

CPSC 424: Computer Graphics • Fall 2025 23

Parallel Projection

• projectors are parallel lines

Properties –

• distant objects appear the same size as near objects
• parallel lines do not converge

DOP

CPSC 424: Computer Graphics • Fall 2025 24

Parallel Projection

Types –

• orthographic – projectors are
perpendicular to the
projection plane

• oblique – projectors are not
perpendicular to the
projection plane

https://commons.wikimedia.org/w/index.php?curid=58480268

DOP

CPSC 424: Computer Graphics • Fall 2025 25

Multiview Orthographic Projection

• separate pictures from different sides
– projection plane is parallel to one of the principal planes defined

by the coordinate axes
– all views use the same scale

• often used for engineering & architectural drawings
• accurate measurements possible
• does not provide realistic view
• need multiple drawings to get 3D feel

front side plan

plan

side
front CPSC 424: Computer Graphics • Fall 2025 26

Axonometric Projections

di
m

et
ric

di
m

et
ric

is
om

et
ric

trimetric

pl
an

 v
ie

w

• projection plane is not parallel to
one of the principal planes
defined by the coordinate axes

• isometric has single scale factor
for all three axes

– commonly used for catalog illustrations,
patent office records, furniture design,
structural design

– illustrates 3D nature without multiple views
– scale measurements are possible
– lack of foreshortening creates distorted

appearance
– less useful for curved shapes

• dimetric has single scale factor for
two axes

• trimetric has different scale factors for
each axis

CPSC 424: Computer Graphics • Fall 2025 27

Orthographic Parallel Projections

http://www2.arts.ubc.ca/TheatreDesign/crslib/drft_1/example.htm CPSC 424: Computer Graphics • Fall 2025 28

Orthographic Parallel Projections

http://www.romatermini.it/

axonometric:
dimetric

CPSC 424: Computer Graphics • Fall 2025 29

Isometric Parallel Projection

The Isometric Map of Midtown Manhattan, © 1989 The Manhattan Map Company
from Tufte, Envisioning Information, p. 37

CPSC 424: Computer Graphics • Fall 2025 30

Oblique Parallel Projections
• projectors not perpendicular to projection plane

– shows exact shape of front face for accurate measurements
but still gives 3D sense

– better than axonometric for elliptical shapes
– choice of view may lead to distorted look
– no foreshortening (doesn’t look realistic)

• cavalier
– perpendicular faces are projected at full scale –

projected depth is same scale as width and height
– x, y axes are drawn perpendicular to each other
– commonly drawn with 135º or 160º angle between x and z axes

• cabinet
– perpendicular faces are projected at 50% scale –

projected depth is ½ scale of width and height
– x, y axes are drawn perpendicular to each other
– commonly drawn with 135º or 160º angle between x and z axes

• military
– perpendicular faces are projected at full scale –

projected depth is same scale as width and height
– x, z axes drawn at 45º and 135º degrees
– y axis drawn vertically

CPSC 424: Computer Graphics • Fall 2025 31

Oblique Parallel Projections

https://en.wikipedia.org/wiki/Oblique_projection#/media/File:Xu_Yang_-_Entrance_and_yard_of_a_yamen.jpg
https://en.wikipedia.org/wiki/Oblique_projection#/media/File:Perspective_cavaliere_fortification.jpg
https://en.wikipedia.org/wiki/Oblique_projection#/media/File:SimCity-Indigo.gif

detail of a scroll by Xu Yang,
18th century

SimCity

CPSC 424: Computer Graphics • Fall 2025 32

Oblique vs Orthographic Projections

di
m

et
ric

di
m

et
ric

is
om

et
ric

trimetric

pl
an

 v
ie

w

ca
v
a
lie

r
ca

b
in

e
t

military

CPSC 424: Computer Graphics • Fall 2025 33

Parallel Projection Recap

orthographic

cabinet

oblique

trimetric

isometric

axonometric

side elevation

front elevation

top (plan) cavalier

other
dimetric

projectors are
parallel lines

projectors are perpendicular
to projection plane

projectors parallel to
a coordinate axis

distinguished by
which axis

projectors not parallel
to any coordinate axis

distinguished by
number of different
scales along axes

projectors not
perpendicular to
projection plane

projection plane
perpendicular to a
coordinate axis

distinguished by scale
factor of perpendicular
direction

CPSC 424: Computer Graphics • Fall 2025 34

Taxonomy of Projection Types

linear projections

parallel

orthographic

cabinet

oblique

trimetric

isometric

axonometric

side elevation

front elevation

top (plan)

cavalier

three point

two point

one point

perspective

other

nonlinear projections

oblique

dimetric

CPSC 424: Computer Graphics • Fall 2025 35

Visual Guide to Projection Types

https://handwiki.org/wiki/File:Comparison_of_graphical_projections.svg CPSC 424: Computer Graphics • Fall 2025 36

