### Modeling – Polymeshes

- object type THREE.Mesh
  - all faces are triangles
- geometry type THREE.BufferGeometry
  - note that this is correct in the code examples in the book but not in the text itself!
  - order according to the counterclockwise-from-the-outside convention

CPSC 424: Computer Graphics • Fall 2025

26

## Modeling – Polymeshes

- lighting (MeshLambertMaterial, MeshPhongMaterial) requires normals
  - flat shading only needs face normals
  - smooth shading requires vertex normals
- geom.computeVertexNormals();
  - for a basic polymesh, computes face normals
    - each vertex belongs to one face and gets the normal for that face
    - to use smooth shading, manually set the normal attribute
  - for an indexed face set, computes vertex normals
    - vertices are not duplicated, and normal is set to the average of the face normals the vertex belongs to
    - to handle creases on an otherwise smooth surface, duplicate those vertices in the geometry

CPSC 424: Computer Graphics • Fall 2025

#### Modeling – Polymeshes let pyramidVertices = new Float2Array( [ // Data for the pyramidGeom 'position' attribute. // Contains the x,y,z coordinates for the vertices. // Each group of three numbers is a vertex; // each group of three vertices is one fair. -1,0,1, 1,0,-1, 1,0,-1, // First triangle in the base. -1,0,1, 1,0,-1, 1,0,1, // First triangle in the base. -1,0,1, 1,0,-1, 1,0,1, // First triangle in the base. -1,0,1, 1,0,1, 0,1,0 // First triangle in the base. -1,0,-1, 1,0,1, 0,1,0 // First triangle in the base. -1,0,-1, 1,0,1, 0,1,0 // First triangle in the base. -1,0,-1, 1,0,1, 0,1,0 // First triangle in the base. -1,0,-1, 1,0,1,0 // First triangle in the base. -1,0,-1, -1,0,1,0 // First triangle in the base. -1,0,-1, -1,0,1,0 // First triangle in the base. -1,0,-1,-1,0,1,0 // First triangle in the base. basic representation - no face indices suitable for a polyhedron index face set representation let pyramidGeom = new THREE.BufferGeometry(); a vertex index references pyramidVertices = new Float32Array( [ 1, 6, 1, // vertex number 0 1, 6, -1, // vertex number 1 -1, 6, -1, // vertex number 2 -1, 6, 1, // vertex number 2 0, 1, 0 // vertex number 4 all of the data for the vertex - coordinates. normal, color, etc suitable when mesh approximates a smooth surface pyramidFaceIndexArray = [ 3, 2, 1, // First triangle in the base. 3, 1, 0, // Second Triangle in the base. 3, 0, 4, // Front face. 6, 1, 4, // Right face. 1, 2, 4, // Back face. 1, 2, 3, 4 // Left face. 1, 2, 3, 4 // Left face. } set a material to have the same color for all faces pyramid = new THREE.Mesh( pyramidGeom, new THREE.MeshLambertMaterial({ color: "yellow" }; pyramidGeom = new THREE.BufferGeometry(); pyramidGeom.setAttribute("position", new THREE.BufferAttribute(pyramidVertices,3) ); pyramidGeom.setIndex( pyramidFaceIndexArray

# Modeling - Polymeshes

- there are multiple options for assigning colors/materials to polymeshes
  - one material for the entire mesh

```
pyramid = new THREE.Mesh(
    pyramidGeom,
    new THREE.MeshLambertMaterial({ color: "yellow" })
    );
```

- different materials for each face
- different colors for each vertex

CPSC 424: Computer Graphics • Fall 2025

## Modeling – Polymeshes

for the basic representation

- different materials can be assigned to different faces
  - define groups of vertices within the BufferGeometry and assign a material index to each
  - specify an array of materials when creating the mesh

# Modeling - Polymeshes

CPSC 424: Computer Graphics • Fall 2025

- · different materials can be assigned to different faces
  - BoxGeometry comes with material indexes already assigned (in the order +x, -x, +y, -y, +z, -z)

