Stored Routines

A stored routine is a set of SQL statements that are stored
on the database server and given a name.

includes stored procedures and functions

* why use stored routines?
convenience — to encapsulate and reuse complex operations
data integrity — to enforce database policies

security — can grant permissions for a stored routine without
granting access to the underlying tables and operations

CPSC 343: Database Theory and Practice « Fall 2024 58

Stored Routines — Disadvantages

* reduced modularity
can lead to bottlenecks and reduced scalability

application logic no longer limited to the application tier
* (though there are advantages to DB specialists writing DB-related code)

* increased complexity
add specific operations to the database schema
dependencies are hidden

* increased development and maintenance challenges
more difficult to test and debug
less portable

database elements often outside software development
processes such as source control

CPSC 343: Database Theory and Practice « Fall 2024 60

Stored Routines — Advantages

* modeling power
can provide more complex kinds of derived data than views
can enforce more complex constraints than triggers
can encapsulate complex operations

° reuse

multiple client programs written in different languages can
perform the same database operations without re-implementing
in each program/language

° security
can limit users to only executing stored routines, without having
to grant access to underlying tables

° may improve performance

less data sent between client and server (but increases workload
on server)

CPSC 343: Database Theory and Practice « Fall 2024 59

Quiz

Which of the following apply to stored procedures? Which of the following apply to stored functions?
any number of any number of
valuespassedback o0~ - values passed back 0% I
to caller through to caller through
output parameters output parameters.
can be used in can be used in
SELECT, WHERE, SELECT, WHERE,
and other places 2 respondents 33% - and other places 5 respondents 83% _ .
where a value is ‘where a value is
appropriate appropriate
NI s 200> [| Sttt e v
it dify th cannot modify the
e ot | P i o M
can only return a o* | RS | s 100> [-
single value single value
invoked usi invoked using a -
E‘::Les!a::r:i:(Gr=rnEs 200* | - CALL statement o |
(typically) stored procedures do something — stored functions compute
modify the database and/or produce a result something and return a single
set computed value
can compute a fixed number of values they can’t have side effects
cannot be used in a context that expects a = (cannot modify the database) -
table, even if a result set is produced 61

Stored Routines

Stored procedures:
invoked via CALL

any number of values passed back to caller through
output parameters

can modify the database

can produce a result set (table) but can’'t be used in a
subquery

Stored functions:
called like a function
can only return a single value
cannot modify the database — no side effects!

Stored routines are associated with a particular database.

CPSC 343: Database Theory and Practice « Fall 2024 62

Questions

Are stored routines created when a database is created and
stored for later use, or must the user keep redefining them?

stored routines are part of the implemented database,
along with the tables, constraints, views, triggers

defined by the database admin or another database user
with permission for CREATE ROUTINE

not intended as something users accessing data would
create

CPSC 343: Database Theory and Practice « Fall 2024 64

Stored Routines vs Views

functions for reusable calculations
must return exactly one value
called inline (in an SQL statement)
can only calculate — cannot modify data or interact with systems
outside the DB

procedures for complex, multi-step operations

can return zero or more results (through output parameters)
can produce a result set but can’t be the target of SELECT

all about the side effects — can modify data and interact with
systems outside the DB (e.g. export data)
can contain INSERT/UPDATE/DELETE statements but cannot be the

target of them
views to simplify data access and security through abstraction
can only show data, not modify it
produces a result set which can be used in SELECT

in some cases, views can be the target of
INSERT/UPDATE/DELETE but cannot contain them

@

Questions

When would you want to use loops?

batch processing with complex conditions
e.g. update inventory records based on a list of items

row-by-row processing

when the operations performed depend on the specific data in
the row

e.g. customized email notifications to customers with overdue
balances

e.g. apply interest to bank accounts when the amount of interest
depends on the account type and balance

cumulative operations

e.g. computing running total of daily sales amounts over a
month, where the date and running total is needed for each day

e.g. computing compounded interest over multiple periods

CPSC 343: Database Theory and Practice « Fall 2024 65

Questions

When would you want to use loops? (continued)

retry logic
e.g. attempt a connection multiple times before failing

dynamic SQL execution
loops can help with building and running multiple statements