Projection in OpenGL

glMatrixMode(GL_PROJECTION);
glLoadIdentity();

… projection transform

 1.0, syntax is OpenGL
 not WebGL

CPSC 424: Computer Graphics • Fall 2025 37

Projection Transform – Perspective

– in EC
– xmin,xmax,ymin,ymax define the view window (on the near clipping

plane)
– fieldOfViewAngle is the angle between the bottom and top of the

view volume; aspect is the view volume's aspect ratio (width/height)
• aspect should generally match the aspect ratio of the viewport

– near, far specify the distance from the eye to the clipping planes
• z coordinates are -near and -far, respectively

–

glFrustum(xmin,xmax,ymin,ymax,near,far)
gluPerspective(fieldOfViewAngle,aspect,near,far)

 1.0, syntax is OpenGL
 not WebGL

CPSC 424: Computer Graphics • Fall 2025 38

Projection Transform – Perspective

• one-, two-, and three-point perspective is determined by
the number of zero components in the look at vector
(eye→ref)
– n zero components → 3-n point perspective

• for oblique perspective, use glFrustum where the x
and/or y limits are not symmetrical around 0
glFrustum(xmin,xmax,ymin,ymax,near,far)
gluPerspective(fieldOfViewAngle,aspect,near,far)

https://people.eecs.berkeley.edu/~barsky/perspective.html

n-point
perspective
results from n
principal axes
intersecting
the projection
plane

 1.0, syntax is OpenGL
 not WebGL

CPSC 424: Computer Graphics • Fall 2025 39

Projection Transform – Orthographic

– in EC
– xmin,xmax,ymin,ymax define

the view window (on the near
clipping plane)

• near, far specify the distance
from the eye to the clipping
planes

– z coordinates are -near and
 -far, respectively

– type depends on the look at
vector (eye→ref)

• front, side, plan – along z, x, y,
respectively

• isometric – absolute value of x,
y, z components are equal

• dimetric – absolute value of two
of x, y, z components are equal

• trimetric – absolute value of x,
y, z components are different

glOrtho(xmin,xmax,ymin,ymax,near,far) 1.0, syntax is OpenGL
 not WebGL

CPSC 424: Computer Graphics • Fall 2025 40

Projection Transform – Oblique Parallel

• oblique parallel projections are not directly supported by
OpenGL
– instead, shear first to create an orthogonal projection

https://blogs.ubc.ca/axonometric/visualglossary/

CPSC 424: Computer Graphics • Fall 2025 41

Recap: Viewing and Projection

glMatrixMode(GL_PROJECTION);
glLoadIdentity();

… projection
transform

glFrustum(xmin,xmax,ymin,ymax,
 near,far)

gluPerspective(fieldOfViewAngle,
 aspect,near,far)

glOrtho(xmin,xmax,ymin,ymax,
 near,far)

 1.0, syntax is OpenGL
 not WebGL

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

gluLookAt(eyeX,eyeY,eyeZ,
 refX,refY,refX,
 upX,upY,upZ);

glPushMatrix();
…
glPopMatrix();

glPushMatrix();
…
glPopMatrix();

…

viewing
transform

define the scene
(modeling
transforms and
primitives)

follow glOrtho with shear
(shear first) for oblique parallel

CPSC 424: Computer Graphics • Fall 2025 42

Hierarchical Modeling

 1.0, syntax is OpenGL
 not WebGL

CPSC 424: Computer Graphics • Fall 2025 43

Hierarchical Modeling
drawCart(gl2);

gl2.glPushMatrix();
gl2.glTranslatef(5f,-5f,0f);
gl2.glRotate(45,0f,0f,5f);
gl2.glScale(1.5f,.75f,1f);
drawCart(gl2);
gl2.glPopMatrix();

