Hierarchical Modeling

« build subgraphs to represent complex objects

let tree = new THREE.Object3D(); tree.position.set(-1.5,08,2);
let trunk = new THREE.Mesh(tree.scale.set(0.7,0.7,0.7);
new THREE.CylinderGeometry(0.2,0.2,1,16,1), diskworldModel.add(tree.clone());
new THREE.MeshLambertMaterial({ tree.position.set(-1,8,5.2);
color: Bx885522 tree.scale.set(8.25,0.25,0.25);
B diskworldModel.add(tree.clone());
) tree.position.set(5.1,0,0.5);
trunk.position.y = 8.5; // move base up to origin tree.scale.set(0.3,0.3,0.3);
let leaves = new THREE.Mesh(diskworldModel.add(tree.clone(});
new THREE.ConeGeometry(.7,2,16,3), tree.position.set(5.1,0,-0.5);
new THREE.MeshPhongMaterial({ tree.scale.set(0.35,0.35,0.35);
color: ©x00DDEO, diskworldModel.add(tree.clone(});
specular: 0x006000, tree.position.set(5.3,0,8);
shininess: 5 tree.scale.set(08.5,0.5,0.5);
H diskworldModel.add(tree.clone(});
); tree.position.set(-3.6,0,-3.6);
leaves.position.y = 2; // move bottom of cone to top of trunk tree.scale.set(0.6,0.6,0.6);
tree.add(trunk); diskworldModel.add(tree.clone());
tree.add(leaves); tree.position.set(1,0,-5);
tree.scale.set(0.35,0.35,0.35);
/V diskworldModel.add(tree.clone());

the clone gets its own copy of the object's
properties so changing the properties in the
original object doesn't affect the clone

CPSC 424: Computer Graphics « Fall 2025 24

More About Transforms

» modifying transforms

modifies the position, rotation properties i.e. they apply in
object coordinates, not world coordinates

obj.translateX(dx), obj.translateY(dy),
obj.translateZ(dz)
obj.translateOnAxis (axis,amount)

* axis must be a normalized Vector3

« applies on top of previously-applied translations (object’s position,

rotation applied first)

obj.rotateX(angle), obj.rotateY(angle),
obj.rotateZ(angle)
obj.rotateOnAxis(axis,angle)

» angle in radians, axis must be a normalized Vector3

« applies on top of any other rotations already applied (object’s position,
rotation applied first)

CPSC 424: Computer Graphics « Fall 2025 27

More About Transforms

+ Object3D properties

obj.scale, obj.rotation, obj.position represent the
scaling, rotation, and translation parts of the modeling transform
« applied in that order

full modeling transformation applied to object is a combination of
its scale, rotation, position combined with the modeling
transformations applied to its ancestors in the scene graph

CPSC 424: Computer Graphics + Fall 2025 26

More About Transforms

« other operations

obj.lookAt(vec)
« vec must be a Vector3in OC
if obj has no parent, OC = WC
* rotates obj so that it faces vec, with up direction obj .up
default for obj . up is (0,1,0)

>

CPSC 424: Computer Graphics + Fall 2025

Lights

* types of lights

intensity is a non-negative brightness (> 1 allowed, but that's often
too much light)

all have a position property

new THREE.DirectionallLight(color,intensity)
« position property gives the direction from which the light shines
(towards the origin)
new THREE.PointLight(color,intensity,cutoff)
» cutoff is non-negative — 0 means illumination extends to infinity without
attenuation, otherwise light falls off to 0 at cutoff distance
new THREE.AmbientLight(color)
« color components should be small

CPSC 424: Computer Graphics « Fall 2025 29

Positioning Lights

« lights are added to the scene graph like other objects
must be added to the scene graph to have an effect

* WC lights — fixed relative to the world
add light to root of the scene graph

» EC lights — fixed relative to the camera
add light as a child of the camera
add camera to the scene graph

* OC lights — fixed relative to an object
add light as a child of the object

CPSC 424: Computer Graphics « Fall 2025 a1

Lights

* types of lights

new THREE.SpotLight(color,intensity, cutoff,
angle, penumbra,decay)

angle is between 0 and /2

penumbra is the percent of the spotlight cone that drops off to the edge of
the cone (value 0-1, default 0)

decay is the amount the light drops off to the cutoff distance (default 2,
use 0 for no attenuation)

target property is another scene graph node — light points at that
position
default is a new empty Object3D spotlight = new THREE.SpotLight();
at (0,0,0) whose position can be set | spotlight.position.set(8,8,5);
if target position is anything other A spotlight.target.position.set(2,2,0);

than (0,0,0), target must be a node | Scene.add(spotlight);
in the scene graph scene.add(spotlight.target);

.

should use MeshPhongMaterial for objects illuminated by spotlights to
get proper lighting effects

CPSC 424: Computer Graphics + Fall 2025 30

Lights Example

// create some lights and add them to the scene.

// a light to shine in the direction the camera faces light attached to camera
let viewpointLight = new THREE.DirectionalLight("white", 0.8); so its position is fixed
viewpointLight.position.set(@, @, 1); // shines down the z-axis relative to the camera —
camera.add (viewpointLight); // light in EC position in EC

scene.add (camera) ;

// create some lights and add them to the scene.

scene.add (new THREE.Directionallight(exffffff, 0.3)); // dim light shining from above

let viewpointLight = new THREE.Directionallight(6xffffff, 0.6); // a light to shine in the direction the camera faces
viewpointLight.position.set(6, 0, 1); // shines down the z-axis

scene.add (viewpointLight) ;

lights are attached to the top level of the scene

these are technically WC lights — “viewpoint” light acts as a viewpoint
light because in this scene rotating the view is done by applying a
modeling transform to the model rather than adjusting the camera

e —m— ————————————————
22

CPSC 424: Computer Graphics + Fall 2025

Image Textures

var loader = new THREE.Textureloader();
var texture - loader.lead(imageURL);

* steps
load the image for the texture
« setting for proper color

add the texture to the object's material

* set material's map property
- BasicMeshMaterial, LambertMeshMaterial, PhongMeshMaterial can

all use textures
texture color modulates the material color — set material color to white to use

the texture’s color as is

texture coordinates are part of the geometry
* included with standard mesh geometries

‘ texture.colorSpace = THREE.SRGBColorSpace; ‘

 challenges
image loading is asynchronous, so scene must be redrawn once

texture images are loaded
‘ var texture = new THREE.TextureLoader().load("brick.png”, render);

== supply a callback function to draw
scene as a parameter for load ()

this syntax illustrates function chaining — it's equivalent to the two
steps for loading given above but is more compact and doesn't
require naming the TextureLoader as a separate object

Texture Properties

+ Texture object properties

wrapsS, wrapT
« defaultis THREE.ClampToEdgeWrapping
« also THREE.RepeatWrapping, THREE.MirroredRepeatWrapping

repeat, offset, rotation
* scaling, translation, and rotation portions of the texture transform,

respectively
repeat, offset are of type THREE.Vector2

rotation is radians
« applied to texture coordinates rather than the texture image, so the visual

effect is the opposite of what is specified
e.g. repeat of 2 makes the texture image appear half the size

CPSC 424: Computer Graphics » Fall 2025

