

three.js

CPSC 424: Computer Graphics • Fall 2025 2

three.js

• an open source object-oriented JavaScript library for 3D
graphics

• provides a scene graph API and renderer(s)
• built on WebGL

CPSC 424: Computer Graphics • Fall 2025 3

Web Page Structure

• web page structure is the same as for WebGL
– need a canvas

CPSC 424: Computer Graphics • Fall 2025 4

Basic Template, Part 1

import map defines
where to find
modules used

import modules used
as THREE
means that THREE. will
prefix all elements from that
module
from “three”
refers to the import map
OrbitControls allows
mouse trackball

names of variables
and functions are
user-defined, not
dictated by three.js

calls init() when
page is loaded

CPSC 424: Computer Graphics • Fall 2025 5

Basic Template, Part 2

webglcanvas
and canvas-
holder refer
to the HTML
elements

sets up
mouse
trackball

CPSC 424: Computer Graphics • Fall 2025 6

Core Elements

let scene, camera, renderer;
– typically have global variables for each element

• scene
– represents the scene graph

• camera

• renderer
– creates an image from a scene graph

CPSC 424: Computer Graphics • Fall 2025 7

Scene

scene = new THREE.Scene();

• made up of objects of type THREE.Object3D (and
subclasses)
– an object has a list of child nodes

• the scene graph must be a tree
– clone a node to create a copy of a subgraph

CPSC 424: Computer Graphics • Fall 2025 8

Camera

camera =
 new THREE.OrthographicCamera(left,right,
 top,bottom,
 near,far);

– defines view volume (EC)
– near, far are distances from the camera (not z coordinates)

• near < 0 is allowed

camera =
 new THREE.PerspectiveCamera(fieldOfViewAngle,
 aspect,near,far);

– fieldOfViewAngle is the vertical extent of the view volume, in
degrees

– aspect ratio is typically set based on the canvas dimensions
• canvas.width/canvas.height

– near, far are distances from the camera (not z coordinates)
• 0 < near < far

note reversed order
compared to WebGL

CPSC 424: Computer Graphics • Fall 2025 9

Camera Setup

• positioning
– camera.position specifies position

camera.position.set(x,y,z);
– set all components at once

camera.position.x = x;
camera.position.y = y;
camera.position.z = z;

– set an individual component's value

CPSC 424: Computer Graphics • Fall 2025 10

Camera Setup

• orientation
– camera.rotation specifies rotation angles (in radians) around

x, y, z axes respectively
– rotations are applied in that order – first x rotation, then y, then z

– obj.lookAt(vec)
• vec must be a Vector3 in OC

– if obj has no parent, OC = WC
• rotates obj so that it faces vec, with up direction obj.up

– default for obj.up is (0,1,0)

CPSC 424: Computer Graphics • Fall 2025 11

Camera Setup Example

CPSC 424: Computer Graphics • Fall 2025 12

Renderer

renderer =
 new THREE.WebGLRenderer({ canvas: canvas,
 antialias: true });

– renders using WebGL
• other renderers are possible, though may not support all of the features of

the WebGL renderer

– canvas is the canvas element in the HTML document
– typically want antialiasing, but false is possible

renderer.setClearColor(0xhexvalue);
renderer.setClearColor(“rgb(r,g,b)”);

– set the background clear color
• r,g,b values are 0-255

renderer.render(scene,camera);

– render scene

CPSC 424: Computer Graphics • Fall 2025 13

Modeling – Objects

• five kinds of basic objects – subclasses of THREE.Object3D
– THREE.Points – corresponds to GL_POINTS
– THREE.LineSegments – corresponds to GL_LINES
– THREE.Line – corresponds to GL_LINE_STRIP
– THREE.LineLoop – corresponds to GL_LINE_LOOP
– THREE.Mesh – corresponds to GL_TRIANGLES

• object consists of geometry + material
let obj = new THREE.Mesh(geometry,material);

– definitions for common mesh geometries are provided

CPSC 424: Computer Graphics • Fall 2025 15

Modeling – Geometry

• defining geometry
– there are definitions for common mesh geometries
– in JavaScript, can omit values for later parameters

also TetrahedronGeometry, OctahedronGeometry,
DodecahedronGeometry, IcosahedronGeometry

with parameters size and detail

CPSC 424: Computer Graphics • Fall 2025 16

Modeling – Materials

• for points objects, THREE.PointsMaterial
– has properties color, size, sizeAttenuation

• for lines, THREE.LineBasicMaterial
– has properties color, linewidth
– see reading for how to specify different colors for each vertex

• for meshes
– THREE.MeshBasicMaterial – fixed color, not affected by

lighting
• has property color

– THREE.MeshLambertMaterial – emission and diffuse only
• has properties color, emissive

– THREE.MeshPhongMaterial – includes specular
• has properties color, emissive, specular, shininess

CPSC 424: Computer Graphics • Fall 2025 17

Object Creation Example

CPSC 424: Computer Graphics • Fall 2025 18

Modeling – Materials

• additional properties for mesh materials

– polygonOffset, polygonOffsetUnits, polygonOffsetFactor
• defined as material properties (apply to the solid object so it doesn't

interfere with the wireframe version)
CPSC 424: Computer Graphics • Fall 2025 19

Colors

• THREE.Color represents an RGB color
– has properties r, g, b with values in the range 0-1

• can specify values using color names, RGB values, RGB
strings, hexadecimal values

• can often use just color name or value instead of a
THREE.Color object in places where a color is expected
– e.g. in material properties

var c4 = new THREE.Color(“rgb(255,128,0)”);

CPSC 424: Computer Graphics • Fall 2025 20

Modeling Transformations

• THREE.Object3D properties
– scale (type THREE.Vector3)

• has properties x, y, z specifying scale factor in each direction
– rotation (type THREE.Euler)

• has properties x, y, z specifying rotations around the respective axes
– applied in that order

– position (type THREE.Vector3)
• has properties x, y, z specifying translation amounts

– applied in the order scale, rotation, translation

– x, y, z can be set individually or all at once
• e.g. obj.scale.set(2,2,2);
• e.g. obj.scale.y = 0.5;

CPSC 424: Computer Graphics • Fall 2025 21

Modeling Transform Example

CPSC 424: Computer Graphics • Fall 2025 22

Hierarchical Modeling

• build subgraphs to represent complex objects

the clone gets its own copy of the object's
properties so changing the properties in the
original object doesn't affect the clone

