
Object-Oriented Programming

School of Computer Science
University of KwaZulu-Natal

February 5, 2007

Object Oriented Programming
using Java

Notes for the Computer Science Module
Object Oriented Programming

COMP200

Adapted from
Introduction to Programming Using Java

Version 5.0, December 2006
by David J. Eck

http://math.hws.edu/javanotes/

Adapted by Anban Pillay
School of Computer Science

University of KwaZulu-Natal
Durban

February 2007

3

4

Contents

1 Introduction to Objects 11
1.1 What is Object Oriented Programming? 11

1.1.1 Programming Paradigms . 12
1.1.2 Object Orientation as a New Paradigm: The Big Picture 14

1.2 Fundamentals of Objects and Classes . 16
1.2.1 Objects and Classes . 16
1.2.2 Class Members and Instance Members 22
1.2.3 Access Control . 27
1.2.4 Creating and Destroying Objects 29
1.2.5 Garbage Collection . 34
1.2.6 Everything is NOT an object . 35

2 The Practice of Programming 37
2.1 Abstraction . 37

2.1.1 Control Abstraction . 38
2.1.2 Data Abstraction . 39
2.1.3 Abstraction in Object-Oriented Programs 39

2.2 Methods as an Abstraction Mechanism 40
2.2.1 Black Boxes . 40
2.2.2 Preconditions and Postconditions 41
2.2.3 APIs and Packages . 42

2.3 Introduction to Error Handling . 46
2.4 Javadoc . 49
2.5 Creating Jar Files . 51
2.6 Creating Abstractions . 52

2.6.1 Designing the classes . 52
2.7 Example: A Simple Card Game . 58

3 Tools for Working with Abstractions 63
3.1 Introduction to Software Engineering . 63

3.1.1 Software Engineering Life-Cycles 63
3.1.2 Object-oriented Analysis and Design 64
3.1.3 Object Oriented design . 65

3.2 Class-Responsibility-Collaboration cards 66
3.3 The Unified Modelling Language . 67

3.3.1 Modelling . 67

5

3.3.2 Use Case Diagrams . 68
3.3.3 Class Diagrams . 69
3.3.4 Sequence Diagrams . 73
3.3.5 Collaboration Diagrams . 73
3.3.6 State Diagram . 74

4 Inheritance, Polymorphism, and Abstract Classes 77
4.1 Extending Existing Classes . 77
4.2 Inheritance and Class Hierarchy . 80
4.3 Example: Vehicles . 81
4.4 Polymorphism . 83
4.5 Abstract Classes . 86
4.6 this and super . 88

4.6.1 The Special Variable this . 88
4.6.2 The Special Variable super . 89
4.6.3 Constructors in Subclasses . 90

5 Interfaces, Nested Classes, and Other Details 93
5.1 Interfaces . 93
5.2 Nested Classes . 96

5.2.1 Anonymous Inner Classes . 98
5.3 Mixing Static and Non-static . 99

5.3.1 Static Import . 100
5.4 Enums as Classes . 101

6 Graphical User Interfaces in JAVA 105
6.1 Introduction: The Modern User Interface 106
6.2 The Basic GUI Application . 107

6.2.1 JFrame and JPanel . 109
6.2.2 Components and Layout . 111
6.2.3 Events and Listeners . 112

6.3 Applets and HTML . 113
6.3.1 JApplet . 113
6.3.2 Reusing Your JPanels . 115
6.3.3 Applets on Web Pages . 117

6.4 Graphics and Painting . 119
6.4.1 Coordinates . 121
6.4.2 Colors . 122
6.4.3 Fonts . 123
6.4.4 Shapes . 124
6.4.5 An Example . 126

6.5 Mouse Events . 129
6.5.1 Event Handling . 130
6.5.2 MouseEvent and MouseListener 131
6.5.3 Anonymous Event Handlers . 134

6.6 Basic Components . 137
6.6.1 JButton . 139
6.6.2 JLabel . 140
6.6.3 JCheckBox . 140
6.6.4 JTextField and JTextArea . 141

6

6.7 Basic Layout . 143
6.7.1 Basic Layout Managers . 144
6.7.2 A Simple Calculator . 146
6.7.3 A Little Card Game . 148

6.8 Images and Resources . 152
6.8.1 Images . 153
6.8.2 Image File I/O . 155

7 A Solitaire Game - Klondike 157
7.1 Klondike Solitaire . 157
7.2 Card Games . 158

7.2.1 The CardNames Interface . 160
7.2.2 The Deck class . 160

7.3 Implementation of Klondike . 160
7.3.1 The CardPile class (the base class) 161
7.3.2 The Solitaire class . 163
7.3.3 Completing the Implementation 164

8 Generic Programming 167
8.1 Generic Programming in Java . 168
8.2 ArrayLists . 168
8.3 Parameterized Types . 170
8.4 The Java Collection Framework . 172
8.5 Iterators and for-each Loops . 174
8.6 Equality and Comparison . 176
8.7 Generics and Wrapper Classes . 179
8.8 Lists . 179

9 Correctness and Robustness 185
9.1 Introduction . 186

9.1.1 Horror Stories . 186
9.1.2 Java to the Rescue . 187
9.1.3 Problems Remain in Java . 189

9.2 Writing Correct Programs . 190
9.2.1 Provably Correct Programs . 190
9.2.2 Robust Handling of Input . 193

9.3 Exceptions and try..catch . 194
9.3.1 Exceptions and Exception Classes 194
9.3.2 The try Statement . 196
9.3.3 Throwing Exceptions . 199
9.3.4 Mandatory Exception Handling . 200
9.3.5 Programming with Exceptions . 201

9.4 Assertions . 203

10 Input and Output 207
10.1 Streams, Readers, and Writers . 207

10.1.1 Character and Byte Streams . 207
10.1.2 PrintWriter . 209
10.1.3 Data Streams . 210
10.1.4 Reading Text . 211

7

10.1.5 The Scanner Class . 212
10.2 Files . 213

10.2.1 Reading and Writing Files . 214
10.2.2 Files and Directories . 217

10.3 Programming With Files . 219
10.3.1 Copying a File . 219

8

Preface

These notes are intended for a Second course in Object-Oriented Programming with
Java. It is assumed that students have taken a first year course in Programming and
are familiar with basic (procedural) programming and introductory object-based pro-
gramming in Java. The student should be familiar with the various control constucts,
Arrays (one and two dimensional), the concepts of class and object, input/output and
the concept of classes and objects.

Theses notes are, in the most part, taken from David J. Eck’s online book INTRO-
DUCTION TO PROGRAMMING USING JAVA, VERSION 5.0, DECEMBER 2006. The
online book is available at http://math.hws.edu/javanotes/.

We’ve refactored and used in whole or parts of Chapters 4, 5, 6, 8, 9, 10, and
11. Subsections of some these chapters were ommitted, minor editing changes were
made and a few subsections were added. A notable change has been the use of the
Scanner class and the printf method for input and output.

Some sections were also taken from the notes of Prof Wayne Goddard of Clemson
University.

The sections on UML (chapter 6) were adapted from the user manual of the UML
tool: Umbrello (http://docs.kde.org/stable/en GB/kdesdk/umbrello/).
The definitions of various software engineering terms and concepts were adapted
from wikipedia (http://wikipedia.org/).

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 Li-
cense. (This license allows you to redistribute this book in unmodified form. It allows
you to make and distribute modified versions, as long as you include an attribu-
tion to the original author, clearly describe the modifications that you have made,
and distribute the modified work under the same license as the original. See the
http://creativecommons.org/licenses/by-sa/2.5/ for full details.)

The LATEX source for these notes are available on request.

9

10

Chapter 1
Introduction to Objects

Contents
1.1 What is Object Oriented Programming? 11

1.1.1 Programming Paradigms . 12
1.1.2 Object Orientation as a New Paradigm: The Big Picture . . . 14

1.2 Fundamentals of Objects and Classes 16
1.2.1 Objects and Classes . 16
1.2.2 Class Members and Instance Members 22
1.2.3 Access Control . 27
1.2.4 Creating and Destroying Objects 29
1.2.5 Garbage Collection . 34
1.2.6 Everything is NOT an object . 35

OBJECT-ORIENTED PROGRAMMING (OOP) represents an attempt to make programs
more closely model the way people think about and deal with the world. In the older
styles of programming, a programmer who is faced with some problem must identify
a computing task that needs to be performed in order to solve the problem. Program-
ming then consists of finding a sequence of instructions that will accomplish that
task. But at the heart of object-oriented programming, instead of tasks we find ob-
jects – entities that have behaviors, that hold information, and that can interact with
one another. Programming consists of designing a set of objects that model the prob-
lem at hand. Software objects in the program can represent real or abstract entities
in the problem domain. This is supposed to make the design of the program more
natural and hence easier to get right and easier to understand.

An object-oriented programming language such as JAVA includes a number of
features that make it very different from a standard language. In order to make
effective use of those features, you have to “orient” your thinking correctly.

1.1 What is Object Oriented Programming?

OBJECT-ORIENTATION 1 is a set of tools and methods that enable software engineers
to build reliable, user friendly, maintainable, well documented, reusable software

1This discussion is based on Chapter 2 of An Introduction to Object-Oriented Programming by Tim-
othy Budd.

11

systems that fulfills the requirements of its users. It is claimed that object-orientation
provides software developers with new mind tools to use in solving a wide variety of
problems. Object-orientation provides a new view of computation. A software system
is seen as a community of objects that cooperate with with each other by passing
messages in solving a problem.

An object-oriented programming laguage provides support for the following object-
oriented concepts:

Objects and Classes

Inheritance

Polymophism and Dynamic binding

1.1.1 Programming Paradigms

Object-oriented programming is one of several programming paradigms. Other pro-
gramming paradigms include the imperative programming paradigm (as exemplified
by languages such as Pascal or C), the logic programming paradigm (Prolog), and the
functional programming paradigm (exemplified by languages such as ML, Haskell or
Lisp). Logic and functional languages are said to be declarative languages.

We use the word paradigm to mean “any example or model”.
This usage of the word was popularised by the science historian Thomas Kuhn.

He used the term to describe a set of theories, standards and methods that together
represent a way of organising knowledge—a way of viewing the world.

Thus a programming paradigm is a

. . . way of conceptualising what it means to perform computation and how
tasks to be carried out on a computer should be structured and organised.

We can distinguish between two types of programming languages: Imperative
languages and declarative languages. Imperative knowledge describes how-to knowl-
edge while declarative knowledge is what-is knowledge.

A program is ”declarative” if it describes what something is like, rather than how
to create it. This is a different approach from traditional imperative programming
languages such as Fortran, and C, which require the programmer to specify an al-
gorithm to be run. In short, imperative programs make the algorithm explicit and
leave the goal implicit, while declarative programs make the goal explicit and leave
the algorithm implicit.

Imperative languages require you to write down a step-by-step recipe specifing
how something is to be done. For example to calculate the factorial function in an
imperative language we would write something like:

public int factorial(int n) {
int ans=1;
for (int i = 2; i <= n; i++){

ans = ans ∗ i;
}
return ans;

}

Here, we give a procedure (a set of steps) that when followed will produce the
answer.

12

Functional programming

Functional programming is a programming paradigm that treats computation as the
evaluation of mathematical functions. Functional programming emphasizes the def-
inition of functions, in contrast to procedural programming, which emphasizes the
execution of sequential commands.

The following is the factorial function written in a functional language called Lisp:
(defun factorial (n)

(if (<= n 1) 1 (∗ n (factorial (− n 1))))
)

Notice that it defines the factorial function rather than give the steps to calculate it.
The factorial of n is defined as 1 if n <= 1 else it is n ∗ factorial(n− 1)

Logic Programming

Prolog (PROgramming in LOGic) 2 is the most widely available language in the logic
programming paradigm. It is based on the mathematical ideas of relations and log-
ical inference. Prolog is a declarative language meaning that rather than describing
how to compute a solution, a program consists of a data base of facts and logical
relationships (rules) which describe the relationships which hold for the given appli-
cation. Rather then running a program to obtain a solution, the user asks a question.
When asked a question, the run time system searches through the data base of facts
and rules to determine (by logical deduction) the answer.

