Indexing Recap

Three possible index organizations:
primary — ordered by same field(s) as file, and field(s) are a key
clustering — ordered by same field(s) as file, but field(s) not a key
secondary — ordered by different field(s) than file

Performance:
O(log,b, + s) for searching on indexing field(s)
s = number of matching records

primary is better than clustering is better than secondary
but there can be at most one primary or clustering index per file

multilevel index reduces search time from O(log_b) to
O(Iogbfribi)

indexes are less beneficial for small tables and queries

-
that match most of the rows
2
Choose the combinations of statement and index for which the index is expected to be useful for executing the statement, that is, using the
index would likely lead to fewer disk blocks accessed than not using the index.
Assume the database schema is the following:
SAILOR(Sid, Sname, Age,Rating)
— BOAT(B1d, Bnane, Color)
RESERVARION (510 B0 Date) index not useful with join done as “for each
 eLect - row of SAILOR, find matching rows of
FROM SAILOR NATURAL JOIN RESERVATION RESERVATION”
with an index for SAILOR on Sid “
[SELECT * index is useful with join done as “for each
FROM SAILOR NATURAL JOIN RESERVATION ¢ f
with an index for RESERVATION on Sid ~<— row of SAILOR‘" find matching rows of
RESERVATION
] SELECT * .
FROM SAILOR index sort of useful - could scan whole
WHERE Sname = 'Horatio’ < index to find matching names (but it isn't
with an index for SAILOR on Sid,Sname
[SELECT * ordered by Sname)
FROM SATLOR .
WHERE Sname = 'Horatio' <—— index useful
with an index for SAILOR on Sname
] SELECT * i _fi i i i
FROM SAILOR NATURAL JOIN RESERVATION !n_dex useful - find S,allor with Sid 22, then
WHERE S1d = 22 <— join that one row with RESERVATION
with an index for SAILOR on Sid X
[] SELECT * index not useful - need all rows and all
FROM SAILOR -~
with an index for SAILOR on Sid C0|Umn5 from SA“-OR
[SELECT Sid index may be useful - if there's an index
FROM SAILOR - X
with an index for SAILOR on Sid record for each value of Sid, query can be
] SELECT = icfi i
SRR SALLOR satisfied from index alone
WHERE Sname = 'Horatio' -+— index not useful
with an index for SAILOR on Sid
) SELECT * . .
ERmEes 10 S - index useful - ordered first by Sname, so -
with an index for SAILOR on Sname, Sid can SearCh for Horatio 4

Uses for Indexes

MySQL uses indexes to speed up:
finding rows matching a WHERE clause
eliminating rows from consideration
retrieving rows from other tables when performing joins
sorting or grouping a table

query evaluation

finding min or max of an indexed column
if all values needed are present in index

CPSC 343: Database Theory and Practice « Fall 2024 53

Automatically-Created and Required Indexes

Indexes are automatically created in several cases:
for primary key
InnoDB also orders file by primary key

for UNIQUE fields
index used to check uniqueness constraints

for foreign keys

index created for foreign key (referencing columns) if no other
index has the columns first and in the right order
so FKs can be checked without reading whole table

Indexes are required:

for referenced columns in foreign keys

must create manually if an index doesn’t already exist (e.g. not
primary key) -

]

Creating Indexes

Indexes are specified as part of CREATE TABLE.

CREATE TABLE RESERVATION (
Sid smallint(5) unsigned NOT NULL,
Bid smallint(5) unsigned NOT NULL,
Day date DEFAULT NULL,
PRIMARY KEY (Sid,Bid), = indexon primary key
KEY fk RESERVATION 1 (Bid), ~ : ;
KEY fk RESERVATION 2 (Sid),~ oc<e®onforeignkeys
INDEX RESERVATION day (Day), -=— anotherindex, on Day
CONSTRAINT fk RESERVATION 1
FOREIGN KEY (Bid) REFERENCES BOAT (Bid)
ON UPDATE CASCADE,
CONSTRAINT fk RESERVATION 2
FOREIGN KEY (Sid) REFERENCES SAILOR (Sid)
ON UPDATE CASCADE
) ENGINE=InnoDB; KEY is synonym for INDEX

CPSC 343: Database Theory and Practice « Fall 2024 56

Indexes in MySQL Workbench

Indexes tab in table editor (create/alter table)

Viewing Indexes

Viewing indexes on a table:

SHOW INDEX FROM tbl name;

CPSC 343: Database Theory and Practice « Fall 2024 57

Insert / Delete / Modify

Queryl % | RESERVATION-Table %

¥ Nome: | CESHEIS] Schema: | ex_ sailors -

wwwwwwwww Type Index Columns.

i RESERVATION_L INDEX @se 1 Ac o
TICRESERVATION 2 INDEX @eda 2 ac o

rrrrrr

CPSC 343: Database Theory and Practice « Fall 2024 58

Indexes have a cost.
space
time (updates)

Index is sorted by indexing field, so insert / delete / modify
potentially involves lots of shifting.

may also have to update block pointers if there is shifting in the
data file

Can mitigate update costs (at the expense of space):
deletion markers
leaving extra space for insertion

CPSC 343: Database Theory and Practice « Fall 2024 59

Indexes

The primary index of a table should be as short as possible. This makes
Identification of each row easy and efficient. For InnoDB tables, the primary key
columns are duplicated in each secondary index entry, so a short primary key saves
considerable space if you have many secondary indexes.

Create only the indexes that you need to improve guery performance. Indexes are
good for retrieval, but slow down insert and update operations. If you access a table
mostly by searching on a combination of columns, create a single composite index
on them rather than a separate index for each column. The first part of the index
should be the column most used. If you afways use many columns when selecting
from the table, the first column in the index should be the one with the most

duplicates, to obtain better compression of the index.

If it is very likely that a long string column has a unique prefix on the first number of
characters, it is better to index only this prefix, using MySQL's support for creating
an index on the leftmost part of the column (see Section 13.1.15, "CREATE INDEX
Syntax"). Shorter indexes are faster, not only because they require less disk space,
but because they also give you more hits in the index cache, and thus fewer disk

seeks. See Section 5.1.1, “Configuring the Server”.

https://dev.mysql.com/doc/refman/8.0/en/data-size.html#data-size-indexes

==

60