### Modeling - Polymeshes

for the indexed face set representation

- different materials can be assigned to different faces
  - define groups of vertices within the BufferGeometry and assign a material index to each
  - specify an array of materials when creating the mesh

```
pyramidVertices = new Float32Array( [
1, 0, 1, // vertex number 0
1, 0, -1, // vertex number 1
-1, 0, -1, // vertex number 2
-1, 0, 1, // vertex number 3
0, 1, 0 // vertex number 4
                                                                                                                                            first vertex in group
                                                                                                                                            (index in vertex array if basic representation
                                                                                                                                            was used / 3) number of vertices in group
                                                                                                                                                                                    (number of faces in group x 3)
                                                                                                                                                                                                           index in
                                                                                                                                                                                                         material array
 pyramidFaceIndexArray =
                        IndexArray = [
3, 2, 1, // First triangle in the base.
3, 1, 0, // Second Triangle in the base.
3, 1, 4, // Front face.
6, 1, 4, // Right face.
1, 2, 4, // Back face.
2, 3, 4 // Left face.
                                                                                                                                   pyramidGeom.addGroup(0,6,0);
pyramidGeom.addGroup(6,3,1);
                                                                                                                                                                                                  // The base (2 triangles)
// Front face.
                                                                                                                                    pyramidGeom.addGroup(9,3,2); // Right face.
pyramidGeom.addGroup(12,3,3); // Back face.
pyramidGeom.addGroup(15,3,4); // Left face.
                                                                                                             pyramidMaterialArray= [
// Array of materials, for use as pyramids's material.
new THMEE.Mesh.LambertMaterial{ { color: 0xffffff } },
new THMEE.Mesh.LambertMaterial{ { color: 0xff9ff } },
new THMEE.Mesh.LambertMaterial{ { color: 0xff999 } } }.
 pyramidGeom = new THREE.BufferGeometry();
 pyramidGeom.setAttribute("position",
new THREE.BufferAttribute(pyramidVer
 pyramidGeom.setIndex( pyramidFaceIndexArray )
                                                                                                                   pyramid = new THREE.Mesh( pyramidGeom, pyramidMaterialArray );
    CPSC 424: Computer Graphics • Fall 2025
```

## Modeling - Polymeshes

- different colors can be assigned to different vertices
  - set color attribute for geometry
  - set vertexColors property in the material to true

```
pyramidGeom.setAttribute(
    "color",
    new THREE.BufferAttribute( new Float32Array([
                                                                     basic representation
             vertices can have
                                                                     different colors in
                                                                     different faces, and the
                                                                     vertices within one face
                                                                     can have different colors
 pyramid = new THREE.Mesh(
       pyramidGeom,
new THREE.MeshLambertMaterial({
             color: "white", vertexColors: true
                                                                     with vertex colors, the
                                                                     material color is taken
                                                                     as a multiplier for the
                                                                     specified vertex colors,
this works similarly for an indexed face set
                                                                     so it is typically white
representation - the color buffer has one set of RGB
values per vertex, so each vertex has the same color in
every face it is part of
```

## **Supplying Texture Coordinates**

- attribute is uv
- value is an array of sets of texture coordinates
  - matches the position attribute for the basic mesh representation or the equivalent for an indexed face set

CPSC 424: Computer Graphics • Fall 2025

**Loading Models** 

```
loader = new GLTFLoader();
loader.load( url, onLoad, onProgress, onError );
```

starts the loading

assumes the model

file contains a Mesh object as the first child of the Scene object

- url URL for the file to load (local relative path or http://)
- onLoad callback function called when loading is complete
  - load is asynchronous and returns immediately

- data - for GLTF files, a three.js Scene

- a LoadingManager is needed if the GLTF file involves external resources such as textures
  - https://threejs.org/docs/#api/en/loaders/managers/LoadingManager
- onProgress callback called periodically during loading
  - value is undefined if no callback is desired
- onError callback used if an error occurs

## **Loading Models**

- mesh definitions can be loaded from a file
  - GLTF is the preferred format
    - extension .gltf or .glb
- three.js has utility functions for loading GLTF and other formats
  - not part of the three.js core