Logic programming was an attempt to make a programming language that en-
abled the expression of logic instead of carefully specified instructions on the com-
puter.

In the logic programming language Prolog you supply a database of facts and
rules; you can then perform queries on the database.

This is also an example of a declarative style of programming where we state or
define what we know.

In the following example, we declare facts about some domain. We can then query
these facts—we can ask, for example, are sally and tom siblings?

sibling(X,Y) :− parent(Z,X), parent(Z,Y).
parent(X,Y) :− father(X,Y).
parent(X,Y) :− mother(X,Y).
mother(trude, sally).
father(tom, sally).
father(tom, erica).
father(mike, tom).

The factorial function is written in prolog as two rules. Again, notice the declara-
tive nature of the program.

fac(0,1).
fac(N,F) :− N > 0,

M is N − 1,
fac(M,Fm),
F is N ∗ Fm.

To summarize:

• In procedural languages, everything is a procedure.
2(see http://cs.wwc.edu/KU/PR/Prolog.html)

13

• In functional languages, everything is a function.

• In logic programming languages, everything is a logical expression (predicate).

• In object-oriented languages, everything is an object.

1.1.2 Object Orientation as a New Paradigm: The Big Picture

It is claimed that the problem-solving techniques used in object-oriented program-
ming more closely models the way humans solve day-to-day problems.3

So lets consider how we solve an everyday problem: Suppose you wanted to send
flowers to a friend named Robin who lives in another city.To solve this problem you
simply walk to your nearest florist run by, lets say, Fred. You tell Fred the kinds of
flowers to send and the address to which they should be delivered. You can be assured
that the flowers will be delivered.

Now, lets examine the mechanisms used to solve your problem.

• You first found an appropriate agent (Fred, in this case) and you passed to this
agent a message containing a request.

• It is the responsibility of Fred to satisfy the request.

• There is some method (an algorithm or set of operations) used by Fred to do
this.

• You do not need to know the particular methods used to satisfy the request—
such information is hidden from view.

Off course, you do not want to know the details, but on investigation you may find
that Fred delivered a slightly different message to another florist in the city where
your friend Robin lives. That florist then passes another message to a subordinate
who makes the floral arrangement.The flowers, along with yet another message, is
passed onto a delivery person and so on. The florists also has interactions with whole-
salers who, in turn, had interactions with flower growers and so on.

This leads to our first conceptual picture of object-oriented programming:

An object-oriented program is structured as community of interacting agents
called objects. Each object has a role to play. Each object provides a ser-
vice or performs an action that is used by other members of the community.

Messages and Responsibilities

Members of an object-oriented community make requests of each other. The next
important principle explains the use of messages to initiate action:

Action is initiated in object-oriented programming by the transmission of a
message to an agent (an object) responsible for the actions. The message
encodes the request for an action and is accompanied by any additional
information (arguments/parameters) needed to carry out the request. The
receiver is the object to whom the message is sent. If the receiver accepts

3This discussion is based on Chapter 2 of An Introduction to Object-Oriented Programming by Tim-
othy Budd.

14

the message, it accepts responsibility to carry out the indicated action. In
response to a message, the receiver will perform some method to satisfy the
request.

There are some important issues to point out here:

• The client sending the request need not know the means by which the request
is carried out. In this we see the principle of information hiding.

• Another principle implicit in message passing is the idea of finding someone else
to do the work i.e. reusing components that may have been written by someone
else.

• The interpretation of the message is determined by the receiver and can vary
with different receivers. For example, if you sent the message “deliver flowers”
to a friend, she will probably have understood what was required and flowers
would still have been delivered but the method she used would have been very
different from that used by the florist.

• In object-oriented programming, behaviour is described in terms of responsibil-
ities.

• Client’s requests for actions only indicates the desired outcome. The receivers
are free to pursue any technique that achieves the desired outcomes.

• Thinking in this way allows greater independence between objects.

• Thus, objects have responsibilities that they are willing to fulfill on request. The
collection of reponsibilities associated with an object is often called a protocol.

Classes and Instances

The next important principle of object-oriented programming is

All objects are instances of a class. The method invoked by an object in
response to a message is determined by the class of the receiver. All objects
of a given class use the same method in response to similar messages.

Fred is an instance of a category or class of people i.e. Fred is an instance of a
class of florists. The term florist represents a class or category of all florists. Fred is
an object or instance of a class.

We interact with instances of a class but the class determines the behaviour of in-
stances. We can tell a lot about how Fred will behave by understanding how Florists
behave. We know, for example, that Fred, like all florists can arrange and deliver
flowers.

In the real world there is this distinction between classes and objects. Real-world
objects share two characteristics: They all have state and behavior. For example, dogs
have state (name, color, breed, hungry) and behavior (barking, fetching, wagging tail).
Students have state (name, student number, courses they are registered for, gender)
and behavior (take tests, attend courses, write tests, party).

15

Figure 1.1: An Object

1.2 Fundamentals of Objects and Classes

We move now from the conceptual picture of objects and classes to a discussion of
software classes and objects.4

Objects are closely related to classes. A class can contain variables and methods.
If an object is also a collection of variables and methods, how do they differ from
classes?

1.2.1 Objects and Classes

Objects

In object-oriented programming we create software objects that model real world ob-
jects. Software objects are modeled after real-world objects in that they too have
state and behavior. A software object maintains its state in one or more variables. A
variable is an item of data named by an identifier. A software object implements its
behavior with methods. A method is a function associated with an object.

Definition: An object is a software bundle of variables and related methods.

An object is also known as an instance. An instance refers to a particular object.
For e.g. Karuna’s bicycle is an instance of a bicycle—It refers to a particular bicycle.
Sandile Zuma is an instance of a Student.

The variables of an object are formally known as instance variables because they
contain the state for a particular object or instance. In a running program, there
may be many instances of an object. For e.g. there may be many Student objects.
Each of these objects will have their own instance variables and each object may have
different values stored in their instance variables. For e.g. each Student object will
have a different number stored in its StudentNumber variable.

Encapsulation

Object diagrams show that an object’s variables make up the center, or nucleus, of
the object. Methods surround and hide the object’s nucleus from other objects in the
program. Packaging an object’s variables within the protective custody of its methods
is called encapsulation.

4This discussion is based on the “Object-oriented Programming Concepts” section of the Java Tuto-
rial by Sun MicroSystems.

16

Figure 1.2: A Message

Encapsulating related variables and methods into a neat software bundle is a
simple yet powerful idea that provides two benefits to software developers:

• Modularity: The source code for an object can be written and maintained in-
dependently of the source code for other objects. Also, an object can be easily
passed around in the system. You can give your bicycle to someone else, and it
will still work.

• Information-hiding: An object has a public interface that other objects can use
to communicate with it. The object can maintain private information and meth-
ods that can be changed at any time without affecting other objects that depend
on it.

Messages

Software objects interact and communicate with each other by sending messages to
each other. When object A wants object B to perform one of B’s methods, object A
sends a message to object B

There are three parts of a message: The three parts for the message
System.out.println{‘‘Hello World’’}; are:

• The object to which the message is addressed (System.out)

• The name of the method to perform (println)

• Any parameters needed by the method (“Hello World!”)

Classes

In object-oriented software, it’s possible to have many objects of the same kind that
share characteristics: rectangles, employee records, video clips, and so on. A class is
a software blueprint for objects. A class is used to manufacture or create objects.

The class declares the instance variables necessary to contain the state of every
object. The class would also declare and provide implementations for the instance
methods necessary to operate on the state of the object.

Definition: A class is a blueprint that defines the variables and the methods
common to all objects of a certain kind.

17

After you’ve created the class, you can create any number of objects from that
class.

A class is a kind of factory for constructing objects. The non-static parts of the
class specify, or describe, what variables and methods the objects will contain. This
is part of the explanation of how objects differ from classes: Objects are created and
destroyed as the program runs, and there can be many objects with the same struc-
ture, if they are created using the same class.

Types

JAVA, like most programming languages classifies values and expressions into types.
For e.g. String’s and int’s are types. A type basically specifies the allowed values
and allowed operations on values of that type.

Definition: A type is a set of values together with one or more operations
that can be applied uniformly to all these values.

A type system basically gives meaning to collections of bits. Because any value
simply consists of a set of bits in a computer, the hardware makes no distinction
between memory addresses, instruction code, characters, integers and floating-point
numbers. Types inform programs and programmers how they should treat those bits.

For example the integers are a type with values in the range −2, 147, 483, 648 to +
2, 147, 483, 647 and various allowed operations that include addition, subtraction, mod-
ulus etc.

The use of types by a programming language has several advantages:

• Safety. Use of types may allow a compiler to detect meaningless or invalid code.
For example, we can identify an expression ”Hello, World” / 3 as invalid because
one cannot divide a string literal by an integer. Strong typing offers more safety.

• Optimization. Static type-checking may provide useful information to a com-
piler. The compiler may then be able to generate more efficient code.

• Documentation. Types can serve as a form of documentation, since they can
illustrate the intent of the programmer. For instance, timestamps may be a
subtype of integers – but if a programmer declares a method as returning a
timestamp rather than merely an integer, this documents part of the meaning
of the method.

• Abstraction. Types allow programmers to think about programs at a higher
level, not bothering with low-level implementation. For example, programmers
can think of strings as values instead of as a mere array of bytes.

There are fundamentally two types in JAVA: primitive types and objects types i.e.
any variable you declare are either declared to be one of the primitive types or an
object type. int, double and char are the built-in, primitive types in JAVA.

The primitive types can be used in various combinations to create other, composite
types. Every time we define a class, we are actually defining a new type. For example,
the Student class defined above introduces a new type. We can now use this type like
any other type: we can declare variables to be of this type and we can use it as a type
for parameters of methods.

18

Before a variable can be used, it must be declared. A declaration gives a variable
a name, a type and an initial value for e.g. int x = 8 declares x to be of type int. All
objects that we declare also have to be of a specified type—the type of an object is the
class from which it is created. Thus, when we declare objects we state the type like
so: Student st = new Student();. This statement declares the variable st to be of
type Student. This statement creates a new object of the specified type and runs the
Student constructor. The constructor’s job is to properly initialize the object.

The String type is another example of an object type. Student and String are
composite types and give us the same advantages as the built-in types. The ability to
create our own types is a very powerful idea in modern languages.

When declaring variables, we can assign initial values. If you do not specify ini-
tial values, the compiler automatically assigns one: Instance variables of numerical
type (int, double, etc.) are automatically initialized to zero; boolean variables are
initialized to false; and char variables, to the Unicode character with code number
zero. The default initial value of object types is null.

Introduction to Enums

JAVA comes with eight built-in primitive types and a large set of types that are de-
fined by classes, such as String. But even this large collection of types is not suffi-
cient to cover all the possible situations that a programmer might have to deal with.
So, an essential part of JAVA, just like almost any other programming language, is the
ability to create new types. For the most part, this is done by defining new classes.
But we will look here at one particular case: the ability to define enums (short for
enumerated types). Enums are a recent addition to JAVA. They were only added in
Version 5.0. Many programming languages have something similar.

Technically, an enum is considered to be a special kind of class. In this section, we
will look at enums in a simplified form. In practice, most uses of enums will only need
the simplified form that is presented here.

An enum is a type that has a fixed list of possible values, which is specified
when the enum is created.

In some ways, an enum is similar to the boolean data type, which has true and false
as its only possible values. However, boolean is a primitive type, while an enum is
not.

