

CPSC 343: Database Theory and Practice • Fall 2024 71

Parameters

Parameter declaration:
 MODE name type

Mode:
• IN – value comes in; any changes in the body of the

procedure has no effect on the parameter's value
• OUT – procedure changes value and passes back to caller
• INOUT – value is passed in and changed value is passed back

to caller

Notes:
• name cannot be the same as a table; must qualify column

names if a parameter has the same name
• type should be compatible with actual column type, but

doesn't have to be exactly the same

CPSC 343: Database Theory and Practice • Fall 2024 72

Example – Parameters

Retrieve all reservations (and related information) for a
particular sailor (by name) from the sailors database –

CREATE PROCEDURE ReservationsFor
 (IN sailor VARCHAR(30))
BEGIN
 SELECT *
 FROM SAILOR NATURAL JOIN RESERVATION
 NATURAL JOIN BOAT
 WHERE Sname=sailor;
END

• call
CALL ReservationsFor('Dustin')

CPSC 343: Database Theory and Practice • Fall 2024 73

Example – Parameters

Delete a sailor and that sailor's reservations –

CREATE PROCEDURE DeleteSailor (IN delsid INT)
BEGIN
 DELETE FROM RESERVATION WHERE Sid=delsid;
 DELETE FROM SAILOR WHERE Sid=delsid;
END

CPSC 343: Database Theory and Practice • Fall 2024 74

Example – OUT Parameters

Retrieve the number of reservations for a particular sailor
from the sailors database –

CREATE PROCEDURE NumReservations(IN sailor VARCHAR(30),
 OUT numres INT)
BEGIN
 SELECT COUNT(*)
 FROM SAILOR NATURAL JOIN RESERVATION NATURAL JOIN BOAT
 WHERE Sname=sailor
 INTO numres;
END

(better done with a stored function)

CPSC 343: Database Theory and Practice • Fall 2024 75

Accessing OUT Parameters

Call:
CALL name (vars)

– @varname to reference a variable

Access result:
SELECT @varname

CPSC 343: Database Theory and Practice • Fall 2024 76

Example – OUT Parameters

Call the stored procedure and access the result:

CALL NumReservations('Dustin',@num);

SELECT @num;

– the number of reservations ends up in @num

@num can be used in places a value is expected:

CALL NumReservations('Dustin',@num);

SELECT Sname,COUNT(*) AS 'Number of Reservations'
FROM RESERVATION NATURAL JOIN SAILOR
GROUP BY Sid
HAVING COUNT(*) = @num;

– retrieve names and number of reservations for each sailor
having the same number of reservations as Dustin

CPSC 343: Database Theory and Practice • Fall 2024 77

Stored Functions

• define
 CREATE FUNCTION name (parameters)
 RETURNS type
 BEGIN
 statements
 RETURN value;
 END

– parameters can only be IN, so no mode is included in the
declaration

• call
 SELECT name(values)

– function can also be called in other places where a value is
appropriate

CPSC 343: Database Theory and Practice • Fall 2024 78

Variables

Declaration:
DECLARE name type [DEFAULT value];

– goes at the beginning of the stored routine

Set value:
SET name = expr;

Set value from a query:
SELECT columns
FROM …
INTO vars

– number and order of vars must match columns
– can only have a single row produced

CPSC 343: Database Theory and Practice • Fall 2024 79

Example – Functions

Function version of the NumReservations procedure:

CREATE FUNCTION NumReservations2 (sailor VARCHAR(30))
RETURNS INT
BEGIN

 DECLARE numres INT DEFAULT -1;

 SELECT COUNT(*)
 FROM SAILOR NATURAL JOIN RESERVATION NATURAL JOIN BOAT
 WHERE Sname=sailor
 INTO numres;

 RETURN numres;

END

CPSC 343: Database Theory and Practice • Fall 2024 80

Example – Functions

Call the stored function and access the result:

SELECT NumReservations2('Dustin');

The function can also be used in other places a value is
expected:

SELECT Sname,COUNT(*) AS 'Number of Reservations'
FROM RESERVATION NATURAL JOIN SAILOR
GROUP BY Sid
HAVING COUNT(*) = NumReservations2('Dustin');

– retrieve names and number of reservations for each sailor
having the same number of reservations as Dustin

CPSC 343: Database Theory and Practice • Fall 2024 81

Conditionals

IF expression THEN commands
 ELSEIF expression THEN commands
 ELSE commands
 END IF;

CASE case_expression
 WHEN when_expression THEN commands
 WHEN when_expression THEN commands
 ...
 ELSE commands
END CASE;

CPSC 343: Database Theory and Practice • Fall 2024 82

Loops

WHILE expression DO
 statements
END WHILE

REPEAT
 statements
UNTIL expression
END REPEAT

There is also a more general LOOP syntax, with ways to
specify when to exit the loop and when to do another
iteration.

CPSC 343: Database Theory and Practice • Fall 2024 83

Cursors

Cursors allow you to iterate through results returned by a
SELECT query.

