's
PATH environment variable to locate the executable

CPSC 331: Operating Systems + Spring 2026 22

Motivating the API

prompt> ./p3
helleo (pid:29383)
child (pid:29384)

4include <stdio.h>
#include <stdlib.h>

#include <unistd.h> 29 107 1030 p3.c
#include <string.h> parent of 29384 (rc_wait:29384) (pid:29383)
#include <sys/wait.h> prompt>
int main(int argc, char +argv[]) {
printf("hello (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) | // fork failed; exit

strdup ("wc"); // program: "wc"
strdup("p3.c"); // g: input file
% NULL; // mark end of array
execvp(myargs[0], myargs); // runs word count
printf("this shouldn’t print ocut");
// parent goes down this path
= wailt (NULL);
printf("parent of %d (rc_wait:%d) (pid:%d)\n",
re, rc_wait, (int) getpid());:

1
return 0;

}

CPSC 331: Operating Systems + Spring 2026 2

« the separation of fork() and exec() allows the
environment to be set up in the new process before the
desired program is run

« an application of this is supporting redirection and pipes in
the shell

‘ prompt> wc p3.c > newf'_'_e.:xt‘

> redirects stdout to a file
< redirects a file to stdin
| sends stdout from one command to stdin for the next

* wc p3.c | tee newfile.txt

sends the output from wc to tee, which echoes it to the screen and to
newfile.txt

CPSC 331: Operating Systems + Spring 2026 2



Implementing Redirection kill(), signal()

Finciude + kill() sends a signal to another process
Finclude <string.is promty /PG e SIGINT — generated by ctrl-C (term)
e Lt N SIGSTOP — pause a process to be resumed later (stop)
fnetude SIGCONT — resume a paused process (cont)
int maln(int arge, char sargvil} | ) ) ) SIGKILL — terminate a process immediately (term)
ot re B fork(); the first available file 7 si 1f lete list
L’,fné@rk“)faileg descriptor is assigned man signal for a complete lis
g stds , "fork f. \n"); ile i = . 3 3
ey, T e men i alille [ @ = g - signal() catches the signal and handles it
} else if (rc —= 0) closing stdout and ) i ; . "
/4 enila: ndard output to a file immediately opening a new the default d/s;?osmon defines what happens if the receiving
: CREAT | O_WRONLY |0_TRUNC, } +» file, that new file will get the process doesn't catch the signal
/7 m:’éizzul;cn - same file descriptor that Default action is to terminate the process.
iss[:i:;iupt"wc"]- // program: wWc h_?g bien anSIQHtehd. @ that Default action is to ignore the signal.
= Strdup("pé.c'); // arg: file to count SO a2 SO UL UKD ) )
= NULL; // mark end of array think they are writing to Default action is to terminate the process and dump core (see core(5)).
} else E(J(myarqs[ﬂ], TEras)i [f runs word count St_CiPUtIS are aCtua”y now pDefault action is to stop the process.
// parent goes down this path (main) writing to . /p4.output
int re_wait = wait (NULL); instead Default action is to continue the process if it is currently stopped.
}

| - . SIGKILL, SIGSTOP cannot be caught or ignored

kill(), signal()

« users can generally only control their own processes
« the superuser (root) can control all processes

CPSC 331: Operating Systems + Spring 2026 27