The definition of an enum types has the (simplified) form:
enum enum−type−name { list−of−enum−values };

This definition cannot be inside a method. You can place it outside the main()
method of the program. The enum−type−name can be any simple identifier. This
identifier becomes the name of the enum type, in the same way that “boolean” is the
name of the boolean type and “String” is the name of the String type. Each value in
the list−of−enum−values must be a simple identifier, and the identifiers in the list
are separated by commas. For example, here is the definition of an enum type named
Season whose values are the names of the four seasons of the year:

enum Season { SPRING, SUMMER, AUTUMN, WINTER };

By convention, enum values are given names that are made up of upper case let-
ters, but that is a style guideline and not a syntax rule. Enum values are not vari-
ables. Each value is a constant that always has the same value. In fact, the possible
values of an enum type are usually referred to as enum constants.

19

Note that the enum constants of type Season are considered to be “contained in”
Season, which means–following the convention that compound identifiers are used
for things that are contained in other things–the names that you actually use in your
program to refer to them are Season.SPRING, Season.SUMMER, Season.AUTUMN, and
Season.WINTER.

Once an enum type has been created, it can be used to declare variables in exactly
the same ways that other types are used. For example, you can declare a variable
named vacation of type Season with the statement:

Season vacation;

After declaring the variable, you can assign a value to it using an assignment
statement. The value on the right-hand side of the assignment can be one of the enum
constants of type Season. Remember to use the full name of the constant, including
“Season”! For example: vacation = Season.SUMMER;.

You can print an enum value with the statement: System.out.print(vacation).
The output value will be the name of the enum constant (without the “Season.”). In
this case, the output would be “SUMMER”.

Because an enum is technically a class, the enum values are technically objects.
As objects, they can contain methods. One of the methods in every enum value is
ordinal(). When used with an enum value it returns the ordinal number of the
value in the list of values of the enum. The ordinal number simply tells the posi-
tion of the value in the list. That is, Season.SPRING.ordinal() is the int value
0, Season.SUMMER.ordinal() is 1, while 2 is Season.AUTUMN.ordinal(), and 3 is
Season.WINTER.ordinal() is. You can use the ordinal() method with a variable of
type Season, such as vacation.ordinal() in our example.

You should appreciate enums as the first example of an important concept: cre-
ating new types. Here is an example that shows enums being used in a complete
program:

public class EnumDemo {
/ / Def ine two enum types−−d e f i n i t i o n s go OUTSIDE The main () r o u t i n e !
enum Day { SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY }
enum Month { JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC }

public static void main(String[] args) {
Day tgif; / / Declare a v a r i a b l e o f type Day .
Month libra; / / Declare a v a r i a b l e o f type Month .
tgif = Day.FRIDAY; / / Assign a value o f type Day to t g i f .
libra = Month.OCT; / / Assign a value o f type Month to l i b r a .

System.out.print("My s ign i s l ib ra , since I was born in ");
System.out.println(libra); / / Output value w i l l be : OCT
System.out.print(" That ’ s the ");
System.out.print(libra.ordinal());
System.out.println("−th month of the year . ");
System.out.println(" (Counting from 0 , of course !) ");
System.out.print(" I s n ’ t i t nice to get to ");
System.out.println(tgif); / / Output value w i l l be : FRIDAY
System.out.println(tgif + " i s the " + tgif.ordinal()

+ "−th day of the week. "); / / Can concatenate enum values onto S t r i ngs !
}

}

20

Enums and for-each Loops

Java 5.0 introduces a new “enhanced” form of the for loop that is designed to be
convenient for processing data structures. A data structure is a collection of data
items, considered as a unit. For example, a list is a data structure that consists
simply of a sequence of items. The enhanced for loop makes it easy to apply the
same processing to every element of a list or other data structure. However, one of
the applications of the enhanced for loop is to enum types, and so we consider it
briefly here.

The enhanced for loop can be used to perform the same processing on each of the
enum constants that are the possible values of an enumerated type. The syntax for
doing this is:

for (enum−type−name variable−name : enum−type−name.values())
statement

or

for (enum−type−name variable−name : enum−type−name.values()) {
statements

}

If MyEnum is the name of any enumerated type, then MyEnum.values() is a method
call that returns a list containing all of the values of the enum. (values() is a static
member method in MyEnum and of any other enum.) For this enumerated type, the
for loop would have the form:

for (MyEnum variable−name : MyEnum.values())
statement

The intent of this is to execute the statement once for each of the possible values of
the MyEnum type. The variable-name is the loop control variable. In the statement,
it represents the enumerated type value that is currently being processed. This vari-
able should not be declared before the for loop; it is essentially being declared in the
loop itself.

To give a concrete example, suppose that the following enumerated type has been
defined to represent the days of the week:

enum Day { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY }

Then we could write:

for (Day d : Day.values()) {
System.out.print(d);
System.out.print(" i s day number ");
System.out.println(d.ordinal());

}

Day.values() represents the list containing the seven constants that make up the
enumerated type. The first time through this loop, the value of d would be the first
enumerated type value Day.MONDAY, which has ordinal number 0, so the output
would be “MONDAY is day number0”. The second time through the loop, the value
of d would be Day.TUESDAY, and so on through Day.SUNDAY. The body of the loop
is executed once for each item in the list Day.values(), with d taking on each of those
values in turn. The full output from this loop would be:

MONDAY is day number 0
TUESDAY is day number 1

21

WEDNESDAY is day number 2
THURSDAY is day number 3
FRIDAY is day number 4
SATURDAY is day number 5
SUNDAY is day number 6

Since the intent of the enhanced for loop is to do something “for each” item in a
data structure, it is often called a for-each loop. The syntax for this type of loop is
unfortunate. It would be better if it were written something like “foreach Day d in
Day.values()”, which conveys the meaning much better and is similar to the syntax
used in other programming languages for similar types of loops. It’s helpful to think
of the colon (:) in the loop as meaning “in.”

1.2.2 Class Members and Instance Members

A class definition is made of members or components. A class can define variables (or
fields) and methods. Variables and methods can be static or non-static i.e. they are
defined with or without the keyword static.

e.g.

static double lastStudentNumber; / / a s t a t i c member / v a r i a b l e / f i e l d
double studentNumber; / / a non−s t a t i c v a r i a b l e

static void printLastNumber() {...} / / a s t a t i c member / method
void printNumber() {...} / / a non−s t a t i c method

The non-static members of a class (variables and methods) are also known as
instance variables and methods while the non-static members are also known as class
variables and class methods. Each instance of a class (each object) gets its own copy of
all the instance variables defined in the class. When you create an instance of a class,
the system allocates enough memory for the object and all its instance variables.

In addition to instance variables, classes can declare class variables. A class vari-
able contains information that is shared by all instances (objects) of the class. If one
object changes the variable, it changes for all other objects of that type. e.g. A Student
number generator in a NewStudent class.

You can invoke a class method directly from the class, whereas you must invoke
instance methods on a particular instance. e.g. The methods in the Math class are
static and can be invoked without creating an instance of the Math class for e.g. we
can say Math.sqrt(x).

Consider a simple class whose job is to group together a few static member vari-
ables for example a class could be used to store information about the person who is
using the program:

class UserData { static String name; static int age; }

In programs that use this class, there is one copy each of the variables UserData.name
and UserData.age. There can only be one “user,” since we only have memory space
to store data about one user. The class, UserData, and the variables it contains exist
as long as the program runs. Now, consider a similar class that includes non-static
variables:

class PlayerData { String name; int age; }

In this case, there is no such variable as PlayerData.name or PlayerData.age,
since name and age are not static members of PlayerData. There is nothing much

22

in the class except the potential to create objects. But, it’s a lot of potential, since
it can be used to create any number of objects! Each object will have its own vari-
ables called name and age. There can be many “players” because we can make new
objects to represent new players on demand. A program might use this class to store
information about multiple players in a game. Each player has a name and an age.
When a player joins the game, a new PlayerData object can be created to represent
that player. If a player leaves the game, the PlayerData object that represents that
player can be destroyed. A system of objects in the program is being used to dynami-
cally model what is happening in the game. You can’t do this with “static” variables!

An object that belongs to a class is said to be an instance of that class and the
variables that the object contains are called instance variables. The methods that
the object contains are called instance methods.

For example, if the PlayerData class, is used to create an object, then that object
is an instance of the PlayerData class, and name and age are instance variables in the
object. It is important to remember that the class of an object determines the types
of the instance variables; however, the actual data is contained inside the individual
objects, not the class. Thus, each object has its own set of data.

The source code for methods are defined in the class yet it’s better to think of the
instance methods as belonging to the object, not to the class. The non-static methods
in the class merely specify the instance methods that every object created from the
class will contain. For example a draw() method in two different objects do the same
thing in the sense that they both draw something. But there is a real difference
between the two methods—the things that they draw can be different. You might
say that the method definition in the class specifies what type of behavior the objects
will have, but the specific behavior can vary from object to object, depending on the
values of their instance variables.

The static and the non-static portions of a class are very different things and serve
very different purposes. Many classes contain only static members, or only non-static.
However, it is possible to mix static and non-static members in a single class. The
“static” definitions in the source code specify the things that are part of the class itself,
whereas the non-static definitions in the source code specify things that will become
part of every instance object that is created from the class. Static member variables
and static member methods in a class are sometimes called class variables and
class methods, since they belong to the class itself, rather than to instances of that
class.

So far, we’ve been talking mostly in generalities. Let’s now look at a specific
example to see how classes and objects work. Consider this extremely simplified
version of a Student class, which could be used to store information about students
taking a course:

public class Student {

public String name; / / Student ’ s name . p u b l i c double tes t1 ,
test2, test3; / / Grades on three t e s t s .

public double getAverage() { / / compute average t e s t grade r e t u r n
(test1 + test2 + test3) / 3; }

} / / end of c lass Student

None of the members of this class are declared to be static, so the class exists
only for creating objects. This class definition says that any object that is an instance

23

of the Student class will include instance variables named name, test1, test2, and
test3, and it will include an instance method named getAverage(). The names
and tests in different objects will generally have different values. When called for
a particular student, the method getAverage() will compute an average using that
student’s test grades. Different students can have different averages. (Again, this is
what it means to say that an instance method belongs to an individual object, not to
the class.)

In JAVA, a class is a type, similar to the built-in types such as int and boolean.
So, a class name can be used to specify the type of a variable in a declaration state-
ment, the type of a formal parameter, or the return type of a method. For example, a
program could define a variable named std of type Student with the statement

Student std;

However, declaring a variable does not create an object! This is an important
point, which is related to this Very Important Fact:

In JAVA, no variable can ever hold an object. A variable can only hold a
reference to an object.

You should think of objects as floating around independently in the computer’s
memory. In fact, there is a special portion of memory called the heap where objects
live. Instead of holding an object itself, a variable holds the information necessary
to find the object in memory. This information is called a reference or pointer to the
object. In effect, a reference to an object is the address of the memory location where
the object is stored. When you use a variable of class type, the computer uses the
reference in the variable to find the actual object.

In a program, objects are created using an operator called new, which creates an
object and returns a reference to that object. For example, assuming that std is a
variable of type Student, declared as above, the assignment statement

std = new Student();

would create a new object which is an instance of the class Student, and it would
store a reference to that object in the variable std. The value of the variable is a
reference to the object, not the object itself. It is not quite true to say that the object
is the “value of the variable std”. It is certainly not at all true to say that the object
is “stored in the variable std.” The proper terminology is that “the variable std refers
to the object,”.

So, suppose that the variable std refers to an object belonging to the class Student.
That object has instance variables name, test1, test2, and test3. These instance
variables can be referred to as std.name, std.test1, std.test2, and std.test3.
This follows the usual naming convention that when B is part of A, then the full name
of B is A.B. For example, a program might include the lines

System.out.println(" Hello , " + std.name + " . Your te s t grades are : ");
System.out.println(std.test1);
System.out.println(std.test2);
System.out.println(std.test3);

This would output the name and test grades from the object to which std refers.
Similarly, std can be used to call the getAverage() instance method in the object by
saying std.getAverage(). To print out the student’s average, you could say:

System.out.println(" Your average i s " + std.getAverage());

24

More generally, you could use std.name any place where a variable of type String
is legal. You can use it in expressions. You can assign a value to it. You can pass it
as a parameter to method. You can even use it to call methods from the String class.
For example, std.name.length() is the number of characters in the student’s name.

