Modeling, Viewing, and Projection

Isolating Modeling Transforms

```
// body of cart
  gl2.glPushMatrix();
  gl2.glTranslatef(0f,1f,0f);
  gl2.glScalef(6f,2f,1f);
 Drawing2D.filledSquare(gl2,1);
  gl2.glPopMatrix();
  // top of cart
 gl2.glPushMatrix();
  gl2.glTranslatef(-1f,2.5f,0f);
  gl2.glScalef(2.6f,1f,1f);
 Drawing2D.filledSquare(gl2,1);
  gl2.glPopMatrix();
syntax is OpenGL 1.0.
not WebGL
```

pushMatrix saves the current transformation matrix

popMatrix restores the last-saved transformation matrix

CPSC 424: Computer Graphics • Fall 2025

Early Art

size of object not related to distance from viewer

depth shown by overlapping objects or using different horizontal levels

cave paintings at Lascaux (France), c. 15,000 BC

CPSC 424: Computer Graphics • Fall 2025

http://www.culture.gouv.fr/culture/arcnat/lascaux/en/f-dec.htm

Mathematical Perspective

Filippo Brunelleschi, 1420

observations

- lines perpendicular to mirror converged to a central vanishing point
- other oblique lines converged to other vanishing points
- · all vanishing points on horizon

http://www.kap.pdx.edu/trow/winter01/perspective/

"Heuristic" Perspective

Giotto Franciscan Rule Approved c. 1288-1292

e.g.

incline lines above eye level downward incline lines below eye level upward incline lines on left or right towards the center

CPSC 424: Computer Graphics • Fall 2025

http://www.artchive.com/artchive/G/giotto/giotto_rule.jpg.html

Mathematical Perspective

• principal vanishing points are derived from the world's primary

Vredeman de Vries, from Perspective, 1604

CPSC 424: Computer Graphics • Fall 2025

http://www.cs.brown.edu/stc/summer/viewing_history/viewing_history_13.html

13

Projection in Computer Graphics

- define a projection by defining a set of projectors
 - every point on a projector ends up at the same point on the projection plane
- *linear projection* projectors are lines

CPSC 424: Computer Graphics • Fall 2025

https://commons.wikimedia.org/wiki/File:Perspective_Projection_Principle.jpg

Perspective Projection

Types -

- one-, two-, three-point perspective

 the number of principal
 vanishing points
 - principal vanishing point = vanishing point of lines parallel to one of the three coordinate axes
 - direction of projection is perpendicular to the projection plane
- oblique direction of projection not perpendicular to the projection plane

CPSC 424: Computer Graphics • Fall 2025

https://blogs.ubc.ca/axonometric/visualglossary/ 16

Perspective Projection

· projectors converge at the eye point

Properties –

- distant objects appear smaller than near objects
- parallel lines converge

CPSC 424: Computer Graphics • Fall 2025

1

Parallel Projection

projectors are parallel lines

Properties –

- distant objects appear the same size as near objects
- parallel lines do not converge

CPSC 424: Computer Graphics • Fall 2025

Multiview Orthographic Projection

- separate pictures from different sides
 - projection plane is parallel to one of the principal planes defined by the coordinate axes
 - all views use the same scale
- often used for engineering & architectural drawings
- accurate measurements possible
- does not provide realistic view
- need multiple drawings to get 3D feel

Axonometric Projections

- projection plane is not parallel to one of the principal planes defined by the coordinate axes
- isometric has single scale factor for all three axes
 - commonly used for catalog illustrations, patent office records, furniture design, structural design
 - illustrates 3D nature without multiple views
 - scale measurements are possible
 - lack of foreshortening creates distorted appearance
 - less useful for curved shapes
- dimetric has single scale factor for two axes
- trimetric has different scale factors for each axis

2