

CPSC 424: Computer Graphics • Fall 2025 18

WebGL Program Elements

Steps – (JavaScript unless otherwise specified)

• create web page (HTML) containing a canvas for display
• set up JavaScript program structure
• get a WebGL context for that canvas
• define the vertex and fragment shaders (GLSL)
• compile and link shaders into a program
• set up shader arguments

– get locations for shader arguments
– define VBOs (attributes)
– create typed array with the data (attributes)
– connect JavaScript-defined values to GPU storage

• draw the scene

CPSC 424: Computer Graphics • Fall 2025 19

Web Page Structure

title is shown as
the window title

body contains what
is visible when
viewed in a browser

canvas defines the
WebGL drawing
area

div defines an area
used to display
WebGL loading/init
error messages

div and canvas ids are
unique ids used to
reference those elements
from javascript

CPSC 424: Computer Graphics • Fall 2025 20

JavaScript Program Structure

use strict disallows certain
“sloppy syntax”, helping to prevent
errors – use it!

JavaScript goes inside <script> tags
in the head section

window.onload defines what
happens when the page is loaded
(an anonymous function is
convenient)

init(), initGL(), draw() functions
are a convenient way to organize
the JavaScript

error handling – if anything goes
wrong with the basic initialization,
display the error message in the
element with id canvas-holder
defined in the HTML document

CPSC 424: Computer Graphics • Fall 2025 21

Getting a WebGL Graphics Context
webglcanvas and
canvas-holder are the
ids of elements declared
in the <body> section

options –
 – alpha true (default) allows transparent canvas
pixels; safe to make false (does not block alpha
blending of drawing color with image color)
 – depth true (default) enables depth buffer
(needed for the depth test in 3D)
 – antialias true (default) requests antialiasing;
nicer image but increased computation time
 – preserveDrawingBuffer false (default) discards
contents of drawing buffer after display; only need
true if drawing is constructed incrementally

basic initialization succeeded, move
on to initializing WebGL things

enable the depth test (needed for 3D)

CPSC 424: Computer Graphics • Fall 2025 22

Writing Shaders – Pipeline Data Flow

the values for attributes (per vertex)
and uniforms (per primitive) are
specified in the JavaScript program

vertex shader is called once per vertex

it gets attributes and uniforms as
parameters

its job is to compute per-vertex values
used in the pipeline – gl_Position and
anything else (e.g. color)

fragment shader is called once per pixel

it gets interpolated values for the per-
vertex values computed by the vertex
shader (including gl_Position) and
uniforms (per primitive) as parameters

its job is to compute gl_FragColor, the
color for that pixel

programmer
defined

done by the
system

values
specified by
the JavaScript
program

CPSC 424: Computer Graphics • Fall 2025 23

Writing Shaders

• shaders can contain global variable
declarations, type definitions, function
definitions
– must include void main () { … }
– global variables are attribute (vertex

shader only), uniform, varying
• varying variables are how information is passed

from the vertex shader to the fragment shader
– vertex shader is responsible for assigning a value
– interpolator interpolates the value for each pixel

based on the vertex values, and passes the
interpolated value to the fragment shader

• varying variables are declared in both vertex and
fragment shaders

• book's convention is to use a_, u_, v_ prefixes to
denote attribute, uniform, varying variables

– local variables lack modifiers

CPSC 424: Computer Graphics • Fall 2025 24

A Simple Vertex Shader

• modeling, viewing, projection transform are the identity
– coordinates are already clip coordinates

• vertex color is the assigned color

attribute vec3 a_coords; // vertex coords (3D)
attribute vec3 a_color; // vertex color (attribute)
varying vec3 v_color; // vertex color (result)

void main () {
 gl_Position = vec4(a_coords,1);
 v_color = a_color;
}

CPSC 424: Computer Graphics • Fall 2025 25

A Simple Fragment Shader

• pixel color is the interpolated vertex color

precision mediump float; // set the precision

varying vec3 v_color; // interpolated color

void main () {
 gl_FragColor = vec4(v_color,1.0);
}

CPSC 424: Computer Graphics • Fall 2025 26

Defining Shaders

<script> tags go in the <head> section

script type must be something the browser
doesn't recognize so it won't try to execute it

x-shader/x-vertex, x-shader/x-fragment are
the book's convention

id is used to reference the element in the
JavaScript program

CPSC 424: Computer Graphics • Fall 2025 27

Setting the Pipeline Program

returns boolean indicating
success/failure of
compile/link steps – check!

get shader script text as JavaScript
strings
(getTextContext is another utility
function – extracts text from the specified
HTML element in the document)

ids of <script> elements
containing the shader
programs

gl.useProgram(prog) to specify the
current program – often done in
initialization but can change at any
point

gl.deleteShader(shader),
gl.deleteProgram(program) to free
up resources when no longer needed

utility function to compile and
link vertex and fragment
shaders into a program

CPSC 424: Computer Graphics • Fall 2025 28

Setting Up Shader Arguments

obtain references for
each of the vertex
shader attributes
and uniforms

create VBOs for the
attribute data

note: VBOs do not
yet contain data

define global variables for
references to each of the
attributes and uniforms for the
vertex shader + VBOs for
attributes

– a vertex buffer object (VBO) is an array that can be stored on
the GPU

CPSC 424: Computer Graphics • Fall 2025 29

Setting Values for Shader Arguments

set up values for attributes and uniforms

attributes require use of a typed array
 – e.g. Float32Array

CPSC 424: Computer Graphics • Fall 2025 30

Setting Values for Shader Arguments

gl.bindBuffer specifies how the VBO
will be used (ARRAY_BUFFER when storing
values for an attribute)

gl.bufferData transfers data from
typed array to VBO
(STATIC_DRAW, STREAM_DRAW,
DYNAMIC_DRAW provide hints about how
the data will be used so WebGL can
manage it efficiently – STATIC_DRAW used
many times, STREAM_DRAW used once and
discarded)

gl.enableVertexAttribArray enables
the use of VBO for that attribute (only
needs to be done once – could go in
initGL)

gl.vertexAttribPointer takes values
for the attribute from the currently-
bound buffer
 – parameters are the attribute location,
the number of values per vertex, the
type of each value, whether to normalize
values (convert to range [-1,1]) or use as is,
stride (gap between data values in array),
offset (to first value to use in array) CPSC 424: Computer Graphics • Fall 2025 31

Draw the Scene

clear background – set color,
clear color buffer

draw primitive
 – parameters are the primitive
type, starting vertex in VBO,
number of vertices in primitive

clear the depth buffer

CPSC 424: Computer Graphics • Fall 2025 32

Pulling Out Common Elements
common utility functions
can go into a separate file
(in the same directory)
note no <script> tags, just
JavaScript content

include
the script

fsh

CPSC 424: Computer Graphics • Fall 2025 33

Error Checking

• in WebGL errors are typically signaled by setting an error
code rather than throwing exceptions
– check with gl.getError()
– gl.NO_ERROR indicates success, anything else indicates an error

• gl.INVALID_ENUM – bad primitive type
• gl.INVALID_VALUE – bad value
• gl.INVALID_OPERATION – shader not set
• gl.INVALID_STATE – vertex attrib array enabled, but no data

• notes
– error code stays set until cleared by gl.getError(), even if

other successful operations complete

• usage
– log to browser console with
 console.log(“Error code is “+gl.getError());

• also check browser console for other errors that may be logged there
– employ gl.getError() to locate problem when there's an issue

rather than exhaustively error-checking