It is possible for a variable like std, whose type is given by a class, to refer to no
object at all. We say in this case that std holds a null reference. The null reference
is written in JAVA as “null”. You can store a null reference in the variable std by
saying “std = null;” and you could test whether the value of “std” is null by testing
“if (std == null) . . .”.

If the value of a variable is null, then it is, of course, illegal to refer to instance
variables or instance methods through that variable–since there is no object, and
hence no instance variables to refer to. For example, if the value of the variable st is
null, then it would be illegal to refer to std.test1. If your program attempts to use a
null reference illegally like this, the result is an error called a null pointer exception.

Let’s look at a sequence of statements that work with objects:

Student std, std1, / / Declare fou r v a r i a b l e s o f
std2, std3; / / type Student .

std = new Student(); / / Create a new ob jec t belonging
/ / to the c lass Student , and
/ / s to re a re ference to t h a t
/ / ob jec t i n the v a r i a b l e s td .

std1 = new Student(); / / Create a second Student ob jec t
/ / and s to re a re ference to
/ / i t i n the v a r i a b l e std1 .

std2 = std1; / / Copy the re ference value i n std1
/ / i n t o the v a r i a b l e std2 .

std3 = null; / / Store a n u l l re ference i n the
/ / v a r i a b l e std3 .

std.name = " John Smith "; / / Set values o f some ins tance v a r i a b l e s .
std1.name = "Mary Jones ";

/ / (Other ins tance v a r i a b l e s have d e f a u l t
/ / i n i t i a l values o f zero .)

After the computer executes these statements, the situation in the computer’s
memory looks like this:

25

This picture shows variables as little boxes, labeled with the names of the vari-
ables. Objects are shown as boxes with round corners. When a variable contains a
reference to an object, the value of that variable is shown as an arrow pointing to the
object. The variable std3, with a value of null, doesn’t point anywhere. The arrows
from std1 and std2 both point to the same object. This illustrates a Very Important
Point:

When one object variable is assigned to another, only a reference is copied.
The object referred to is not copied.

When the assignment “std2 = std1;” was executed, no new object was created.
Instead, std2 was set to refer to the very same object that std1 refers to. This has
some consequences that might be surprising. For example, std1.name and std2.name
are two different names for the same variable, namely the instance variable in the
object that both std1 and std2 refer to. After the string “Mary Jones” is assigned to
the variable std1.name, it is also be true that the value of std2.name is “Mary Jones”.
There is a potential for a lot of confusion here, but you can help protect yourself from
it if you keep telling yourself, “The object is not in the variable. The variable just
holds a pointer to the object.”

You can test objects for equality and inequality using the operators == and !=,
but here again, the semantics are different from what you are used to. The test
“if (std1 == std2)”, tests whether the values stored in std1 and std2 are the
same. But the values are references to objects, not objects. So, you are testing
whether std1 and std2 refer to the same object, that is, whether they point to the
same location in memory. This is fine, if its what you want to do. But sometimes,
what you want to check is whether the instance variables in the objects have the
same values. To do that, you would need to ask whether

std1.test1 == std2.test1 && std1.test2 == std2.test2 && std1.test3
== std2.test3 && std1.name.equals(std2.name)}

I’ve remarked previously that Strings are objects, and I’ve shown the strings
“Mary Jones” and “John Smith” as objects in the above illustration. A variable of

26

type String can only hold a reference to a string, not the string itself. It could also
hold the value null, meaning that it does not refer to any string at all. This explains
why using the == operator to test strings for equality is not a good idea.

The fact that variables hold references to objects, not objects themselves, has a
couple of other consequences that you should be aware of. They follow logically, if
you just keep in mind the basic fact that the object is not stored in the variable. The
object is somewhere else; the variable points to it.

Suppose that a variable that refers to an object is declared to be final. This
means that the value stored in the variable can never be changed, once the variable
has been initialized. The value stored in the variable is a reference to the object. So
the variable will continue to refer to the same object as long as the variable exists.
However, this does not prevent the data in the object from changing. The variable
is final, not the object. It’s perfectly legal to say

final Student stu = new Student();

stu.name = " John Doe"; / / Change data i n the ob jec t ;
/ / The value stored i n s tu i s not changed !
/ / I t s t i l l r e f e r s to the same ob jec t .

Next, suppose that obj is a variable that refers to an object. Let’s consider what
happens when obj is passed as an actual parameter to a method. The value of obj
is assigned to a formal parameter in the method, and the method is executed. The
method has no power to change the value stored in the variable, obj. It only has a
copy of that value. However, that value is a reference to an object. Since the method
has a reference to the object, it can change the data stored in the object. After the
method ends, obj still points to the same object, but the data stored in the object
might have changed. Suppose x is a variable of type int and stu is a variable of type
Student. Compare:

void dontChange(int z) { void change(Student s) {
z = 42; s.name = " Fred ";

} }

The lines: The lines:

x = 17; stu.name = " Jane ";
dontChange(x); change(stu);
System.out.println(x); System.out.println(stu.name);

outputs the value 17. outputs the value " Fred ".

The value of x is not The value of stu is not changed ,
changed by the method, but stu.name is.
which is equivalent to This is equivalent to

z = x; s = stu;
z = 42; s.name = " Fred ";

1.2.3 Access Control

When writing new classes, it’s a good idea to pay attention to the issue of access
control. Recall that making a member of a class public makes it accessible from

27

anywhere, including from other classes. On the other hand, a private member can
only be used in the class where it is defined.

In the opinion of many programmers, almost all member variables should be de-
clared private. This gives you complete control over what can be done with the
variable. Even if the variable itself is private, you can allow other classes to find out
what its value is by providing a public accessor method that returns the value of
the variable. For example, if your class contains a private member variable, title,
of type String, you can provide a method

public String getTitle() { return title; }

that returns the value of title. By convention, the name of an accessor method for
a variable is obtained by capitalizing the name of variable and adding “get” in front
of the name. So, for the variable title, we get an accessor method named “get” +
“Title”, or getTitle(). Because of this naming convention, accessor methods are
more often referred to as getter methods. A getter method provides “read access” to
a variable.

You might also want to allow “write access” to a private variable. That is, you
might want to make it possible for other classes to specify a new value for the vari-
able. This is done with a setter method. (If you don’t like simple, Anglo-Saxon
words, you can use the fancier term mutator method.) The name of a setter method
should consist of “set” followed by a capitalized copy of the variable’s name, and it
should have a parameter with the same type as the variable. A setter method for the
variable title could be written

public void setTitle(String newTitle) { title = newTitle; }

It is actually very common to provide both a getter and a setter method for a
private member variable. Since this allows other classes both to see and to change
the value of the variable, you might wonder why not just make the variable public?
The reason is that getters and setters are not restricted to simply reading and writing
the variable’s value. In fact, they can take any action at all. For example, a getter
method might keep track of the number of times that the variable has been accessed:

public String getTitle() {
titleAccessCount++; / / Increment member v a r i a b l e t i t l eAccessCoun t .
return title;

}

and a setter method might check that the value that is being assigned to the variable
is legal:
public void setTitle(String newTitle) {

if (newTitle == null) / / Don ’ t a l low n u l l s t r i n g s as t i t l e s !
title = " (Unt i t led) "; / / Use an appropr ia te d e f a u l t value ins tead .

else
title = newTitle; }

Even if you can’t think of any extra chores to do in a getter or setter method, you
might change your mind in the future when you redesign and improve your class. If
you’ve used a getter and setter from the beginning, you can make the modification
to your class without affecting any of the classes that use your class. The private
member variable is not part of the public interface of your class; only the public
getter and setter methods are. If you haven’t used get and set from the beginning,
you’ll have to contact everyone who uses your class and tell them, “Sorry guys, you’ll
have to track down every use that you’ve made of this variable and change your code.”

28

1.2.4 Creating and Destroying Objects

Object types in JAVA are very different from the primitive types. Simply declaring
a variable whose type is given as a class does not automatically create an object of
that class. Objects must be explicitly constructed. For the computer, the process of
constructing an object means, first, finding some unused memory in the heap that
can be used to hold the object and, second, filling in the object’s instance variables.
As a programmer, you don’t care where in memory the object is stored, but you will
usually want to exercise some control over what initial values are stored in a new
object’s instance variables. In many cases, you will also want to do more complicated
initialization or bookkeeping every time an object is created.

Initializing Instance Variables

An instance variable can be assigned an initial value in its declaration, just like any
other variable. For example, consider a class named PairOfDice. An object of this
class will represent a pair of dice. It will contain two instance variables to represent
the numbers showing on the dice and an instance method for rolling the dice:

public class PairOfDice {

public int die1 = 3; / / Number showing on the f i r s t d ie .
public int die2 = 4; / / Number showing on the second d ie .

public void roll() {
/ / Ro l l the d ice by s e t t i n g each of the d ice to be
/ / a random number between 1 and 6.

die1 = (int)(Math.random()∗6) + 1;
die2 = (int)(Math.random()∗6) + 1;

}

} / / end c lass PairOfDice

The instance variables die1 and die2 are initialized to the values 3 and 4 respec-
tively. These initializations are executed whenever a PairOfDice object is constructed.
It is important to understand when and how this happens. Many PairOfDice objects
may exist. Each time one is created, it gets its own instance variables, and the assign-
ments “die1 = 3” and “die2 = 4” are executed to fill in the values of those variables.
To make this clearer, consider a variation of the PairOfDice class:

public class PairOfDice {

public int die1 = (int)(Math.random()∗6) + 1;
public int die2 = (int)(Math.random()∗6) + 1;

public void roll() {
die1 = (int)(Math.random()∗6) + 1;
die2 = (int)(Math.random()∗6) + 1;

}

} / / end c lass PairOfDice

Here, the dice are initialized to random values, as if a new pair of dice were being
thrown onto the gaming table. Since the initialization is executed for each new object,
a set of random initial values will be computed for each new pair of dice. Different

29

pairs of dice can have different initial values. For initialization of static member
variables, of course, the situation is quite different. There is only one copy of a static
variable, and initialization of that variable is executed just once, when the class is
first loaded.

If you don’t provide any initial value for an instance variable, a default initial
value is provided automatically. Instance variables of numerical type (int, double,
etc.) are automatically initialized to zero if you provide no other values; boolean
variables are initialized to false; and char variables, to the Unicode character with
code number zero. An instance variable can also be a variable of object type. For such
variables, the default initial value is null. (In particular, since Strings are objects,
the default initial value for String variables is null.)

Constructors

Objects are created with the operator, new. For example, a program that wants to use
a PairOfDice object could say:

PairOfDice dice; / / Declare a v a r i a b l e o f type PairOfDice .

dice = new PairOfDice(); / / Const ruct a new ob jec t and s to re a
/ / re ference to i t i n the v a r i a b l e .

In this example, “new PairOfDice()” is an expression that allocates memory for
the object, initializes the object’s instance variables, and then returns a reference to
the object. This reference is the value of the expression, and that value is stored by
the assignment statement in the variable, dice, so that after the assignment state-
ment is executed, dice refers to the newly created object. Part of this expression,
“PairOfDice()”, looks like a method call, and that is no accident. It is, in fact, a call
to a special type of method called a constructor. This might puzzle you, since there
is no such method in the class definition. However, every class has at least one con-
structor. If the programmer doesn’t write a constructor definition in a class, then the
system will provide a default constructor for that class. This default constructor
does nothing beyond the basics: allocate memory and initialize instance variables. If
you want more than that to happen when an object is created, you can include one or
more constructors in the class definition.

The definition of a constructor looks much like the definition of any other method,
with three differences.

