three.js

three.js

Web Page Structure

* an open source object-oriented JavaScript library for 3D

graphics

- provides a scene graph APl and renderer(s)

* built on WebGL

CPSC 424: Computer Graphics » Fall 2025

Basic Template, Part 1

« web page structure is the same as for WebGL

need a canvas

import map defines
where to find —»
modules used

<html>
<head>

<title>Helle three.js!</title>
</head>

<body=
<h2>Hello three.js!</h2>

<div id="canvas-holder">
<canvas id="webglcanvas" width="600" height="600"></canvas>
</div>
</body>

</html>

import modules used
as THREE

means that THREE. will
prefix all elements from that
module

from “three”

refers to the import map
OrbitControls allows
mouse trackball

CPSC 424: Computer Graphics « Fall 2025

names of variables
and functions are
user-defined, not
dictated by three.js

CPSC 424: Computer Graphics + Fall 2025

<script type="importmap">
{

/threejs/three.module.nin.js",
“addons ../threejs/"
</script>
<script type="module">
import * as THREE from "three";
import { OrbitControls } from "../threejs/controls/OrbitControls.js";
let scene, camera, renderer; // Three.js rendering basics
let canvas; // The canvas on which the image is rendered.

// initialize when page is loaded

window.onload = function () { init(); }; < calls init () when
page is loaded

yx

* Create the scene graph.

This function is called once, as soon as

* the page loads. The renderer has already been created before this

* function is called.
*/
function createworld() {

// set background clear color

// create scene object
// create camera

// create some lights and add them to the scene
// create the geometry and add it to the scene

Basic Template, Part 2

Core Elements

e
Render the scene. This is called for each frame of the animation.
*/
function render() {
renderer. render(scene, camera);
Jex
* This init() function is called when by the onload event when the document has loaded
*/
function init() {
webglcanvas try ¢
- canvas = document.getElementById(“webglcanvas®) ;
al"ld canvas - renderer = new THREE.WebGLRenderer({
4 canvas: webglcanvas,
holder refer antialias: true
b;
to the HTML '
catch (e) {
elements 4 document. getElementById(“canvas-holder”) .innerHTML =
“<h3>Sorry, WebGL is required but is not available.<h3>";
return;
createWorld() ;
sets up let controls = new OrbitControls(camera, canvas);
controls.enablepan = false;
mouse controls. enablezoon = false;
controls. addEventListener(“change”, render);
trackball
render();
}
</script>

CPSC 424: Computer Graphics « Fall 2025

Scene

scene = new THREE.Scene();

* made up of objects of type THREE.Object3D (and

subclasses)

an object has a list of child nodes

« the scene graph must be a tree
clone a node to create a copy of a subgraph

CPSC 424: Computer Graphics « Fall 2025

let scene, camera,

renderer;

typically have global variables for each element

° scene

represents the scene graph

° camera

* renderer

creates an image from a scene graph

CPSC 424: Computer Graphics » Fall 2025

Camera

Ccamera =

note reversed order
compared to WebGL

new THREE.OrthographicCamera(left,right,

defines view volume (EC)

near, far are distances from the camera (not z coordinates)
* near <0 is allowed

top,bottom,
near,far);

J

camera =

new THREE.PerspectiveCamera(field0fViewAngle,
aspect,near, far);

field0fViewAngle is the vertical extent of the view volume, in

degrees

aspect ratio is typically set based on the canvas dimensions

+ canvas.width/canvas.height

near, far are distances from the camera (not z coordinates)
* 0 < near < far

Camera Setup

 positioning

camera.position specifies position

camera.position.set(x,y,z);
set all components at once

camera.position.x = x;
camera.position.y = vy;
camera.position.z = z;

set an individual component's value

CPSC 424: Computer Graphics « Fall 2025

Camera Setup Example

// not (yet) part of the scene.

camera = new THREE.PerspectiveCamera(45,
canvas.width / canvas.height, 1, 30);

camera.position.z = 15;

// create a camera, sitting on the positive z-axis.

