

CPSC 343: Database Theory and Practice • Fall 2024 58

Stored Routines

A stored routine is a set of SQL statements that are stored
on the database server and given a name.

– includes stored procedures and functions

• why use stored routines?
– convenience – to encapsulate and reuse complex operations
– data integrity – to enforce database policies
– security – can grant permissions for a stored routine without

granting access to the underlying tables and operations

CPSC 343: Database Theory and Practice • Fall 2024 59

Stored Routines – Advantages

• modeling power
– can provide more complex kinds of derived data than views
– can enforce more complex constraints than triggers
– can encapsulate complex operations

• reuse
– multiple client programs written in different languages can

perform the same database operations without re-implementing
in each program/language

• security
– can limit users to only executing stored routines, without having

to grant access to underlying tables

• may improve performance
– less data sent between client and server (but increases workload

on server)

CPSC 343: Database Theory and Practice • Fall 2024 60

Stored Routines – Disadvantages

• reduced modularity
– can lead to bottlenecks and reduced scalability
– application logic no longer limited to the application tier

• (though there are advantages to DB specialists writing DB-related code)

• increased complexity
– add specific operations to the database schema
– dependencies are hidden

• increased development and maintenance challenges
– more difficult to test and debug
– less portable
– database elements often outside software development

processes such as source control

CPSC 343: Database Theory and Practice • Fall 2024 61

Quiz

stored functions compute
something and return a single
computed value

they can’t have side effects
(cannot modify the database)

(typically) stored procedures do something –
modify the database and/or produce a result
set

can compute a fixed number of values

cannot be used in a context that expects a
table, even if a result set is produced

CPSC 343: Database Theory and Practice • Fall 2024 62

Stored Routines

Stored procedures:
• invoked via CALL
• any number of values passed back to caller through

output parameters
• can modify the database
• can produce a result set (table) but can’t be used in a

subquery

Stored functions:
• called like a function
• can only return a single value
• cannot modify the database – no side effects!

Stored routines are associated with a particular database.

CPSC 343: Database Theory and Practice • Fall 2024 63

Stored Routines vs Views

• functions
– must return exactly one value
– called inline (in an SQL statement)
– can only calculate – cannot modify data or interact with systems

outside the DB

• procedures
– can return zero or more results (through output parameters)
– can produce a result set but can’t be the target of SELECT
– all about the side effects – can modify data and interact with

systems outside the DB (e.g. export data)
• can contain INSERT/UPDATE/DELETE statements but cannot be the

target of them

• views
– can only show data, not modify it
– produces a result set which can be used in SELECT
– in some cases, views can be the target of

INSERT/UPDATE/DELETE but cannot contain them

for reusable calculations

for complex, multi-step operations

to simplify data access and security through abstraction

CPSC 343: Database Theory and Practice • Fall 2024 64

Questions

Are stored routines created when a database is created and
stored for later use, or must the user keep redefining them?

• stored routines are part of the implemented database,
along with the tables, constraints, views, triggers

• defined by the database admin or another database user
with permission for CREATE ROUTINE

• not intended as something users accessing data would
create

CPSC 343: Database Theory and Practice • Fall 2024 65

Questions

When would you want to use loops?

• batch processing with complex conditions
– e.g. update inventory records based on a list of items

• row-by-row processing
– when the operations performed depend on the specific data in

the row
– e.g. customized email notifications to customers with overdue

balances
– e.g. apply interest to bank accounts when the amount of interest

depends on the account type and balance

• cumulative operations
– e.g. computing running total of daily sales amounts over a

month, where the date and running total is needed for each day
– e.g. computing compounded interest over multiple periods

CPSC 343: Database Theory and Practice • Fall 2024 66

Questions

When would you want to use loops? (continued)

• retry logic
– e.g. attempt a connection multiple times before failing

• dynamic SQL execution
– loops can help with building and running multiple statements

CPSC 343: Database Theory and Practice • Fall 2024 67

Stored Procedures

• define
 CREATE PROCEDURE name (parameters)
 BEGIN
 statements
 END

• call
 CALL name(values)

CPSC 343: Database Theory and Practice • Fall 2024 68

Delimiters

Every SQL statement ends with ;, though this can be
omitted in MySQL Workbench when there's only a single
statement.

– but how to distinguish the ; ending statements in a routine's body
and the ; that ends the routine definition?

– solution is to temporarily change delimiters
• choose something not used elsewhere

DELIMITER $$

CREATE PROCEDURE name (parameters)
BEGIN
 statements
END$$

DELIMITER ;

CPSC 343: Database Theory and Practice • Fall 2024 69

Example

Retrieve all reservations (and related information) from the
sailors database –

CREATE PROCEDURE AllReservations ()
BEGIN
 SELECT *
 FROM SAILOR NATURAL JOIN RESERVATION
 NATURAL JOIN BOAT;
END

• call
CALL AllReservations()

(better done with a view)

CPSC 343: Database Theory and Practice • Fall 2024 70

Parameters

Parameter declaration:
 MODE name type

Mode:
• IN – value comes in; any changes in the body of the

procedure has no effect on the parameter's value
• OUT – procedure changes value and passes back to caller
• INOUT – value is passed in and changed value is passed back

to caller

Notes:
• name cannot be the same as a table; must qualify column

names if a parameter has the same name
• type should be compatible with actual column type, but

doesn't have to be exactly the same

CPSC 343: Database Theory and Practice • Fall 2024 71

Example – Parameters

Retrieve all reservations (and related information) for a
particular sailor (by name) from the sailors database –

CREATE PROCEDURE ReservationsFor
 (IN sailor VARCHAR(30))
BEGIN
 SELECT *
 FROM SAILOR NATURAL JOIN RESERVATION
 NATURAL JOIN BOAT
 WHERE Sname=sailor;
END

• call
CALL ReservationsFor('Dustin')

CPSC 343: Database Theory and Practice • Fall 2024 72

Example – Parameters

Delete a sailor and that sailor's reservations –

CREATE PROCEDURE DeleteSailor (IN delsid INT)
BEGIN
 DELETE FROM RESERVATION WHERE Sid=delsid;
 DELETE FROM SAILOR WHERE Sid=delsid;
END

CPSC 343: Database Theory and Practice • Fall 2024 73

Example – OUT Parameters

Retrieve the number of reservations for a particular sailor
from the sailors database –

CREATE PROCEDURE NumReservations(IN sailor VARCHAR(30),
 OUT numres INT)
BEGIN
 SELECT COUNT(*)
 FROM SAILOR NATURAL JOIN RESERVATION NATURAL JOIN BOAT
 WHERE Sname=sailor
 INTO numres;
END

(better done with a stored function)

CPSC 343: Database Theory and Practice • Fall 2024 74

Accessing OUT Parameters

Call:
CALL name (vars)

– @varname to reference a variable

Access result:
SELECT @varname

CPSC 343: Database Theory and Practice • Fall 2024 75

Example – OUT Parameters

Call the stored procedure and access the result:

CALL NumReservations('Dustin',@num);

SELECT @num;

– the number of reservations ends up in @num

@num can be used in places a value is expected:

CALL NumReservations('Dustin',@num);

SELECT Sname,COUNT(*) AS 'Number of Reservations'
FROM RESERVATION NATURAL JOIN SAILOR
GROUP BY Sid
HAVING COUNT(*) = @num;

– retrieve names and number of reservations for each sailor
having the same number of reservations as Dustin