1. A constructor does not have any return type (not even void).

2. The name of the constructor must be the same as the name of the class in which
it is defined.

3. The only modifiers that can be used on a constructor definition are the access
modifiers public, private, and protected. (In particular, a constructor can’t
be declared static.)

However, a constructor does have a method body of the usual form, a block of
statements. There are no restrictions on what statements can be used. And it can
have a list of formal parameters. In fact, the ability to include parameters is one of
the main reasons for using constructors. The parameters can provide data to be used
in the construction of the object. For example, a constructor for the PairOfDice class

30

could provide the values that are initially showing on the dice. Here is what the class
would look like in that case:

The constructor is declared as “public PairOfDice(int val1, int val2)...”,
with no return type and with the same name as the name of the class. This is how
the JAVA compiler recognizes a constructor. The constructor has two parameters, and
values for these parameters must be provided when the constructor is called. For
example, the expression “new PairOfDice(3,4)” would create a PairOfDice object
in which the values of the instance variables die1 and die2 are initially 3 and4. Of
course, in a program, the value returned by the constructor should be used in some
way, as in

PairOfDice dice; / / Declare a v a r i a b l e o f type PairOfDice .

dice = new PairOfDice(1,1); / / Let d ice r e f e r to a new PairOfDice
/ / ob jec t t h a t i n i t i a l l y shows 1 , 1 .

Now that we’ve added a constructor to the PairOfDice class, we can no longer
create an object by saying “new PairOfDice()”! The system provides a default con-
structor for a class only if the class definition does not already include a constructor,
so there is only one constructor in the class, and it requires two actual parameters.
However, this is not a big problem, since we can add a second constructor to the class,
one that has no parameters. In fact, you can have as many different constructors
as you want, as long as their signatures are different, that is, as long as they have
different numbers or types of formal parameters. In the PairOfDice class, we might
have a constructor with no parameters which produces a pair of dice showing random
numbers:
public class PairOfDice {

public int die1; / / Number showing on the f i r s t d ie .
public int die2; / / Number showing on the second d ie .

public PairOfDice() {
/ / Const ruc tor . Ro l l s the dice , so t h a t they i n i t i a l l y
/ / show some random values .

roll(); / / Ca l l the r o l l () method to r o l l the d ice .
}

public PairOfDice(int val1, int val2) {
/ / Const ruc tor . Creates a p a i r o f d ice t h a t
/ / are i n i t i a l l y showing the values va l1 and val2 .

die1 = val1; / / Assign s p e c i f i e d values
die2 = val2; / / to the ins tance v a r i a b l e s .

}

public void roll() {
/ / Ro l l the d ice by s e t t i n g each of the d ice to be
/ / a random number between 1 and 6.

die1 = (int)(Math.random()∗6) + 1;
die2 = (int)(Math.random()∗6) + 1;

}

} / / end c lass PairOfDice

Now we have the option of constructing a PairOfDice object with “new PairOfDice()”
or with “new PairOfDice(x,y)”, where x and y are int-valued expressions.

31

This class, once it is written, can be used in any program that needs to work with
one or more pairs of dice. None of those programs will ever have to use the obscure
incantation “(int)(Math.random()∗6)+1”, because it’s done inside the PairOfDice
class. And the programmer, having once gotten the dice-rolling thing straight will
never have to worry about it again. Here, for example, is a main program that uses
the PairOfDice class to count how many times two pairs of dice are rolled before the
two pairs come up showing the same value. This illustrates once again that you can
create several instances of the same class:

public class RollTwoPairs {

public static void main(String[] args) {

PairOfDice firstDice; / / Refers to the f i r s t p a i r o f d ice .
firstDice = new PairOfDice();

PairOfDice secondDice; / / Refers to the second p a i r o f d ice .
secondDice = new PairOfDice();

int countRolls; / / Counts how many t imes the two pa i r s o f
/ / d ice have been r o l l e d .

int total1; / / To ta l showing on f i r s t p a i r o f d ice .
int total2; / / To ta l showing on second p a i r o f d ice .

countRolls = 0;

do { / / Ro l l the two pa i r s o f d ice u n t i l t o t a l s are the same .

firstDice.roll(); / / Ro l l the f i r s t p a i r o f d ice .
total1 = firstDice.die1 + firstDice.die2; / / Get t o t a l .
System.out.println(" F i r s t pai r comes up " + total1);

secondDice.roll(); / / Ro l l the second p a i r o f d ice .
total2 = secondDice.die1 + secondDice.die2; / / Get t o t a l .
System.out.println(" Second pair comes up " + total2);

countRolls++; / / Count t h i s r o l l .

System.out.println(); / / Blank l i n e .

} while (total1 != total2);

System.out.println(" I t took " + countRolls
+ " r o l l s u n t i l the t o t a l s were the same. ");

} / / end main ()

} / / end c lass Rol lTwoPairs

Constructors are methods, but they are methods of a special type. They are cer-
tainly not instance methods, since they don’t belong to objects. Since they are re-
sponsible for creating objects, they exist before any objects have been created. They
are more like static member methods, but they are not and cannot be declared to
be static. In fact, according to the JAVA language specification, they are technically

32

not members of the class at all! In particular, constructors are not referred to as
“methods”.

Unlike other methods, a constructor can only be called using the new operator, in
an expression that has the form

new class−name{parameter−list}

where the parameter−list is possibly empty. I call this an expression because it
computes and returns a value, namely a reference to the object that is constructed.
Most often, you will store the returned reference in a variable, but it is also legal to
use a constructor call in other ways, for example as a parameter in a method call or
as part of a more complex expression. Of course, if you don’t save the reference in a
variable, you won’t have any way of referring to the object that was just created.

A constructor call is more complicated than an ordinary method call. It is helpful
to understand the exact steps that the computer goes through to execute a constructor
call:

1. First, the computer gets a block of unused memory in the heap, large enough to
hold an object of the specified type.

2. It initializes the instance variables of the object. If the declaration of an in-
stance variable specifies an initial value, then that value is computed and stored
in the instance variable. Otherwise, the default initial value is used.

3. The actual parameters in the constructor, if any, are evaluated, and the values
are assigned to the formal parameters of the constructor.

4. The statements in the body of the constructor, if any, are executed.

5. A reference to the object is returned as the value of the constructor call.

The end result of this is that you have a reference to a newly constructed object. You
can use this reference to get at the instance variables in that object or to call its
instance methods.

For another example, let’s rewrite the Student class. I’ll add a constructor, and
I’ll also take the opportunity to make the instance variable, name, private.

public class Student {
private String name; / / Student ’ s name .
public double test1, test2, test3; / / Grades on three t e s t s .

/ / Const ruc tor f o r Student ob jec ts−prov ides a name f o r the Student .
Student(String theName) {

name = theName;
}

/ / Get ter method f o r the p r i v a t e ins tance var iab le , name .
public String getName() {

return name;
}

/ / Compute average t e s t grade .
public double getAverage() {

return (test1 + test2 + test3) / 3;
}

} / / end of c lass Student

33

An object of type Student contains information about some particular student.
The constructor in this class has a parameter of type String, which specifies the
name of that student. Objects of type Student can be created with statements such
as:

std = new Student(" John Smith ");
std1 = new Student("Mary Jones ");

In the original version of this class, the value of name had to be assigned by a
program after it created the object of type Student. There was no guarantee that the
programmer would always remember to set the name properly. In the new version of
the class, there is no way to create a Student object except by calling the constructor,
and that constructor automatically sets the name. The programmer’s life is made
easier, and whole hordes of frustrating bugs are squashed before they even have a
chance to be born.

Another type of guarantee is provided by the private modifier. Since the instance
variable, name, is private, there is no way for any part of the program outside the
Student class to get at the name directly. The program sets the value of name, indi-
rectly, when it calls the constructor. I’ve provided a method, getName(), that can be
used from outside the class to find out the name of the student. But I haven’t provided
any setter method or other way to change the name. Once a student object is created,
it keeps the same name as long as it exists.

1.2.5 Garbage Collection

So far, this section has been about creating objects. What about destroying them? In
JAVA, the destruction of objects takes place automatically.

An object exists in the heap, and it can be accessed only through variables that
hold references to the object. What should be done with an object if there are no vari-
ables that refer to it? Such things can happen. Consider the following two statements
(though in reality, you’d never do anything like this):

Student std = new Student(" John Smith "); std = null;

In the first line, a reference to a newly created Student object is stored in the
variable std. But in the next line, the value of std is changed, and the reference to
the Student object is gone. In fact, there are now no references whatsoever to that
object stored in any variable. So there is no way for the program ever to use the object
again. It might as well not exist. In fact, the memory occupied by the object should
be reclaimed to be used for another purpose.

JAVA uses a procedure called garbage collection to reclaim memory occupied by
objects that are no longer accessible to a program. It is the responsibility of the
system, not the programmer, to keep track of which objects are “garbage”. In the
above example, it was very easy to see that the Student object had become garbage.
Usually, it’s much harder. If an object has been used for a while, there might be
several references to the object stored in several variables. The object doesn’t become
garbage until all those references have been dropped.

In many other programming languages, it’s the programmer’s responsibility to
delete the garbage. Unfortunately, keeping track of memory usage is very error-
prone, and many serious program bugs are caused by such errors. A programmer
might accidently delete an object even though there are still references to that ob-
ject. This is called a dangling pointer error, and it leads to problems when the

34

program tries to access an object that is no longer there. Another type of error is a
memory leak, where a programmer neglects to delete objects that are no longer in
use. This can lead to filling memory with objects that are completely inaccessible,
and the program might run out of memory even though, in fact, large amounts of
memory are being wasted.

Because JAVA uses garbage collection, such errors are simply impossible. Garbage
collection is an old idea and has been used in some programming languages since the
1960s. You might wonder why all languages don’t use garbage collection. In the past,
it was considered too slow and wasteful. However, research into garbage collection
techniques combined with the incredible speed of modern computers have combined
to make garbage collection feasible. Programmers should rejoice.

1.2.6 Everything is NOT an object

Wrapper Classes and Autoboxing

Recall that there are two kinds of types in JAVA: primitive types and object types
(Classes). In some object-oriented languages, everything is an object. However in
JAVA and in C++, the primitive types like int and double are not objects. This
decision was made for memory and processing efficiency—it takes less memory to
store an int than it is to store an object.

Sometimes, however, it is necessary to manipulate the primitive types as if they
were objects. To make this possible, you can define wrapper classes whose sole aim is
to contain one of the primitive types. They are used for creating objects that represent
primitive type values.

For example the JAVA API contains the classes Double (that wraps a single double)
and Integer that wraps a single integer. These classes contain various static meth-
ods including Double.parseDouble and Integer.parseInteger that are used to con-
vert strings to numerical values. The Character class wraps a single char type.
There is a similar class for each of the other primitive types, Long, Short, Byte,
Float, and Boolean.

Remember that the primitive types are not classes, and values of primitive type
are not objects. However, sometimes it’s useful to treat a primitive value as if it were
an object. You can’t do that literally, but you can “wrap” the primitive type value in
an object belonging to one of the wrapper classes.

For example, an object of type Double contains a single instance variable, of type
double. The object is a wrapper for the double value. For example, you can create
an object that wraps the double value 6.0221415e23 with

Double d = new Double(6.0221415e23);

The value of d contains the same information as the value of type double, but it
is an object. If you want to retrieve the double value that is wrapped in the object,
you can call the method d.doubleValue(). Similarly, you can wrap an int in an
object of type Integer, a boolean value in an object of type Boolean, and so on. (As
an example of where this would be useful, the collection classes that will be studied
in Chapter 10 can only hold objects. If you want to add a primitive type value to a
collection, it has to be put into a wrapper object first.)

In JAVA 5.0, wrapper classes have become easier to use. JAVA 5.0 introduced
automatic conversion between a primitive type and the corresponding wrapper class.
For example, if you use a value of type int in a context that requires an object of type

35

Integer, the int will automatically be wrapped in an Integer object. For example,
you can say Integer answer = 42; and the computer will silently read this as if it
were Integer answer = new Integer(42);.