CPSC 343: Database Theory and Practice « Fall 2024 66

Delimiters

Every SQL statement ends with ;, though this can be
omitted in MySQL Workbench when there's only a single
statement.

but how to distinguish the ; ending statements in a routine's body
and the ; that ends the routine definition?

solution is to temporarily change delimiters
choose something not used elsewhere

DELIMITER $$%

CREATE PROCEDURE name (parameters)
BEGIN

statements
END$$

DELIMITER ;

CPSC 343: Database Theory and Practice « Fall 2024 68

Stored Procedures

define

CREATE PROCEDURE name (parameters)
BEGIN

statements
END

call
CALL name(values)

CPSC 343: Database Theory and Practice « Fall 2024 67

Example

Retrieve all reservations (and related information) from the
sailors database —

CREATE PROCEDURE AllReservations ()
BEGIN
SELECT *
FROM SAILOR NATURAL JOIN RESERVATION
NATURAL JOIN BOAT;
END

call
CALL Al1lReservations()

(better done with a view)

CPSC 343: Database Theory and Practice « Fall 2024 69

Parameters

Parameter declaration:
MODE name type

Mode:

IN — value comes in; any changes in the body of the
procedure has no effect on the parameter's value

OUT — procedure changes value and passes back to caller

INOUT — value is passed in and changed value is passed back
to caller

Notes:
name cannot be the same as a table; must qualify column
names if a parameter has the same name

type should be compatible with actual column type, but
doesn't have to be exactly the same

CPSC 343: Database Theory and Practice « Fall 2024 70

Example — Parameters

Delete a sailor and that sailor's reservations —

CREATE PROCEDURE DeleteSailor (IN delsid INT)
BEGIN
DELETE FROM RESERVATION WHERE Sid=delsid;
DELETE FROM SAILOR WHERE Sid=delsid;
END

CPSC 343: Database Theory and Practice « Fall 2024 72

Example — Parameters

Retrieve all reservations (and related information) for a
particular sailor (by name) from the sailors database —

CREATE PROCEDURE ReservationsFor
(IN sailor VARCHAR(30))
BEGIN
SELECT *
FROM SAILOR NATURAL JOIN RESERVATION
NATURAL JOIN BOAT
WHERE Sname=sailor;
END

call
CALL ReservationsFor('Dustin')

CPSC 343: Database Theory and Practice « Fall 2024 71

Example — OUT Parameters

Retrieve the number of reservations for a particular sailor
from the sailors database —

CREATE PROCEDURE NumReservations(IN sailor VARCHAR(30),
OUT numres INT)
BEGIN
SELECT COUNT (*)
FROM SAILOR NATURAL JOIN RESERVATION NATURAL JOIN BOAT
WHERE Sname=sailor
INTO numres;
END

(better done with a stored function)

CPSC 343: Database Theory and Practice « Fall 2024 73

Accessing OUT Parameters

Call:

CALL name (vars)
@varname to reference a variable

Access result:
SELECT @varname

CPSC 343: Database Theory and Practice « Fall 2024

74

Example — OUT Parameters

Call the stored procedure and access the result:
CALL NumReservations('Dustin',@num);
SELECT @num;

the number of reservations ends up in @hum

@num can be used in places a value is expected:

CALL NumReservations('Dustin',@num);

SELECT Sname, COUNT(*) AS 'Number of Reservations'
FROM RESERVATION NATURAL JOIN SAILOR

GROUP BY Sid

HAVING COUNT(*) = @num;

retrieve names and number of reservations for each sailor
having the same number of reservations as Dustin

CPSC 343: Database Theory and Practice « Fall 2024 75