The camera is

CPSC 424: Computer Graphics « Fall 2025

Camera Setup

 orientation

camera. rotation specifies rotation angles (in radians) around
X, Y, Z axes respectively

rotations are applied in that order — first x rotation, then y, then z

obj.lookAt(vec)
« vec must be a Vector3in OC
if obj has no parent, OC = WC
* rotates obj so that it faces vec, with up direction obj .up
default for obj . up is (0,1,0)

CPSC 424: Computer Graphics + Fall 2025 10

Renderer

renderer =
new THREE.WebGLRenderer({ canvas: canvas,
antialias: true });

renders using WebGL

« other renderers are possible, though may not support all of the features of
the WebGL renderer

canvas is the canvas element in the HTML document
typically want antialiasing, but false is possible

renderer.setClearColor(0Oxhexvalue);
renderer.setClearColor(“rgb(r,g,b)"”);

set the background clear color
* r,0,b values are 0-255

renderer.render(scene, camera);

render scene

Modeling — Objects

« five kinds of basic objects — subclasses of THREE.Object3D

THREE.Points — corresponds to GL_POINTS
THREE.LineSegments — corresponds to GL_LINES
THREE. Line — corresponds to GL_LINE_STRIP
THREE.LineLoop — corresponds to GL_LINE LOOP
THREE . Mesh — corresponds to GL_ TRIANGLES

+ object consists of geometry + material
let obj = new THREE.Mesh(geometry,material);

definitions for common mesh geometries are provided

CPSC 424: Computer Graphics « Fall 2025 13

Modeling — Materials

« for points objects, THREE.PointsMaterial
has properties color, size, sizeAttenuation

« for lines, THREE.LineBasicMaterial
has properties color, linewidth
see reading for how to specify different colors for each vertex

 for meshes

THREE .MeshBasicMaterial — fixed color, not affected by

lighting
* has property color

THREE.MeshLambertMaterial — emission and diffuse only
* has properties color, emissive

THREE .MeshPhongMaterial — includes specular
* has properties color, emissive, specular, shininess

CPSC 424: Computer Graphics « Fall 2025 16

Modeling — Geometry

+ defining geometry

there are definitions for common mesh geometries
in JavaScript, can omit values for later parameters

new THREE.CylinderGeometry(radiusTop, radiusBottom, height,
radiussegments, heightSegments, openEnded, thetastart, thetalength)

new THREE.BoxGeometry(width, height, depth,
widthsegments, heightSegments, depthSegments)

new THREE.PlaneGeometry(width, height, widthSegments, heightSegments)

new THREE.RingGeometry(innerRadius, outerRadius, thetaSegments, phiSegments,
thetaStart, thetalLength)

new THREE.ConeGeometry(radiusBottom, height, radiusSegments,
heightSegments, openEnded, thetaStart, thetalength)

new THREE.SphereGeometry(radius, widthSegments, heightSegments,
phistart, philength, thetaStart, thetalength)

new THREE.TorusGeometry(radius, tube, radialSegments, tubularSegments, arc)

Object Creation Example

// create the geometry
let donut = new THREE.Mesh(
new THREE.TorusGeometry(2, .5, 16, 32),
new THREE.MeshLambertMaterial({
color: "rgbh(2s55,128,0)"
B

// don't forget to add to the scene!
scene.add (donut);

CPSC 424: Computer Graphics + Fall 2025

also TetrahedronGeometry, OctahedronGeometry,
DodecahedronGeometry, IcosahedronGeometry
cpsc a24: @ With parameters size and detail 15

Modeling — Materials

+ additional properties for mesh materials

* wirefrane — a boolean value that indicates whether the mesh should be drawn as a wireframe model,
showing only the outlines of its faces. The default is false. A true value works best with
MeshBasicMaterial.

o wireframeLinewidth — the width of the lines used to draw the wireframe, in pixels. The default is 1.

(Non-default values might not be respected.)

visible — a boolean value that controls whether the object on which it is used is rendered or not,

with a default of true.