This is called autoboxing. It works in the other direction, too. For example, if
d refers to an object of type Double, you can use d in a numerical expression such
as 2∗d. The double value inside d is automatically unboxed and multiplied by 2.
Autoboxing and unboxing also apply to method calls. For example, you can pass
an actual parameter of type int to a method that has a formal parameter of type
Integer. In fact, autoboxing and unboxing make it possible in many circumstances
to ignore the difference between primitive types and objects.

The wrapper classes contain a few other things that deserve to be mentioned.
Integer contains constants Integer.MIN_VALUE and Integer.MAX_VALUE, which are
equal to the largest and smallest possible values of type int, that is, to −2147483648
and 2147483647 respectively. It’s certainly easier to remember the names than the nu-
merical values. There are similar named constants in Long, Short, and Byte. Double
and Float also have constants named MIN_VALUE and MAX_VALUE. MAX_VALUE still
gives the largest number that can be represented in the given type, but MIN_VALUE
represents the smallest possible positive value. For type double, Double.MIN_VALUE
is 4.9 × 10−324. Since double values have only a finite accuracy, they can’t get arbi-
trarily close to zero. This is the closest they can get without actually being equal to
zero.

The class Double deserves special mention, since doubles are so much more com-
plicated than integers. The encoding of real numbers into values of type double has
room for a few special values that are not real numbers at all in the mathemati-
cal sense. These values named constants in the class: Double.POSITIVE_INFINITY,
Double.NEGATIVE_INFINITY, and Double.NaN. The infinite values can occur as val-
ues of certain mathematical expressions. For example, dividing a positive number by
zero will give Double.POSITIVE_INFINITY. (It’s even more complicated than this, ac-
tually, because the double type includes a value called “negative zero”, written −0.0.
Dividing a positive number by negative zero gives Double.NEGATIVE_INFINITY.) You
also get Double.POSITIVE_INFINITY whenever the mathematical value of an expres-
sion is greater than Double.MAX_VALUE. For example, 1e200∗1e200 is considered
to be infinite. The value Double.NaN is even more interesting. “NaN” stands for
Not a Number, and it represents an undefined value such as the square root of a
negative number or the result of dividing zero by zero. Because of the existence of
Double.NaN, no mathematical operation on real numbers will ever throw an excep-
tion; it simply gives Double.NaN as the result.

You can test whether a value, x, of type double is infinite or undefined by calling
the boolean-valued static methods Double.isInfinite(x) and Double.isNaN(). (It’s
especially important to use Double.isNaN() to test for undefined values, because
Double.NaN has really weird behavior when used with relational operators such as
==. In fact, the values of x == Double.NaN and x != Double.NaN are both false, no
matter what the value of x, so you really can’t use these expressions to test whether
x is Double.NaN.)

36

Chapter 2
The Practice of
Programming

Contents
2.1 Abstraction . 37

2.1.1 Control Abstraction . 38
2.1.2 Data Abstraction . 39
2.1.3 Abstraction in Object-Oriented Programs 39

2.2 Methods as an Abstraction Mechanism 40
2.2.1 Black Boxes . 40
2.2.2 Preconditions and Postconditions 41
2.2.3 APIs and Packages . 42

2.3 Introduction to Error Handling . 46
2.4 Javadoc . 49
2.5 Creating Jar Files . 51
2.6 Creating Abstractions . 52

2.6.1 Designing the classes . 52
2.7 Example: A Simple Card Game . 58

2.1 Abstraction

ABSTRACTION IS A CENTRAL IDEA1 in computer science and an understanding of this
important term is crucial to successful programming.

Abstraction is the purposeful suppression, or hiding, of some details of a
process or artifact, in order to bring out more clearly other aspects, details,
or structures.

Timothy Budd

Heres another definition from wikipedia.
1This discussion is based on a wikipedia article on abstraction: www.wikipedia.org.

37

In computer science, abstraction is a mechanism and practice to reduce and
factor out details so that one can focus on a few concepts at a time.

In general philosophical terminology, abstraction is the thought process wherein
ideas are separated from objects. Our minds work mostly with abstractions. For
example, when thinking about a chair, we do not have in mind a particular chair but
an abstract idea of a chair—the concept of a chair. This why we are able to recognise
an object as a chair even if it is different from any other chair we’ve seen previously.
We form concepts of everyday objects and events by a process of abstraction where we
remove unimportant details and concentrate on the essential attributes of the thing.

Abstraction in mathematics is the process of extracting the underlying essence of
a mathematical concept, removing any dependence on real world objects with which it
might originally have been connected, and generalising it so that it has wider applica-
tions. Many areas of mathematics began with the study of real world problems, before
the underlying rules and concepts were identified and defined as abstract structures.
For example, geometry has its origins in the calculation of distances and areas in the
real world; statistics has its origins in the calculation of probabilities in gambling.

Roughly speaking, abstraction can be either that of control or data. Control ab-
straction is the abstraction of actions while data abstraction is that of data. For exam-
ple, control abstraction in structured programming is the use of methods and format-
ted control flows. Data abstraction allows handling of data in meaningful ways. For
example, it is the basic motivation behind datatype. Object-oriented programming
can be seen as an attempt to abstract both data and control.

2.1.1 Control Abstraction

Control abstraction is one of the main purposes of using programming languages.
Computer machines understand operations at the very low level such as moving some
bits from one location of the memory to another location and producing the sum of two
sequences of bits. Programming languages allow this to be done at a higher level. For
example, consider the high-level expression/program statement: a := (1 + 2) ∗ 5

To a human, this is a fairly simple and obvious calculation (“one plus two is three,
times five is fifteen”). However, the low-level steps necessary to carry out this eval-
uation, and return the value ”15”, and then assign that value to the variable ”a”,
are actually quite subtle and complex. The values need to be converted to binary
representation (often a much more complicated task than one would think) and the
calculations decomposed (by the compiler or interpreter) into assembly instructions
(again, which are much less intuitive to the programmer: operations such as shifting
a binary register left, or adding the binary complement of the contents of one register
to another, are simply not how humans think about the abstract arithmetical opera-
tions of addition or multiplication). Finally, assigning the resulting value of ”15” to
the variable labeled ”a”, so that ”a” can be used later, involves additional ’behind-the-
scenes’ steps of looking up a variable’s label and the resultant location in physical or
virtual memory, storing the binary representation of ”15” to that memory location,
etc. etc.

Without control abstraction, a programmer would need to specify all the register/
binary-level steps each time she simply wanted to add or multiply a couple of num-
bers and assign the result to a variable. This duplication of effort has two serious
negative consequences:

38

• (a) it forces the programmer to constantly repeat fairly common tasks every
time a similar operation is needed; and

• (b) it forces the programmer to program for the particular hardware and in-
struction set.

2.1.2 Data Abstraction

Data abstraction is the enforcement of a clear separation between the abstract prop-
erties of a data type and the concrete details of its implementation. The abstract
properties are those that are visible to client code that makes use of the data type–
the interface to the data type–while the concrete implementation is kept entirely
private, and indeed can change, for example to incorporate efficiency improvements
over time. The idea is that such changes are not supposed to have any impact on
client code, since they involve no difference in the abstract behaviour.

For example, one could define an abstract data type called lookup table, where
keys are uniquely associated with values, and values may be retrieved by specifying
their corresponding keys. Such a lookup table may be implemented in various ways:
as a hash table, a binary search tree, or even a simple linear list. As far as client code
is concerned, the abstract properties of the type are the same in each case.

2.1.3 Abstraction in Object-Oriented Programs

There are many important layers of abstraction in object-oriented programs. 2

At the highest level, we view the program as a community of objects that inter-
act with each other to achieve common goals. Each object provides a service that
is used by other objects in the community. At this level we emphasize the lines of
communication and cooperation and the interactions between the objects.

Another level of abstraction allows the grouping of related objects that work to-
gether. For example JAVA provides units called packages for grouping related objects.
These units expose certain names to the system outside the unit while hiding certain
features. For example the java.net package provides classes for networking appli-
cations. The JAVA Software Development Kit contains various packages that group
different functionality.

The next levels of abstraction deal with interactions between individual objects.
A useful way of thinking about objects, is to see them as providing a service to other
objects. Thus, we can look at an object-oriented application as consisting of service-
providers and service-consumers or clients. One level of abstraction looks at this re-
lationship from the server side and the other looks at it from the client side.

Clients of the server are interested only in what the server provides (its behaviour)
and not how it provides it (its implementation). The client only needs to know the
public interface of a class it wants to use—what methods it can call, their input
parameters, what they return and what they accomplish.

The next level of abstraction looks at the relationship from the server side. Here
we consider the concrete implementation of the abstract behaviour. Here we are
concerned with how the services are realized.

2This discussion is based on Chapter 2 of An Introduction to Object-Oriented Programming by Tim-
othy Budd.

39

The last level of abstraction considers a single task in isolation i.e. a single
method. Here we deal with the sequence of operations used to perform just this
one activity.

Each level of abstraction is important at some point in the development of soft-
ware. As programmers, we will constantly move from one level to another.

2.2 Methods as an Abstraction Mechanism

IN THIS SECTION we’ll discuss an abstraction mechanism you’re already familiar with:
the method (variously called subroutines, procedures, and even functions).

2.2.1 Black Boxes

A Method is an abstraction mechanism and consists of instructions for performing
some task, chunked together and given a name. ”Chunking” allows you to deal with
a potentially very complicated task as a single concept. Instead of worrying about
the many, many steps that the computer might have to go though to perform that
task, you just need to remember the name of the method. Whenever you want your
program to perform the task, you just call the method. Methods are a major tool for
dealing with complexity.

A method is sometimes said to be a ”black box” because you can’t see what’s ”in-
side” it (or, to be more precise, you usually don’t want to see inside it, because then
you would have to deal with all the complexity that the method is meant to hide). Of
course, a black box that has no way of interacting with the rest of the world would be
pretty useless. A black box needs some kind of interface with the rest of the world,
which allows some interaction between what’s inside the box and what’s outside. A
physical black box might have buttons on the outside that you can push, dials that
you can set, and slots that can be used for passing information back and forth. Since
we are trying to hide complexity, not create it, we have the first rule of black boxes:

The interface of a black box should be fairly straightforward, well-defined,
and easy to understand.

Your television, your car, your VCR, your refrigerator... are all examples of black
boxes in the real world. You can turn your television on and off, change channels, and
set the volume by using elements of the television’s interface – dials, remote control,
don’t forget to plug in the power – without understanding anything about how the
thing actually works. The same goes for a VCR, although if stories about how hard
people find it to set the time on a VCR are true, maybe the VCR violates the simple
interface rule.

Now, a black box does have an inside – the code in a method that actually performs
the task, all the electronics inside your television set. The inside of a black box is
called its implementation. The second rule of black boxes is that:

To use a black box, you shouldn’t need to know anything about its imple-
mentation; all you need to know is its interface.

In fact, it should be possible to change the implementation, as long as the behavior of
the box, as seen from the outside, remains unchanged. For example, when the insides
of TV sets went from using vacuum tubes to using transistors, the users of the sets
didn’t even need to know about it – or even know what it means. Similarly, it should

40

be possible to rewrite the inside of a method, to use more efficient code, for example,
without affecting the programs that use that method.

Of course, to have a black box, someone must have designed and built the im-
plementation in the first place. The black box idea works to the advantage of the
implementor as well as of the user of the black box. After all, the black box might be
used in an unlimited number of different situations. The implementor of the black
box doesn’t need to know about any of that. The implementor just needs to make sure
that the box performs its assigned task and interfaces correctly with the rest of the
world. This is the third rule of black boxes:

The implementor of a black box should not need to know anything about the
larger systems in which the box will be used. In a way, a black box divides
the world into two parts: the inside (implementation) and the outside. The
interface is at the boundary, connecting those two parts.

