

CPSC 424: Computer Graphics • Fall 2025 49

Modeling – Surfaces

• parametric surfaces
– defined by a function f(u,v)
– the surface consists of all points

f(u,v) for u, v in the range 0-1

• steps
– define a function with parameters

u, v which returns the (x,y,z) point defined by u, v
– create a ParametricGeometry using that function

• slices and stacks determine the number of subdivisions in each direction
– create a Mesh with that geometry and the desired material

• creates a mesh approximating the surface from f(u,v) values for a grid of
points 0 ≤ u, v ≤ 1

CPSC 424: Computer Graphics • Fall 2025 50

Modeling – Parametric Surfaces

c

define the
function

create a ParametricGeometry

create a Mesh from the geometry

error in book – no THREE. as
ParametricGeometry is not part
of the three.js core

refers
to the
import
map

CPSC 424: Computer Graphics • Fall 2025 51

Modeling – Curves

• parametric curves
– defined by a function f(t)
– the curve consists of all points f(t) for t in the range 0-1

• steps
– define a function with a parameter t which returns either a point

(x,y) (2D curve) or a point (x,y,z) (3D curve)
– create a Curve
– set the curve's getPoint property to the function

note that a curve is
not itself a
geometry, but it can
be used to generate
a geometry

CPSC 424: Computer Graphics • Fall 2025 52

Modeling – Surfaces From Curves

• tube geometries

– parameters
• a Curve object (requires a 3D curve)
• number of subdivisions along the length of the

curve
• radius of the circular cross-section of the tube
• number of subdivisions around the circumference

of the cross-section of the tube

– then create a Mesh with that geometry and
the desired material

• creates a mesh approximating the surface from f(t)
values for points 0 ≤ t ≤ 1

CPSC 424: Computer Graphics • Fall 2025 53

Modeling – Surfaces From Curves

• lathing – rotate curve about a line to
generate a surface of rotation

• steps
– define a Curve (2D)
– generate a set of points along the curve
– create a LatheGeometry using those points

• rotates the curve around the y axis (the curve's points are in the xy plane)
• parameters

– points – array of Vector2
– slices – number of subdivisions around the circle of rotation

– create a Mesh with that geometry and the desired material
• creates a mesh approximating the surface from f(t) values for points

0 ≤ t ≤ 1

CPSC 424: Computer Graphics • Fall 2025 54

Modeling – Surfaces From Curves

define 2D curve

get points

create LatheGeometry

create a Mesh from the
geometry

add the object to the
scene

CPSC 424: Computer Graphics • Fall 2025 55

Modeling – Surfaces From Curves

• extruding – move a filled 2D
shape along a path through
space

• steps
– create a shape defining the

(closed) curve
–

–

– create an ExtrudeGeometry using that shape
– create a Mesh with that geometry and the desired material

• creates a mesh approximating the surface

see the 2D Canvas API in section 2.6.2
for how to work with these shapes

or bevelEnabled: false to not
bevel the edges

CPSC 424: Computer Graphics • Fall 2025 56

Other Modeling

• InstancedMesh
– for a number of objects with the same

geometry but different transformations and
(possibly) material color

– see section 5.3.1

CPSC 424: Computer Graphics • Fall 2025 57 CPSC 424: Computer Graphics • Fall 2025 58

Cubemaps

• to apply a
cubemap to
the outside
of a box,
texture
each face
separately

CPSC 424: Computer Graphics • Fall 2025 60

Reflection via Environment Mapping

• steps
– load a cubemap texture

– for the skybox, set the scene’s background to the cubemap
texture

– for the reflective object, create a MeshBasicMaterial
• set the material's envMap property to the cubemap texture object

scene.background = texture;

CPSC 424: Computer Graphics • Fall 2025 61

Reflection via Environment Mapping

• dynamic cubemaps can be generated using
THREE.CubeCamera

– https://threejs.org/docs/#api/en/cameras/CubeCamera

CPSC 424: Computer Graphics • Fall 2025 64

Refraction via Environment Mapping

• steps
– load a cubemap texture

• specify that the cubemap is to be used for refraction

–

CPSC 424: Computer Graphics • Fall 2025 65

Refraction via Environment Mapping

• steps, continued
– for the skybox, set the scene’s background

– for the refractive object, create a MeshBasicMaterial
• set the material's envMap property to the cubemap texture object
• set other material properties