« side — has value THREE.FrontSide, THREE.BackSide, or THREE .DoubleSide, with the default being

THREE FrontSide. This determines whether faces of the mesh are drawn or not, depending on

which side of the face is visible. With the default value, THREE FrontSide, a face is drawn only if it

is being viewed from the front. THREE.DoubleSide will draw it whether it is viewed from the front
or from the back, and THREE .BackSide only if it is viewed from the back. For closed objects, such as

a cube or a complete sphere, the default value makes sense, at least as long as the viewer is outside

of the object. For a plane, an open tube, or a partial sphere, the value should be set to

THREE.DoubleSide. Otherwise, parts of the object that should be in view won't be drawn.

flatshading — a boolean value, with the default being false. This does not work for

MeshBasicMaterial. For an object that is supposed to look "faceted," with flat sides, it is important

to set this property to true. That would be the case, for example, for a cube or for a cylinder with a

small number of sides.

polygonOffset, polygonOffsetUnits, polygonOffsetFactor

* defined as material properties (apply to the solid object so it doesn't -

interfere with the wireframe version)

8

Modeling Transformations

+ THREE.Object3D properties

scale (type THREE.Vector3)
* has properties X, y, z specifying scale factor in each direction
rotation (type THREE.Euler)

* has properties X, y, z specifying rotations around the respective axes
applied in that order

position (type THREE.Vector3)
 has properties X, y, z specifying translation amounts

applied in the order scale, rotation, translation
X, Y, z can be set individually or all at once

© e.g.obj.scale.set(2,2,2);
© e.g.obj.scale.y = 0.5;

CPSC 424: Computer Graphics « Fall 2025 20

Colors

+ THREE.Color represents an RGB color
has properties r, g, b with values in the range 0-1

« can specify values using color names, RGB values, RGB
strings, hexadecimal values

var cl = new THREE.Color("skyblue");

var c2 = new THREE.Color(1,1,8); // yellow

var 3 = new THREE.Color(ex98fba8); // pale green
var c4 = new THREE.Color(“rgb(255,128,0)");

= can often use just color name or value instead of a
THREE. Color object in places where a color is expected

e.g. in material properties let donut = new THREE.Mesh(
new THREE.TorusGeometry(2, .5, 16, 32),
new THREE.MeshLambertMaterial({
color: "rgb(255,128,0)"
b

CPSC 424: Computer Graphics » Fall 2025

Modeling Transform Example

// create the geometry
let donut = new THREE.Mesh(
new THREE.TorusGeometry(2, .5, 16, 32),
new THREE.MeshLambertMaterial({
color: "rgbh(2s55,128,0)"
B
donut.rotation.set(-Math.PI / 4, Math.PI / 4, 0);

CPSC 424: Computer Graphics + Fall 2025

Hierarchical Modeling

« build subgraphs to represent complex objects

let tree = new THREE.Object3D();
let trunk = new THREE.Mesh(
new THREE.CylinderGeometry(0.2,0.2,1,16,1),
new THREE.MeshLambertMaterial({
color: Bx885522
B
)i

trunk.position.y = 8.5; // move base up to origin
let leaves = new THREE.Mesh(
new THREE.ConeGeometry(.7,2,16,3),
new THREE.MeshPhongMaterial({
color: ©x00DDEO,
specular: 0x006000,
shininess: 5
H
);
leaves.position.y = 2;
tree.add (trunk);
tree.add(leaves);

// move bottom of cone to top of trunk

the clone gets its own copy of the object's
properties so changing the properties in the
original object doesn't affect the clone

CPSC 424: Computer Graphics « Fall 2025

/

tree.position.set(-1.5,0,2);
tree.scale.set(8.7,0.7,0.7);
diskworldModel.add(tree.clone(});
tree.position.set(-1,8,5.2);
tree.scale.set(0.25,0.25,0.25);
diskworldModel.add(tree.clone(});
tree.position.set(5.1,0,0.5);
tree.scale.set(0.3,0.3,0.3);
diskworldModel.add(tree.clone(});
tree.position.set(5.1,0,-0.5);
tree.scale.set(0.35,0.35,8.35);
diskworldModel.add{tree.clone(});
tree.position.set(5.3,0,8);
tree.scale.set(08.5,0.5,0.5);
diskworldModel.add(tree.clone(});
tree.position.set(-3.6,0,-3.6);
tree.scale.set(0.6,0.6,0.6);
diskworldModel.add(tree.clone(});
tree.position.set(1,0,-5);
tree.scale.set(0.35,0.35,0.35);
diskworldModel.add(tree.clone());