You should not think of an interface as just the physical connection between the box
and the rest of the world. The interface also includes a specification of what the box
does and how it can be controlled by using the elements of the physical interface.
It’s not enough to say that a TV set has a power switch; you need to specify that the
power switch is used to turn the TV on and off!

To put this in computer science terms, the interface of a method has a semantic
as well as a syntactic component. The syntactic part of the interface tells you just
what you have to type in order to call the method. The semantic component specifies
exactly what task the method will accomplish. To write a legal program, you need
to know the syntactic specification of the method. To understand the purpose of the
method and to use it effectively, you need to know the method’s semantic specification.
I will refer to both parts of the interface – syntactic and semantic – collectively as the
contract of the method.

The contract of a method says, essentially, ”Here is what you have to do to use
me, and here is what I will do for you, guaranteed.” When you write a method, the
comments that you write for the method should make the contract very clear. (I
should admit that in practice, methods’ contracts are often inadequately specified,
much to the regret and annoyance of the programmers who have to use them.)

You should keep in mind that methods are not the only example of black boxes in
programming. For example, a class is also a black box. We’ll see that a class can have
a ”public” part, representing its interface, and a ”private” part that is entirely inside
its hidden implementation. All the principles of black boxes apply to classes as well
as to methods.

2.2.2 Preconditions and Postconditions

When working with methods as building blocks, it is important to be clear about how
a method interacts with the rest of the program. A convenient way to express the
contract of a method is in terms of preconditions and postconditions.

The precondition of a method is something that must be true when the
method is called, if the method is to work correctly.

For example, for the built-in method Math.sqrt(x), a precondition is that the param-
eter, x, is greater than or equal to zero, since it is not possible to take the square root
of a negative number. In terms of a contract, a precondition represents an obligation

41

of the caller of the method. If you call a method without meeting its precondition,
then there is no reason to expect it to work properly. The program might crash or
give incorrect results, but you can only blame yourself, not the method.

A postcondition of a method represents the other side of the contract. It is some-
thing that will be true after the method has run (assuming that its preconditions
were met – and that there are no bugs in the method). The postcondition of the
method Math.sqrt() is that the square of the value that is returned by this method
is equal to the parameter that is provided when the method is called. Of course, this
will only be true if the preconditiion – that the parameter is greater than or equal to
zero – is met. A postcondition of the built-in method System.out.print() is that the
value of the parameter has been displayed on the screen.

Preconditions most often give restrictions on the acceptable values of parameters,
as in the example of Math.sqrt(x). However, they can also refer to global vari-
ables that are used in the method. The postcondition of a method specifies the task
that it performs. For a method, the postcondition should specify the value that the
method returns. Methods are often described by comments that explicitly specify
their preconditions and postconditions. When you are given a pre-written method, a
statement of its preconditions and postcondtions tells you how to use it and what it
does. When you are assigned to write a method, the preconditions and postconditions
give you an exact specification of what the method is expected to do. Its a good idea
to write preconditions and postconditions as part of comments are given in the form
of Javadoc comments, but I will explicitly label the preconditions and postconditions.
(Many computer scientists think that new doc tags @precondition and @postcondi-
tion should be added to the Javadoc system for explicit labeling of preconditions and
postconditions, but that has not yet been done.

2.2.3 APIs and Packages

One of the important advantages of object-oriented programming is that it promotes
reuse. When writing any piece of software, a programmer can use a large and growing
body of pre-written software. The JAVA SDK (software development kit) consists
of thousands of classes that can be used by programmers. So, learning the JAVA
language means also being able to use this vast library of classes.

Toolboxes

Someone who wants to program for Macintosh computers – and to produce programs
that look and behave the way users expect them to – must deal with the Macintosh
Toolbox, a collection of well over a thousand different methods. There are methods for
opening and closing windows, for drawing geometric figures and text to windows, for
adding buttons to windows, and for responding to mouse clicks on the window. There
are other methods for creating menus and for reacting to user selections from menus.
Aside from the user interface, there are methods for opening files and reading data
from them, for communicating over a network, for sending output to a printer, for
handling communication between programs, and in general for doing all the standard
things that a computer has to do. Microsoft Windows provides its own set of methods
for programmers to use, and they are quite a bit different from the methods used on
the Mac. Linux has several different GUI toolboxes for the programmer to choose
from.

42

The analogy of a “toolbox” is a good one to keep in mind. Every programming
project involves a mixture of innovation and reuse of existing tools. A programmer
is given a set of tools to work with, starting with the set of basic tools that are built
into the language: things like variables, assignment statements, if statements, and
loops. To these, the programmer can add existing toolboxes full of methods that
have already been written for performing certain tasks. These tools, if they are well-
designed, can be used as true black boxes: They can be called to perform their as-
signed tasks without worrying about the particular steps they go through to accom-
plish those tasks. The innovative part of programming is to take all these tools and
apply them to some particular project or problem (word-processing, keeping track of
bank accounts, processing image data from a space probe, Web browsing, computer
games,...). This is called applications programming.

A software toolbox is a kind of black box, and it presents a certain interface to
the programmer. This interface is a specification of what methods are in the toolbox,
what parameters they use, and what tasks they perform. This information consti-
tutes the API, or Applications Programming Interface, associated with the toolbox.
The Macintosh API is a specification of all the methods available in the Macintosh
Toolbox. A company that makes some hardware device – say a card for connecting
a computer to a network – might publish an API for that device consisting of a list
of methods that programmers can call in order to communicate with and control the
device. Scientists who write a set of methods for doing some kind of complex compu-
tation – such as solving “differential equations”, say – would provide an API to allow
others to use those methods without understanding the details of the computations
they perform.

The JAVA programming language is supplemented by a large, standard API. You’ve
seen part of this API already, in the form of mathematical methods such as
Math.sqrt(), the String data type and its associated methods, and the
System.out.print() methods. The standard JAVA API includes methods for work-
ing with graphical user interfaces, for network communication, for reading and writ-
ing files, and more. It’s tempting to think of these methods as being built into the
JAVA language, but they are technically methods that have been written and made
available for use in JAVA programs.

JAVA is platform-independent. That is, the same program can run on platforms
as diverse as Macintosh, Windows, Linux, and others. The same JAVA API must
work on all these platforms. But notice that it is the interface that is platform-
independent; the implementation varies from one platform to another. A JAVA
system on a particular computer includes implementations of all the standard API
methods. A JAVA program includes only calls to those methods. When the JAVA
interpreter executes a program and encounters a call to one of the standard methods,
it will pull up and execute the implementation of that method which is appropriate
for the particular platform on which it is running. This is a very powerful idea. It
means that you only need to learn one API to program for a wide variety of platforms.

JAVA’s Standard Packages

Like all methods in JAVA, the methods in the standard API are grouped into classes.
To provide larger-scale organization, classes in JAVA can be grouped into packages,
which were introduced briefly in Subection2.6.4. You can have even higher levels of
grouping, since packages can also contain other packages. In fact, the entire stan-
dard JAVA API is implemented in several packages. One of these, which is named

43

“java”, contains several non-GUI packages as well as the original AWT graphics user
interface classes. Another package, “javax”, was added in JAVA version 1.2 and con-
tains the classes used by the Swing graphical user interface and other additions to
the API.

A package can contain both classes and other packages. A package that is con-
tained in another package is sometimes called a “sub-package.” Both the java pack-
age and the javax package contain sub-packages. One of the sub-packages of java,
for example, is called “awt”. Since awt is contained within java, its full name is ac-
tually java.awt. This package contains classes that represent GUI components such
as buttons and menus in the AWT, the older of the two JAVA GUI toolboxes, which
is no longer widely used. However, java.awt also contains a number of classes that
form the foundation for all GUI programming, such as the Graphics class which pro-
vides methods for drawing on the screen, the Color class which represents colors, and
the Font class which represents the fonts that are used to display characters on the
screen. Since these classes are contained in the package java.awt, their full names
are actually java.awt.Graphics, java.awt.Color and java.awt.Font. (I hope that
by now you’ve gotten the hang of how this naming thing works in JAVA.) Simi-
larly, javax contains a sub-package named javax.swing, which includes such classes
as javax.swing.JButton, javax.swing.JMenu, and javax.swing.JFrame. The GUI
classes in javax.swing, together with the foundational classes in java.awt are all
part of the API that makes it possible to program graphical user interfaces in JAVA.

The java package includes several other sub-packages, such as java.io, which
provides facilities for input/output, java.net, which deals with network communi-
cation, and java.util, which provides a variety of “utility” classes. The most basic
package is called java.lang. This package contains fundamental classes such as
String, Math, Integer, and Double.

It might be helpful to look at a graphical representation of the levels of nesting
in the java package, its sub-packages, the classes in those sub-packages, and the
methods in those classes. This is not a complete picture, since it shows only a very
few of the many items in each element:

The official documentation for the standard JAVA 5.0 API lists 165 different pack-
ages, including sub-packages, and it lists 3278 classes in these packages. Many of
these are rather obscure or very specialized, but you might want to browse through
the documentation to see what is available.

44

Even an expert programmer won’t be familiar with the entire API, or even a ma-
jority of it. In this book, you’ll only encounter several dozen classes, and those will be
sufficient for writing a wide variety of programs.

Using Classes from Packages

Let’s say that you want to use the class java.awt.Color in a program that you are
writing. Like any class, java.awt.Color is a type, which means that you can use
it declare variables and parameters and to specify the return type of a method. One
way to do this is to use the full name of the class as the name of the type. For example,
suppose that you want to declare a variable named rectColor of type java.awt.Color.
You could say:

java.awt.Color rectColor;

This is just an ordinary variable declaration of the form “type-name variable-
name;”. Of course, using the full name of every class can get tiresome, so JAVA makes
it possible to avoid using the full names of a class by importing the class. If you put

import java.awt.Color;

at the beginning of a JAVA source code file, then, in the rest of the file, you can
abbreviate the full name java.awt.Color to just the simple name of the class, Color.
Note that the import line comes at the start of a file and is not inside any class.
Although it is sometimes referred to as as a statement, it is more properly called an
import directive since it is not a statement in the usual sense. Using this import
directive would allow you to say

Color rectColor;

to declare the variable. Note that the only effect of the import directive is to allow
you to use simple class names instead of full “package.class” names; you aren’t really
importing anything substantial. If you leave out the import directive, you can still
access the class – you just have to use its full name. There is a shortcut for importing
all the classes from a given package. You can import all the classes from java.awt by
saying

import java.awt.∗;

The “*” is a wildcard that matches every class in the package. (However, it does not
match sub-packages; you cannot import the entire contents of all the sub-packages
of the java packages by saying importjava.*.)

Some programmers think that using a wildcard in an import statement is bad
style, since it can make a large number of class names available that you are not
going to use and might not even know about. They think it is better to explicitly
import each individual class that you want to use. In my own programming, I often
use wildcards to import all the classes from the most relevant packages, and use
individual imports when I am using just one or two classes from a given package.

In fact, any JAVA program that uses a graphical user interface is likely to use
many classes from the java.awt and java.swing packages as well as from another
package named java.awt.event, and I usually begin such programs with

import java.awt.∗;
import java.awt.event.∗;
import javax.swing.∗;

45

A program that works with networking might include: “import java.net.∗;”,
while one that reads or writes files might use “import java.io.∗;”. (But when you
start importing lots of packages in this way, you have to be careful about one thing:
It’s possible for two classes that are in different packages to have the same name.
For example, both the java.awt package and the java.util package contain classes
named List. If you import both java.awt.∗ and java.util.∗, the simple name List
will be ambiguous. If you try to declare a variable of type List, you will get a compiler
error message about an ambiguous class name. The solution is simple: use the full
name of the class, either java.awt.List or java.util.List. Another solution, of
course, is to use import to import the individual classes you need, instead of importing
entire packages.)

