

CPSC 343: Database Theory and Practice • Fall 2024 22

Exam 3

• ER-to-relational mapping problem points

– derived attributes
• these are computed from other things, not stored outright → not included

directly in the relational schema (one might create a view including them)

– weak entity types
• the weak entity type becomes a relation with its own attributes plus any

attributes of the identifying relationship(s) plus the PK of the entity type(s)
on the other end of the identifying relationship(s)

– the PK for the weak entity type’s relation is its own partial key plus the PK of
the entity type(s) on the other end of the identifying relationship(s)

ROOM(room_type,capacity,room_number,hotel)
 ROOM.hotel HOTEL.id→

CPSC 343: Database Theory and Practice • Fall 2024 23

Exam 3

• ER-to-relational mapping problem points

– relationships
• to capture cardinality and participation constraints, the FK approach is

preferred for 1:N relationships – only use the separate relation approach
for N:M

• include NOT NULL constraints when there is total participation and that
attribute is not already part of a PK

• don’t forget to include PKs and FKs

CPSC 343: Database Theory and Practice • Fall 2024 24

Exam 3

• ER-to-relational mapping problem points

– specialization
• there are several options for mapping specialization, but a reasonable one

for a disjoint specialization where both supertype and subtypes have
attributes is for every entity type to have its own relation

– supertype → relation with its own attributes
– subtype → relation with its own attributes plus the PK of the supertype as an

FK

PROPERTY(id,address,rent_amount)

HOUSE(id,num_bedrooms,num_bath)
 HOUSE.id PROPERTY.id→

APARTMENT(id,num_bedrooms,unit_number,floor)
 APARTMENT.id PROPERTY.id→

CPSC 343: Database Theory and Practice • Fall 2024 25

Exam 3

• ER-to-relational mapping problem points

– categories
• both the category type itself and the types belonging to that category

become relations
• add a surrogate key to the category type if it doesn’t already have a PK
• add that surrogate key (or the category type’s PK) to each of the types

belonging to that category as an FK

PAYMENT(id,date,amount)
 tenant NOT NULL
 PAYMENT.tenant TENANT.id→

CREDIT_CARD(number,name,expiration,cvv,payment)
 CREDIT_CARD.payment PAYMENT.id→

PAYPAL(transaction_id,payment)
 PAYPAL.payment PAYMENT.id→

CPSC 343: Database Theory and Practice • Fall 2024 26

Exam 3

• don’t forget the last part – having a PK
– address all three points when explaining why a relational

schema is in 1NF
• (atomic and single-valued are givens – there’s no notation indicating that

because attributes in a relational schema are those things)

First Normal Form (1NF)
• all values are atomic – no composite attributes
• each tuple has a single value for each attribute (can

be NULL) – no multivalued attributes
• every relation has a primary key

CPSC 343: Database Theory and Practice • Fall 2024 27

Exam 3

• 2NF eliminates dependencies on partial keys
– a dependency on a non-key (such as salesperson →
commission) is not a problem here

• if multiple attributes are underlined, all of them together
constitute the PK

– vin make, model, year, color→ depends on a partial key –
violates 2NF

Second Normal Form (2NF)
• satisfies 1NF
• for all FDs X → A, either A has no non-key attributes

or X is not a proper subset of a key

CAR_SALE(vin,make,model,year,color,date_sold,sale_price,
 salesperson,commission,buyer_name,buyer_address)

CPSC 343: Database Theory and Practice • Fall 2024 28

Exam 3

• what to write –
– for a domain constraint, give the actual data type

• e.g. TINYINT or DECIMAL(4,2)

– for a foreign key, give the actual foreign key
• e.g. DISTRIBUTION.habitat HABITAT.id→

– for a CHECK constraint, give the actual condition
• e.g. CHECK (area > 0)

– for a trigger, identify the when, action, table elements and give
the body of the trigger – you don’t need the full CREATE
TRIGGER header

• including more isn’t a problem, but not including enough is

CPSC 343: Database Theory and Practice • Fall 2024 29

Exam 3

• #4
– (a) “is a number 1, 2, 3, …”

• account for both that these are integers and that negative and 0 values
are excluded

– a domain constraint is necessary for the integer part and can accommodate
“not negative” but isn’t quite sufficient for also handling “not zero”

• “there are at most a few dozen regions” factors into the most appropriate
integer data type (TINYINT)

– (b) the constraint here is that DISTRIBUTION.area is a number
with two decimal places and is non-zero

• “if there is no habitat of some type in a particular region, there should not
be an entry in DISTRIBUTION” is not an additional constraint – it is the
rationale for why area is constrained to be non-zero (if you can’t put a 0
area value into DISTRIBUTION, you can’t put an entry in DISTRIBUTION
where the area should be 0)

• DECIMAL(m,n) means that there are m digits total and n digits after the
decimal place – so DECIMAL(5,2) means values up to 999.99 are
possible

CPSC 343: Database Theory and Practice • Fall 2024 30

Exam 3

• #4
– (c) “the total area for different habitat types within a region

cannot exceed the area of the region itself”
• this must be a trigger because the total area for the different habitat types

within a region requires summing multiple rows in DISTRIBUTION and
then that value must be compared to a value from REGION

• be careful to account for all of the situations where this constraint needs to
be checked

– INSERT and UPDATE in DISTRIBUTION could affect the total area for habitat
types for a region – increasing the total area could violate the constraint

