

CPSC 424: Computer Graphics • Fall 2025 22

• order matters

• in graphics systems, the current
transformation applies to everything
done after it
– steps are written in reverse order
– effect is as if the last transformation is

applied first

Combining Transformations

rotate, then translate

translate(0,10)
rotate(-45)
draw house

CPSC 424: Computer Graphics • Fall 2025 23

Combining Transformations

• rotation

rotate, then translate

x’ = x cos  - y sin 
y’ = x sin  + y cos 

x’’ = x' + tx
 = x cos  - y sin  + tx

y’’ = y' + ty
 = x sin  + y cos  + ty

• followed by
translation

CPSC 424: Computer Graphics • Fall 2025 24

Matrix Representation

[a b
c d][xy]=¿[a x+b yc x+d y]

x’ = sx x
y’ = sy y [sx 0

0 s y] x’ = x cos  - y sin 
y’ = x sin  + y cos 

[cosθ −sinθ
sinθ cos θ]x’ = x + tx

y' = y + ty
?

CPSC 424: Computer Graphics • Fall 2025 25

Matrix Representation

• to accommodate translation, switch to homogeneous
coordinates
– i.e. add a dimension (x,y) → (x,y,1)

[a b c
d e f
0 0 1][xy1]=[ax+by+cdx+ey+ f

1]

CPSC 424: Computer Graphics • Fall 2025 26

Matrix Representation

x’ = x + tx

y' = y + ty [1 0 t x
0 1 t y
0 0 1]

[sx 0 0
0 s y 0
0 0 1] [cosθ −sinθ 0

sin θ cos θ 0
0 0 1]

CPSC 424: Computer Graphics • Fall 2025 27

Matrix Representation

x’ = x
y' = shy x + y

x’ = x + shx y
y' = y [1 shx 0

0 1 0
0 0 1]

[1 0 0
sh y 1 0
0 0 1]

[1 0 0
0 −1 0
0 0 1]

[−1 0 0
0 1 0
0 0 1]

x’ = x
y’ = -y

x’ = -x
y’ = y

shear reflection

CPSC 424: Computer Graphics • Fall 2025 28

Combining Transformations

• matrix multiplication is associative
– A(Bp) = (AB)p

• thus we can combine a bunch of transformations and then
apply the result to points instead of having to apply each
transformation separately

• this also explains why the order of transformations seems
backwards

CPSC 424: Computer Graphics • Fall 2025 29

Inverses

• the inverse transformation undoes the transformation

– translate by (tx,ty)
→ translate by (-tx,-ty)

– scale by (sx,sy)
→ scale by (1/sx,1/sy)

– rotate by θ
→ rotate by -θ

[1 0 −t x
0 1 −t y
0 0 1] [1 0 t x

0 1 t y
0 0 1]=[1 0 0

0 1 0
0 0 1]

CPSC 424: Computer Graphics • Fall 2025 30

• “general” refers to a fixed point other than (0,0)

• strategy
– translate desired fixed point to

origin
• T(-px,-py)

– do scale/rotation
– translate back

• T(px,py)

→ T(px,py) S(2,0.5) T(-px,-py)

General Scaling and Rotation

sx = 2
sy = 0.5

CPSC 424: Computer Graphics • Fall 2025 31

Application of Transforms – Viewing

• the display window on the screen (viewport) is in screen
coordinates (SC)

• objects in the scene are defined in world coordinates
(WC)

→ need to transform WC to SC
• first, define the view window (in WC)

640

480

world coordinates
screen coordinates

viewportleft

top

bottom

right
view window

(0,0)

(0,0)

CPSC 424: Computer Graphics • Fall 2025 33

Window-to-Viewport...

left

top

bottom

right
view window

(0,0)

left

top

bottom

right

(0,0) (0,0)

translate top left corner
of view window to origin

reflect around x axis

the house looks upside
down, but that is because
we are still showing (0,0)
at the bottom – the
coordinates are correct
(the former top edge is at
0 and the former bottom
edge has a positive y
coordinate value) so it is
just a matter of drawing
with (0,0) at the top to get
the correct picture

this is the order of
application, not of
writing the commands!

CPSC 424: Computer Graphics • Fall 2025 34

...Window-to-Viewport

(0,0) scale view window to
viewport size

this is the order of
application, not of
writing the commands!

(0,0)

480

640

CPSC 424: Computer Graphics • Fall 2025 35

Application of Transforms – Modeling

• defining objects in WC is more convenient than SC, but
why stop there?
– define a canonical version of an object in object coordinates

(OC) and then apply a modeling transformation to place it into
WC

• advantages
– simplifies modeling
– saves effort if objects are repeated in the scene

CPSC 424: Computer Graphics • Fall 2025 36

Viewing Pipeline

• viewing pipeline
– OC → modeling transformation → WC → window-to-viewport →

SC

CPSC 424: Computer Graphics • Fall 2025 37

Hierarchical Modeling

• defining objects in OC is more convenient than WC, but
why stop there?
– define a canonical version of each primitive and then apply

transformation(s) to place it into OC for the object

• advantages
– allows graphics libraries to provide primitives without zillions of

parameters

CPSC 424: Computer Graphics • Fall 2025 38

Hierarchical Modeling

available primitives:
 – draw filled square
with specified side
length, centered at
(0,0)
 – draw filled circle
with specified radius,
centered at (0,0)
 – draw line between
two endpoints

start with drawing a wheel in a convenient coordinate system
(centered at (0,0), radius 1)
then size and place body and wheels to build the cart

1
2

2.6
6

1.6

1.65 1.65

0.
2

(0,0)

0.7

CPSC 424: Computer Graphics • Fall 2025 39

Scene Graphs

• the hierarchical structure of a scene
is captured in a scene graph

– can be implicit through method calls and the program call stack
– can be explicit with an actual data structure