CPSC 424: Computer Graphics • Fall 2025 44

CPSC 424: Computer Graphics • Fall 2025 45

Recap: Viewing and Projection

glMatrixMode(GL_PROJECTION);
glLoadIdentity();

… projection
transform

glFrustum(xmin,xmax,ymin,ymax,
 near,far)

gluPerspective(fieldOfViewAngle,
 aspect,near,far)

glOrtho(xmin,xmax,ymin,ymax,
 near,far)

 1.0, syntax is OpenGL
 not WebGL

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

gluLookAt(eyeX,eyeY,eyeZ,
 refX,refY,refX,
 upX,upY,upZ);

glPushMatrix();
…
glPopMatrix();

glPushMatrix();
…
glPopMatrix();

…

viewing
transform

define the scene
(modeling
transforms and
primitives)

follow glOrtho with shear
(shear first) for oblique parallel

CPSC 424: Computer Graphics • Fall 2025 46

Transformations in WebGL

• the programmable pipeline does not maintain modelview
or projection matrices
– now up to the programmer!

• three tasks

– managing viewing pipeline transforms (modeling, viewing,
projection) in JavaScript

– supplying transforms as parameters to the vertex shader
– applying transforms in the vertex shader

CPSC 424: Computer Graphics • Fall 2025 47

Managing Viewing Pipeline Transforms

• similar to OpenGL 1.0, we’ll keep track of projection and
modelview matrices
– maintained in JavaScript, then passed to the vertex shader

CPSC 424: Computer Graphics • Fall 2025 48

Using glMatrix

• glMatrix is a free JavaScript library implementing vector
and matrix math
– include in program with
<script src=”gl-matrix-min.js”></script>

• goes in <head> section

adjust path as
appropriate

CPSC 424: Computer Graphics • Fall 2025 49

Using glMatrix

• defines types vec2, vec3, vec4, mat3, mat4 for vectors
and matrices
– these are JavaScript types rather than GLSL types even though

they have the same names

– really just 1D arrays (regular JavaScript arrays or typed arrays of
type Float32Array) with right number of elements

• can pass an array with right number of elements
whenever parameter is one of the vector or matrix types

• matrix types use column-major order (compatible with
WebGL)

https://commons.wikimedia.org/wiki/File:Row_and_column_major_order.svg CPSC 424: Computer Graphics • Fall 2025 50

Using glMatrix

• functions
– type.create() creates a typed array of the appropriate length

• default is 0s for veci, identity for mati
– type.clone(param) creates a copy of param

create projection and modelview matrices to replicate
what OpenGL 1.0 maintains –

let modelview = mat4.create(); // identity
let projection = mat4.create(); // identity

CPSC 424: Computer Graphics • Fall 2025 51

Using glMatrix

• functions – transforms
– transform functions set the value of the first parameter (which

must have been allocated previously) instead of returning result
• mat4.multiply(A,B,C)

• mat4.translate(A,B,[tx,ty,tz])

• mat4.scale(A,B,[sx,sy,sz])

• mat4.rotateX(A,B,radians)
• mat4.rotateY(A,B,radians)
• mat4.rotateZ(A,B,radians)
• mat4.rotate(A,B,radians,[px,py,pz])

– axis of rotation is vector (0,0,0) → (px,py,pz)

• mat4.identity(A)
– sets A to the identity matrix

usage example –
to achieve the effect of
glTranslatef(dx,dy,dz) as a modeling
transform, use
mat4.translate(modelview,
 modelview,[dx,dy,dz])

CPSC 424: Computer Graphics • Fall 2025 52

Using glMatrix

• functions – viewing and projection
– all set A (which must have been allocated previously) to the matrix

defined

– mat4.lookAt(A,[eyex,eyey,eyez],[refx,refy,refz],
 [upx,upy,upz])

– mat4.ortho(A,left,right,bottom,top,near,far)
– mat4.frustum(A,left,right,bottom,top,near,far)
– mat4.perspective(A,fieldOfView,aspect,near,far)

• fieldOfView in radians

with the modelview matrix as A, this is equivalent to
glLoadIdentity();
gluLookAt(eyex,eyey,eyez,refx,refy,refz,upx,upy,upz);

with the projection matrix as A, these are equivalent to
glLoadIdentity();
glOrtho(left,right,bottom,top,near,far);
etc