» DELETE in DISTRIBUTION also does, but it can only decrease the total
which won’t violate the constraint if it wasn’t already violated

– UPDATE in REGION could affect the region’s area – decreasing the region’s
area could violate the constraint

» INSERT in REGION isn’t a problem because of the FK
DISTRIBUTION.region → REGION.number – there can’t be any entries
in DISTRIBUTION for that region if the region is only just being added

» DELETE in REGION is handled by the FK ON DELETE settings – since
DISTRIBUTION.region is part of the PK and thus NOT NULL, a DELETE
in REGION would need to be blocked if there are entries in
DISTRIBUTION for that region

CPSC 343: Database Theory and Practice • Fall 2024 31

Exam 3

• #4
– (c) “the total area for different habitat types within a region

cannot exceed the area of the region itself”
• when summing rows in DISTRIBUTION to find the total area for the

region, be careful to take into account the INSERT/UPDATE operation
itself

– for INSERT, there is an area value for the new row which is not yet in
DISTRIBUTION – must add the new value into the sum from DISTRIBUTION

– for UPDATE, there is already an area value for the region in DISTRIBUTION
but the update may include a different value – must subtract the old value and
add the new value from the sum for DISTRIBUTION

• remember NEW.col and OLD.col to refer to columns in the row involved in
the INSERT/UPDATE/DELETE operation

CPSC 343: Database Theory and Practice • Fall 2024 32 CPSC 343: Database Theory and Practice • Fall 2024 33

Exam 4

• procedures vs functions
– functions cannot change data and return exactly one value
– functions can signal errors (as can procedures)
– prefer functions if functions are applicable – use a procedure if

you have to, and a function otherwise

• returning values
– functions return their one value using a RETURN statement

• the caller can utilize the returned value in an expression

– for procedures, use OUT parameters if there is a fixed number
(> 1) of values returned

• the caller can capture these values in variables so subsequent SQL
statements can utilize them

– unbound SELECTs (a SELECT without INTO) “return” a result
set, but this result set is only available to an application, not
subsequent SQL statements

CPSC 343: Database Theory and Practice • Fall 2024 34

Exam 4

• calling routines
– function calls are expressions – use where a value is needed

– procedures are called with a CALL statement
• variables must be provided for OUT parameters

SELECT *
FROM SAILOR S
WHERE numReservations(S.Sid) >= 2

SELECT S.Sid,S.Sname,numReservations(S.Sid)
FROM SAILOR S

CALL addReservation(22,103,’2024-12-06’);

CALL findDateRange(22,@startdate,@enddate);

SELECT @startdate, @enddate;

SELECT B.Bid,B.Bname,B.Color
FROM BOAT B NATURAL JOIN RESERVATION R
WHERE R.date >= @startdate AND R.date <= @enddate;

CPSC 343: Database Theory and Practice • Fall 2024 35

Exam 4

• transactions are needed to ensure atomicity and
serializability when there are multiple steps in an
operation and
– (atomicity) it’s possible for one or more steps to fail while others

succeed
– (serializability) changes to the database between those steps

could result in inconsistent results

CPSC 343: Database Theory and Practice • Fall 2024 36

Exam 4

• #3 – the procedure needs to:
– check if the existing flight number exists and the new flight

number does not – query FLIGHT
– insert a row into FLIGHT with the new flight number and arrival

and departure times from the parameters and the origin,
destination, and miles from the existing row for the existing flight

• can either use SELECT … INTO … to retrieve the existing info into
variables for a subsequent INSERT, or do everything in one step with
INSERT … SELECT

– insert a row into SEATS for each row of SEATS involving the
existing flight number

• while it is possible to do this in one step with INSERT … SELECT, the
problem specified that you must use a CURSOR

CPSC 343: Database Theory and Practice • Fall 2024 37

Exam 4

• #5
– a) “find the destination airports for which the cheapest route from

ROC …”
• this is a query about airports, so the FROM table should be AIRPORT –

“destination” is referring to the usage of cheapestCost(origin,dest)
which returns the cost of the cheapest route from origin to dest

– though, because there won’t be route at all to an airport that isn’t the
destination for some flight in FLIGHT, it is possible to use FLIGHT instead –
SELECT DISTINCT would then be required

• cheapestCost(origin,dest) returns the cost of the cheapest route –
pick those airports for which the cost from ROC is more than $400

– b)
• also display the destination and length of flight –
longestFlightUnder “returns” that info, but stored in variables, so
SELECT is needed to display the values

CPSC 343: Database Theory and Practice • Fall 2024 38

Exam 4

• #6
– (a) transactions not needed

• this can be done with a single UPDATE statement (every statement is
automatically its own transaction)

– (b) needs transactions
• this involves three steps – if reservations are made (for example) between

steps, the numbers reported may not be consistent with a single state of
the database

– there may not be harm in inconsistent numbers, but that’s an issue of whether
serializability is important for this application, not whether transactions are
needed to enforce serializability

– (c) needs transactions
• this involves multiple steps – checking for a route (where “cheapest

available fare” implies also checking for availability of seats) and then
making potentially multiple reservations for the flight(s) involved

– need to ensure the last available seat isn’t taken between finding the route
and making the reservations and/or that if making one of the reservations fails
(e.g. because the last available seat was taken), the customer isn’t left with an
incomplete set of reservations

–

