

The Graphics Pipeline
WebGL

CPSC 424: Computer Graphics • Fall 2025 3

Coordinate Systems for 3D Graphics

CPSC 424: Computer Graphics • Fall 2025 4

Coordinate Systems for 3D Graphics

the scene as a whole is defined in
world coordinates

define modeling transformations to
set the size, orientation, position of
individual objects in the overall
scene

single objects are defined in object
coordinates (or model coordinates)

what is used when defining
geometry for primitives

in hierarchical modeling,
this is repeated on many
levels
• define a modeling
transform to
size/orient/place a
primitive into the OC of
a larger piece
• define a modeling
transform to
size/orient/place the
larger piece into the OC
of a still larger piece
• ...

CPSC 424: Computer Graphics • Fall 2025 5

Coordinate Systems for 3D Graphics

viewing transform transforms WC EC→

eye coordinates (or view coordinates)
are from the perspective of the viewer
• (0,0,0) at the viewer (viewer's eye)
• viewer looks down negative z
• positive y points up
• positive x points right

http://www.songho.ca/opengl/gl_camera.html

CPSC 424: Computer Graphics • Fall 2025 6

Coordinate Systems for 3D Graphics

the world is an infinite space, but
only a finite region of it can be
displayed in a window on the
screen
• window size limits the xy
extent
• near/far extent imposed by the
depth buffer implementation

anything outside this view volume is clipped and not drawn

OpenGL defines the view volume as a cube centered at the origin with
extents -1 to 1 in all directions
• coordinates within this cube are clip coordinates (*) or normalized
device coordinates (*) clip coordinates may also refer to an intermediate step

the projection transformation transforms EC CC→
http://www.songho.ca/opengl/gl_projectionmatrix.html CPSC 424: Computer Graphics • Fall 2025 7

Coordinate Systems for 3D Graphics

the viewport defines where the drawing appears on
the screen
• in device coordinates (or screen coordinates)

the viewport transformation maps CC DC →
• corresponds to the 2D window-to-viewport
transformation
• view window is the front of the clipping cube
• 3D 2D amounts to dropping z coordinate (though →
kept for depth buffer purposes)

CPSC 424: Computer Graphics • Fall 2025 8

OpenGL Viewing Pipeline

• three transforms to specify
– modelview transform

• OpenGL does not have an internal notion of WC

– projection transform

– viewport transform

CPSC 424: Computer Graphics • Fall 2025 9

OpenGL 1.1

• OpenGL 1.1 uses a fixed pipeline

programmer –
 – specifies geometry, modelview transform, projection transform

system –
 – tracks modelview, projection matrices
 – transforms geometry OC → DC
 – clips against view volume (in CC)
 – uses lighting equation to determine vertex colors
 – rasterizes primitives, interpolating vertex colors for each pixel

CPSC 424: Computer Graphics • Fall 2025 10

OpenGL 1.1 vs OpenGL 2.0

• OpenGL 2.0 added a programmable pipeline

fixed pipeline

programmer specifies geometry,
modelview transform, projection
transform

system –
 – tracks modelview, projection
matrices
 – transforms geometry OC → DC
 – clips against view volume (in CC)
 – uses lighting equation to determine
vertex colors
 – rasterizes primitives, interpolating
vertex colors for each pixel

programmable pipeline

programmer specifies geometry, vertex
shader, fragment shader
 – vertex shader does OC → CC,
computes colors for vertices
 – fragment shader determines final
pixel color

system –
 – calls vertex shader for each vertex
 – clips against view volume (in CC)
 – rasterizes primitives, calling fragment
shader for each pixel with interpolated
values (not limited to color)

CPSC 424: Computer Graphics • Fall 2025 11

WebGL

• based on a version of OpenGL for systems like
smartphones and tablets

• programmable pipeline is required

• gone
– functions for working with transformations (glRotate,
glTranslate, glScale, glPushMatrix/glPopMatrix, etc)

– glBegin/glEnd
– glColor, glNormal

• added
– vertex, fragment shaders where programmer implements

transformations, lighting equation

CPSC 424: Computer Graphics • Fall 2025 12

WebGL

• WebGL runs in a web browser

• new environments and languages
– HTML for the web page containing the WebGL canvas
– JavaScript for specifying the geometry
– GLSL for shaders

CPSC 424: Computer Graphics • Fall 2025 13

Programmable Pipeline Concepts

• a primitive is defined by its type, a list of vertices, and
properties associated with each vertex
– type can be gl.POINTS, gl.LINES, gl.LINE_STRIP,
gl.LINE_LOOP, gl.TRIANGLES, gl.TRIANGLE_STRIP,
gl.TRIANGLE_FAN

gl refers to the WebGL
graphics context
the variable name is up
to the programmer; the
name gl is a convention,
not a requirement

CPSC 424: Computer Graphics • Fall 2025 14

Programmable Pipeline Concepts

• a primitive is defined by its type, a list of vertices, and
properties associated with each vertex

– uniform variables (uniforms) have a single value for the whole
primitive

• e.g. geometric transforms

– attribute variables (attributes) can have different values for each
vertex

• e.g. vertex coordinates, texture coordinates

– many things can be uniforms or attributes
• e.g. color / material properties, normal vectors

there are no predefined or
required uniforms/attributes
– WebGL just passes the
values to the shaders to use
as they wish

CPSC 424: Computer Graphics • Fall 2025 15

Pipeline Sequencing

• JavaScript program specifies the geometry and draws the
primitives
– sets the values for attributes and uniforms used by the shaders

• for attributes, an array of values (one for each vertex)
• for uniforms, a single value

– draws the primitives

• system calls vertex shader once for each vertex
– uniforms and attributes for that vertex are passed as input to the shader

• vertex shader (GLSL)
– transforms vertex coordinates from OC → CC
– computes values for properties used by fragment shader (e.g. color)
– sets gl_Position to the coordinates of the vertex in CC

• system clips everything outside the view volume

• system rasterizes the primitive, calling the fragment shader for each
pixel with interpolated values for vertex properties

• fragment shader (GLSL)
– sets gl_FragColor to the color of the pixel

bold indicates the
programmer's responsibility

CPSC 424: Computer Graphics • Fall 2025 16

Pipeline Data Flow

programmer defined

done by the system

values specified by the
JavaScript program

CPSC 424: Computer Graphics • Fall 2025 17

Web Page Structure

CPSC 424: Computer Graphics • Fall 2025 18

Getting a WebGL Graphics Context

webglcanvas and canvas-
holder are names of
elements declared in the
<body> section

options –
 – alpha true (default) allows
transparent canvas pixels; safe
to make false (does not block
alpha blending of drawing color
with image color)
 – depth true (default) enables
depth buffer
 – antialias true (default)
requests antialiasing; nicer
image but increased
computation time
 – preserveDrawingBuffer
false (default) discards
contents of drawing buffer after
display; only need true if
drawing is constructed
incrementally

use strict disallows certain
“sloppy syntax”, helping to
prevent errors – use it!