– refractionRatio – ratio of index of refraction of air to material (1 = no
bending of light, smaller values = greater bending – default is 0.98)

– reflectivity – proportion of light transmitted (< 1 to make object look
cloudy)

scene.background = texture;

CPSC 424: Computer Graphics • Fall 2025 69

Shadow Mapping in three.js

• steps
– enable shadow computations in the

renderer
• expensive, so disabled by default

– enable casting of shadows for each light
• only applicable to DirectionalLights and SpotLights

– enable casting and receiving of shadows
for each object

• “receiving” means shadows will be visible on that object

– configure the view volumes of the shadow cameras
• directional lights use OrthographicCamera
• spotlights use PerspectiveCamera

– (optionally) increase the size of the
shadow map

• larger map increases accuracy of the shadows

CPSC 424: Computer Graphics • Fall 2025 70

Shadow Mapping in three.js

• configuring the shadow camera view volume
– light.shadow.camera is the shadow camera for light

– for directional lights (orthographic camera), properties are left,
right, bottom, top, near, far

– for spotlights (perspective camera), properties are fov, near, far
• fov is the field of view angle, in degrees (should match spotlight's cutoff

angle)

– values are in view coordinates
– view volume should be big enough to include all of the objects

that cast shadows, but not too big
• too big impacts the accuracy of the shadow map

CPSC 424: Computer Graphics • Fall 2025 71 CPSC 424: Computer Graphics • Fall 2025 72

Other three.js Topics

• mouse interaction – covered section 5.3.2
– OrbitControls and TrackballControls
– clicking on objects within the scene

• keyboard input (key presses)
– not directly covered in the textbook, but present in many of the

examples in chapter 5

• custom shaders

CPSC 424: Computer Graphics • Fall 2025 73

Custom Shaders

• steps
– write GLSL vertex and fragment shaders

• three.js provides a number of built-in uniforms and attributes

– create a ShaderMaterial which specifies the shader programs
and the values for custom (not built in) parameters

CPSC 424: Computer Graphics • Fall 2025 74

Built-in Uniforms and Attributes

• vertex shader
– uniforms

• modelMatrix
• modelViewMatrix
• projectionMatrix
• viewMatrix
• normalMatrix
• cameraPosition (WC)

– attributes
• position
• normal
• uv

• fragment shader
– uniforms

• viewMatrix
• cameraPosition

reference:
https://threejs.org/docs/#api/en/renderers/webgl/WebGLProgram

CPSC 424: Computer Graphics • Fall 2025 75

ShaderMaterial

• key properties
– vertexShader
– fragmentShader
– uniforms

• for custom uniforms
• (custom attributes are set as part of the geometry)

reference:
https://threejs.org/docs/#api/en/materials/ShaderMaterial
https://threejs.org/docs/#api/en/materials/Material

CPSC 424: Computer Graphics • Fall 2025 76

Example

getTextContent is a local utility function
to get the text from an HTML element

black silhouette

silhouette with a specified color

CPSC 424: Computer Graphics • Fall 2025 77

Working With Lights in Shaders

• UniformsLib defines a bunch of uniforms that can get
passed to your shaders

reference:
https://threejs.org/docs/#api/en/renderers/shaders/UniformsLib

(a small section)

CPSC 424: Computer Graphics • Fall 2025 78

Working With Lights in Shaders

need EC point and
normal for lighting
calculations

CPSC 424: Computer Graphics • Fall 2025 79

Working With Lights

circled items match the UniformLibs
definition
NUM_DIR_LIGHTS is also automatically
defined

CPSC 424: Computer Graphics • Fall 2025 80

Working With Lights in Shaders

provides the lights section
from UniformsLib

merge combines multiple
sets of properties

must enable lighting in
order for lighting info to be
passed to shader

set to true if adding or
changing lights after shader
is compiled