• declare
DECLARE name CURSOR FOR SELECT …

– must be after variable declarations
DECLARE CONTINUE HANDLER FOR NOT FOUND …

• open
OPEN name;

• fetch the next row
FETCH name INTO var;

• close
CLOSE name;

CPSC 343: Database Theory and Practice • Fall 2024 84

Example

CREATE FUNCTION CountReservations() RETURNS INT
BEGIN
 DECLARE done BOOLEAN DEFAULT FALSE;
 DECLARE cursid INT;
 DECLARE count INT DEFAULT 0;
 DECLARE curres CURSOR FOR
 SELECT Sid FROM RESERVATION;
 DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET done = TRUE;

 OPEN curres;

 FETCH curres INTO cursid;
 WHILE NOT done DO
 SET count = count+1;
 FETCH curres INTO cursid;
 END WHILE;

 CLOSE curres;

 RETURN count;
END

count the number of reservations in the
database
(to illustrate loops and cursors – a simpler solution is
just SELECT COUNT(*) FROM RESERVATION)

CPSC 343: Database Theory and Practice • Fall 2024 85

Example

CREATE FUNCTION CountReservations() RETURNS INT
BEGIN
 DECLARE done BOOLEAN DEFAULT FALSE;
 DECLARE cursid INT;
 DECLARE count INT DEFAULT 0;
 DECLARE curres CURSOR FOR
 SELECT Sid FROM RESERVATION;
 DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET done = TRUE;

 OPEN curres;

 FETCH curres INTO cursid;
 WHILE NOT done DO
 SET count = count+1;
 FETCH curres INTO cursid;
 END WHILE;

 CLOSE curres;

 RETURN count;
END

the sequencing is vital here – when
FETCH triggers the NOT FOUND
condition, done is set to TRUE but
execution then continues normally –
which mean the loop does not exit
until the next time the condition is
checked

the following loop would count one too
many, because the SET is still
executed after the FETCH regardless
of the outcome of the FETCH – done
isn't checked until the loop cycles
around
 WHILE NOT done DO
 FETCH curres INTO cursid;
 SET count = count+1;
 END WHILE;

CPSC 343: Database Theory and Practice • Fall 2024 87

Handlers

Declare handler:
 DECLARE action HANDLER FOR condition
 statement

– must be after variable declarations

'Action' specifies what is done after the handler statement is
executed.
• CONTINUE – continue execution of the program
• EXIT – terminate execution of the BEGIN … END block

where the handler is declared

'Condition' can be
• a MySQL error code (a number)
• an SQLSTATE value (5-character string literal)
• name of a previously-declared condition

CPSC 343: Database Theory and Practice • Fall 2024 88

Handler Conditions

Shortcuts:
• SQLWARNING – SQLSTATE values beginning with 01
• NOT FOUND – SQLSTATE values beginning with 02

– 02000 means 'no data'
• SQLEXCEPTION – SQLSTATE values not beginning with

00, 01, or 02

See MySQL documentation for a full list.
• https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-

reference.html

https://dev.mysql.com/doc/mysql-errors/5.7/en/error-reference-introduction.htmlhttps://dev.mysql.com/doc/mysql-errors/5.7/en/error-reference-introduction.htmlhttps://dev.mysql.com/doc/mysql-errors/5.7/en/error-reference-introduction.htmlhttps://dev.mysql.com/doc/mysql-errors/5.7/en/error-reference-introduction.htmlhttps://dev.mysql.com/doc/mysql-errors/5.7/en/error-reference-introduction.htmlhttps://dev.mysql.com/doc/mysql-errors/5.7/en/error-reference-introduction.htmlhttps://dev.mysql.com/doc/mysql-errors/5.7/en/error-reference-introduction.htmlhttps://dev.mysql.com/doc/mysql-errors/5.7/en/error-reference-introduction.htmlhttps://dev.mysql.com/doc/mysql-errors/5.7/en/error-reference-introduction.htmlhttps://dev.mysql.com/doc/mysql-errors/ 5.7/en/error-reference-
introduction.html

CPSC 343: Database Theory and Practice • Fall 2024 89

Example

CREATE PROCEDURE DeleteAllSailorsByName
 (IN delname VARCHAR(45))
BEGIN
 DECLARE delsid INT;
 DECLARE done BOOLEAN DEFAULT FALSE;

 DECLARE sailors CURSOR FOR
 SELECT Sid FROM SAILOR WHERE Sname=delname;
 DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET done = TRUE;

 OPEN sailors;
 FETCH sailors INTO delsid;
 WHILE NOT done DO
 DELETE FROM RESERVATION WHERE Sid=delsid;
 DELETE FROM SAILOR WHERE Sid=delsid;
 FETCH sailors INTO delsid;
 END WHILE;
 CLOSE sailors;
END

delete all sailors with the specified name
(and their reservations)

'NOT FOUND'
condition is
triggered by
FETCH when there
are no more rows

CPSC 343: Database Theory and Practice • Fall 2024 90

Example

CREATE PROCEDURE DeleteSailorByName
 (IN delname VARCHAR(45))
BEGIN
 DECLARE delsid INT;
 DECLARE EXIT HANDLER FOR SQLSTATE '42000'
 BEGIN SELECT 'too many sailors!'; END;

 SELECT Sid
 FROM SAILOR
 WHERE Sname=delname
 INTO delsid;

 DELETE FROM RESERVATION WHERE Sid=delsid;
 DELETE FROM SAILOR WHERE Sid=delsid;
END

delete a sailor by name, doing nothing if
there is more than one sailor with the name

end with error
message if
SQLSTATE
42000 occurs

SELECT … INTO
triggers a 42000
SQLSTATE if
more than one
row is found

CPSC 343: Database Theory and Practice • Fall 2024 91

Permissions for Stored Objects

• the security context determines whether execution is with
the privileges of the DEFINER account (regardless of the
invoker) or only with the privileges of the invoker
– both views and stored routines support the SQL SECURITY

characteristic to set the security context
• value is DEFINER or INVOKER (defaults to DEFINER)

– triggers always run as DEFINER

• the DEFINER account defaults to the creator
– specifying a different DEFINER account requires the
SET_USER_ID privilege

