

CPSC 343: Database Theory and Practice • Fall 2024 94

Database Tuning

As the person writing queries, you have control over:

• how you write the query
• providing hints to the optimizer

As a DB admin, you have control over:

• what indexes are available
– specified as part of CREATE TABLE, or use CREATE INDEX

• whether the optimizer is using the most current key
distribution information
– can configure how often stats are recalculated automatically
– update manually after substantial changes with ANALYZE TABLE
tablename

CPSC 343: Database Theory and Practice • Fall 2024 95

Getting Info

EXPLAIN SELECT …;

• returns information about how the query is carried out

• uses
– can see where adding indexes would help
– can see if optimizer uses the best join order for the

tables

EXPLAIN is also available for
DELETE, INSERT, UPDATE

CPSC 343: Database Theory and Practice • Fall 2024 96 CPSC 343: Database Theory and Practice • Fall 2024 97

id sequential number of the SELECT within the query

select_type how the SELECT fits into the query

type join type

possible_keys
which indexes mysql can choose from to find rows
in this table

key which index mysql used

ref which attributes were compared to the index used

rows
number of rows mysql thinks it must examine to
execute the query (may be an estimate)

filtered
estimated selectivity
(for rows examined)

extra other information

CPSC 343: Database Theory and Practice • Fall 2024 98

id sequential number of the SELECT within the query

select_type how the SELECT fits into the query

type join type

possible_keys
which indexes mysql can choose from to find rows
in this table

key which index mysql used

ref which attributes were compared to the index used

rows
number of rows mysql thinks it must examine to
execute the query (may be an estimate)

filtered
estimated selectivity
(for rows examined)

extra other information CPSC 343: Database Theory and Practice • Fall 2024 99

type meaning

system table only has one row

const table has at most one matching row

eq_ref one row is read from this table for each combination
of rows from previous tables

ref all rows with matching values in this table are read
for each combination of rows in previous table

range use index to retrieve rows according to a range
condition

index full index scan is done for each combination of rows
from previous tables

ALL full table scan for each combination of rows from
previous tables

listed fastest (cheapest) to
slowest (most expensive)

CPSC 343: Database Theory and Practice • Fall 2024 100

which of the
EXPLAIN outputs
indicates the
most efficient
processing of the
query?

product of rows is
estimate of
number of rows
examined to
satisfy the query

CPSC 343: Database Theory and Practice • Fall 2024 101

Comparing Execution Plans

• with no index on Sname – must scan whole file

• with an index on Sname – can use index

SELECT *
FROM SAILOR S
WHERE S.Sname='Dustin'

+-------------+-------+------+-----------+-------+------+----------+-------+
| select_type | table | type |key | ref | rows | filtered | Extra |
+-------------+-------+------+-----------+-------+------+----------+-------+
| SIMPLE | S | ref |snameindex | const | 1 | 100.00 | NULL |
+-------------+-------+------+-----------+-------+------+----------+-------+

+-------------+-------+------+----+------+------+----------+-------------+
| select_type | table | type |key | ref | rows | filtered | Extra |
+-------------+-------+------+----+------+------+----------+-------------+
| SIMPLE | S | ALL | | NULL | 10 | 10.00 | Using where |
+-------------+-------+------+----+------+------+----------+-------------+

CPSC 343: Database Theory and Practice • Fall 2024 102

Comparing Execution Plans

SELECT *
FROM SAILOR S
ORDER BY S.Sid

+----+-------------+-------+-------+---------+------+----------+-------+
| id | select_type | table | type | key | rows | filtered | Extra |
+----+-------------+-------+-------+---------+------+----------+-------+
| 1 | SIMPLE | S | index | PRIMARY | 10 | 100.00 | NULL |
+----+-------------+-------+-------+---------+------+----------+-------+

the file is already in order by Sid and so can
just be scanned – no need for additional sort
(EXPLAIN treats this as an index scan because the
primary index is combined with the data file in InnoDB)

SELECT *
FROM SAILOR S
ORDER BY S.Sname

the file is not in order by Sname, so the
results must be sorted
scanning an index on Sname saves sorting,
but accessing a data block for each record
is much more expensive

+----+-------------+-------+------+------+------+----------+----------------+
| id | select_type | table | type | key | rows | filtered | Extra |
+----+-------------+-------+------+------+------+----------+----------------+
| 1 | SIMPLE | S | ALL | NULL | 10 | 100.00 | Using filesort |
+----+-------------+-------+------+------+------+----------+----------------+

+----+-------------+-------+-------+------------+------+----------+-------------+
| id | select_type | table | type | key | rows | filtered | Extra |
+----+-------------+-------+-------+------------+------+----------+-------------+
| 1 | SIMPLE | S | index | snameindex | 10 | 100.00 | Using index |
+----+-------------+-------+-------+------------+------+----------+-------------+

SELECT Sname
FROM SAILOR S
ORDER BY S.Sname

with an index in order by Sname and only
Sname desired in the results, the index can
be scanned with no need to look at the file

CPSC 343: Database Theory and Practice • Fall 2024 103

SELECT *
FROM SAILOR S
WHERE S.Sname >= 'Dustin'
ORDER BY S.Sname

there is an index on Sname
which could be used to satisfy
the range search (and avoid
sorting) but so many rows
match the WHERE condition
that it is better to just scan the
file and sort the results

SELECT *
FROM SAILOR S
WHERE S.Sname >= 'Rusty'
ORDER BY S.Sname

this time the number of
matched rows is smaller, so it is
more efficient to scan the index
(which is in sorted order!) and
retrieve data blocks for just the
matching rows

+----+-------------+-------+------+------+------+----------+-----------------------------+
| id | select_type | table | type | key | rows | filtered | Extra |
+----+-------------+-------+------+------+------+----------+-----------------------------+
| 1 | SIMPLE | S | ALL | NULL | 10 | 60.00 | Using where; Using filesort |
+----+-------------+-------+------+------+------+----------+-----------------------------+

+----+-------------+-------+-------+------------+------+----------+-----------------------+
| id | select_type | table | type | key | rows | filtered | Extra |
+----+-------------+-------+-------+------------+------+----------+-----------------------+
| 1 | SIMPLE | S | range | snameindex | 2 | 100.00 | Using index condition |
+----+-------------+-------+-------+------------+------+----------+-----------------------+

Comparing Execution Plans

CPSC 343: Database Theory and Practice • Fall 2024 104

Optimizer Hints

• for overriding the optimizer's decisions

R STRAIGHT_JOIN S
– R is guaranteed to be read first (optimizer won't swap the order of R

and S)

FROM table [AS alias]
FORCE INDEX [FOR {JOIN | ORDER BY | GROUP BY} (indexlist)

– assume that table scan (SL) is very expensive, and should be used
only if no index is applicable

FROM table [AS alias]
USE INDEX [FOR {JOIN | ORDER BY | GROUP BY} (indexlist)

– only use the indexes named

FROM table [AS alias]
IGNORE INDEX [FOR {JOIN | ORDER BY | GROUP BY} (indexlist)

– don't use the indexes named

CPSC 343: Database Theory and Practice • Fall 2024 105