Because the package java.lang is so fundamental, all the classes in java.lang
are automatically imported into every program. It’s as if every program began
with the statement “import java.lang.∗;”. This is why we have been able to use
the class name String instead of java.lang.String, and Math.sqrt() instead of
java.lang.Math.sqrt(). It would still, however, be perfectly legal to use the longer
forms of the names.

Programmers can create new packages. Suppose that you want some classes that
you are writing to be in a package named utilities. Then the source code file that
defines those classes must begin with the line
package utilities;

This would come even before any import directive in that file. Furthermore, the
source code file would be placed in a folder with the same name as the package.
A class that is in a package automatically has access to other classes in the same
package; that is, a class doesn’t have to import the package in which it is defined.

In projects that define large numbers of classes, it makes sense to organize those
classes into packages. It also makes sense for programmers to create new packages
as toolboxes that provide functionality and API’s for dealing with areas not covered
in the standard JAVA API. (And in fact such “toolmaking” programmers often have
more prestige than the applications programmers who use their tools.)

However, I will not be creating any packages in this textbook. For the purposes
of this book, you need to know about packages mainly so that you will be able to
import the standard packages. These packages are always available to the programs
that you write. You might wonder where the standard classes are actually located.
Again, that can depend to some extent on the version of JAVA that you are using,
but in the standard JAVA 5.0, they are stored in jar files in a subdirectory of the
main JAVA installation directory. A jar (or “JAVA archive”) file is a single file that can
contain many classes. Most of the standard classes can be found in a jar file named
classes.jar. In fact, JAVA programs are generally distributed in the form of jar files,
instead of as individual class files.

Although we won’t be creating packages explicitly, every class is actually part of
a package. If a class is not specifically placed in a package, then it is put in something
called the default package, which has no name. All the examples that you see in this
book are in the default package.

2.3 Introduction to Error Handling

IN ADDITION TO THE CONTROL STRUCTURES that determine the normal flow of control in
a program, Java has a way to deal with “exceptional” cases that throw the flow of

46

control off its normal track. When an error occurs during the execution of a program,
the default behavior is to terminate the program and to print an error message. How-
ever, Java makes it possible to “catch” such errors and program a response different
from simply letting the program crash. This is done with the try..catch statement. In
this section, we will take a preliminary, incomplete look at using try..catch to handle
errors.

Exceptions

The term exception is used to refer to the type of error that one might want to handle
with a try..catch. An exception is an exception to the normal flow of control in
the program. The term is used in preference to “error” because in some cases, an
exception might not be considered to be an error at all. You can sometimes think of
an exception as just another way to organize a program.

Exceptions in Java are represented as objects of type Exception. Actual excep-
tions are defined by subclasses of Exception. Different subclasses represent differ-
ent types of exceptions We will look at only two types of exception in this section:
NumberFormatException and IllegalArgumentException.

A NumberFormatException can occur when an attempt is made to convert a string
into a number. Such conversions are done, for example, by Integer.parseInt and
Integer.parseDouble . Consider the method call Integer.parseInt(str) where
str is a variable of type String. If the value of str is the string “42”, then the method
call will correctly convert the string into the int 42. However, if the value of str is,
say, “fred”, the method call will fail because “fred” is not a legal string representation
of an int value. In this case, an exception of type NumberFormatException occurs. If
nothing is done to handle the exception, the program will crash.

An IllegalArgumentException can occur when an illegal value is passed as a pa-
rameter to a method. For example, if a method requires that a parameter be greater
than or equal to zero, an IllegalArgumentException might occur when a negative
value is passed to the method. How to respond to the illegal value is up to the person
who wrote the method, so we can’t simply say that every illegal parameter value will
result in an IllegalArgumentException. However, it is a common response.

One case where an IllegalArgumentException can occur is in the valueOf method
of an enumerated type. Recall that this method tries to convert a string into one
of the values of the enumerated type. If the string that is passed as a param-
eter to valueOf is not the name of one of the enumerated type’s value, then an
IllegalArgumentException occurs. For example, given the enumerated type

enum Toss { HEADS, TAILS };

Toss.valueOf("HEADS") correctly returns Toss.HEADS, but Toss.valueOf(‘‘FEET’’)
results in an IllegalArgumentException.

try . . . catch

When an exception occurs, we say that the exception is “thrown”. For example, we say
that Integer.parseInt(str) throws an exception of type NumberFormatException
when the value of str is illegal. When an exception is thrown, it is possible to
“catch” the exception and prevent it from crashing the program. This is done with a
try..catch statement. In somewhat simplified form, the syntax for a try..catch is:

47

try {
statements−1

}
catch (exception−class−name variable−name) {

statements−2
}

The exception-class-name in the catch clause could be NumberFormatException,
IllegalArgumentException, or some other exception class. When the computer ex-
ecutes this statement, it executes the statements in the try part. If no error occurs
during the execution of statements−1, then the computer just skips over the catch
part and proceeds with the rest of the program. However, if an exception of type
exception-class-name occurs during the execution of statements−1, the computer
immediately jumps to the catch part and executes statements−2, skipping any re-
maining statements in statements−1. During the execution of statements−2, the
variable-name represents the exception object, so that you can, for example, print it
out. At the end of the catch part, the computer proceeds with the rest of the pro-
gram; the exception has been caught and handled and does not crash the program.
Note that only one type of exception is caught; if some other type of exception occurs
during the execution of statements−1, it will crash the program as usual.

(By the way, note that the braces, { and }, are part of the syntax of the try..catch
statement. They are required even if there is only one statement between the braces.
This is different from the other statements we have seen, where the braces around a
single statement are optional.)

As an example, suppose that str is a variable of type String whose value might
or might not represent a legal real number. Then we could say:

try {
double x;
x = Double.parseDouble(str);
System.out.println(" The number i s " + x);

}
catch (NumberFormatException e) {

System.out.println(" Not a legal number . ");
}

If an error is thrown by the call to Double.parseDouble(str), then the output
statement in the try part is skipped, and the statement in the catch part is executed.

It’s not always a good idea to catch exceptions and continue with the program.
Often that can just lead to an even bigger mess later on, and it might be better
just to let the exception crash the program at the point where it occurs. However,
sometimes it’s possible to recover from an error. For example, suppose that we have
the enumerated type

enum Day {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY}

and we want the user to input a value belonging to this type. TextIO does not know
about this type, so we can only read the user’s response as a string. The method
Day.valueOf can be used to convert the user’s response to a value of type Day. This
will throw an exception of type IllegalArgumentException if the user’s response is
not the name of one of the values of type Day, but we can respond to the error easily
enough by asking the user to enter another response. Here is a code segment that
does this. (Converting the user’s response to upper case will allow responses such as
“Monday” or “monday” in addition to “MONDAY”.)

48

Scanner keyboard = new Scanner(System.in);
Day weekday; / / User ’ s response as a value o f type Day .
while (true) {

String response; / / User ’ s response as a S t r i n g .
keyboard.put(" Please enter a day of the week: ");
response = keyboard.nextLinen();
response = response.toUpperCase();
try {

weekday = Day.valueOf(response);
break;

}
catch (IllegalArgumentException e) {

System.out.println(response +
" i s not the name of a day of the week. ");

}
}

The break statement will be reached only if the user’s response is acceptable, and
so the loop will end only when a legal value has been assigned to weekday.

2.4 Javadoc

Good programming means extensive comments and documentation. At the very least,
explain the method of each instance variable, and for each method explain its pur-
pose, parameters, returns, where applicable. You should also strive for a consistent
layout and for expressive variable names.

A program that is well-documented is much more valuable than the same program
without the documentation. Java comes with a tool called javadoc that can make it
easier to produce the documentation is a readable and organized format. JavaDoc
is a program that will automatically extract/generate an HTML help-page from code
that is properly commented. In particular, it is designed produce a help file that,
for a class, lists the methods, constructors and public fields, and for each method
explains what it does together with pre-conditions, post-conditions, the meaning of
the parameters, exceptions that may be thrown and other things.

Javadoc is especially useful for documenting classes and packages of classes that
are meant to be used by other programmers. A programmer who wants to use pre-
written classes shouldn’t need to search through the source code to find out how to
use them. If the documentation in the source code is in the correct format, javadoc
can separate out the documentation and make it into a set of web pages. The web
pages are automatically formatted and linked into an easily browseable Web site.
Sun Microsystem’s documentation for the standard Java API was produced using
javadoc.

Javadoc documentation is prepared from special comments that are placed in the
Java source code file. Recall that one type of Java comment begins with /* and ends
with */. A Javadoc comment takes the same form, but it begins with /** rather than
simply /*.

/∗ ∗
∗ This method p r i n t s a 3N+1 sequence to standard output , using
∗ s t a r t i n g V a l u e as the i n i t i a l value o f N. I t a lso p r i n t s the number
∗ of terms i n the sequence . The value o f the parameter , s ta r t i ngVa lue ,
∗ must be a p o s i t i v e i n t e g e r .
∗ /

49

static void print3NSequence(int startingValue) { ...

You can have Javadoc comments for methods, member variables, and for classes.
The Javadoc comment always immediately precedes the thing it is commenting on.
Like any comment, a Javadoc comment is ignored by the computer when the file is
compiled. But there is a tool called javadoc that reads Java source code files, extracts
any Javadoc comments that it finds, and creates a set of Web pages containing the
comments in a nicely formatted, interlinked form. By default, javadoc will only col-
lect information about public classes, methods, and member variables, but it allows
the option of creating documentation for non-public things as well. If javadoc doesn’t
find any Javadoc comment for something, it will construct one, but the comment will
contain only basic information such as the name and type of a member variable or
the name, return type, and parameter list of a method. This is syntactic information.
To add information about semantics and pragmatics, you have to write a Javadoc
comment.

In addition to normal text, the comment can contain certain special codes. For one
thing, the comment can contain HTML mark-up commands. (HTML is the language
that is used to create web pages, and Javadoc comments are meant to be shown on
web pages.) The javadoc tool will copy any HTML commands in the comments to the
web pages that it creates. As an example, you can add <p> to indicate the start of
a new paragraph. (Generally, in the absence of HTML commands, blank lines and
extra spaces in the comment are ignored.)

In addition to HTML commands, Javadoc comments can include doc tags, which
are processed as commands by the javadoc tool. A doc tag has a name that begins
with the character . I will only discuss three tags: @param, @return, and @throws.
These tags are used in Javadoc comments for methods to provide information about
its parameters, its return value, and the exceptions that it might throw. These tags
are always placed at the end of the comment, after any description of the method
itself. The syntax for using them is:

@param parameter−name description−of−parameter

@return description−of−return−value

@throws exception−class−name description−of−exception

The descriptions can extend over several lines. The description ends at the next
tag or at the end of the comment. You can include a @param tag for every parameter
of the method and a @throws for as many types of exception as you want to document.
You should have a @return tag only for a non-void method. These tags do not have to
be given in any particular order. Here is an example that doesn’t do anything exciting
but that does use all three types of doc tag:

If you want to create Web-page documentation, you need to run the javadoc tool.
You can use javadoc in a command line interface similarly to the way that the javac
and java commands are used. Javadoc can also be applied in the Eclipse integrated
development environment: Just right-click the class or package that you want to doc-
ument in the Package Explorer, select ”Export,” and select ”Javadoc” in the window
that pops up. Consult the documentation for more details.

50

/∗ ∗
∗ This method computes the area of a rec tang le , given i t s width
∗ and i t s he igh t . The leng th and the width should be p o s i t i v e numbers .
∗ @param width the leng th o f one s ide o f the rec tang le
∗ @param he igh t the leng th the second s ide o f the rec tang le
∗ @return the area of the rec tang le
∗ @throws I l lega lArgumentExcept ion i f e i t h e r the width or the he igh t
∗ i s a negat ive number .
∗ /

public static double areaOfRectangle(double length, double width) {
if (width < 0 || height < 0)

throw new IllegalArgumentException(" S ides must have pos i t i ve length . ");
double area;
area = width ∗ height;
return area;

}

2.5 Creating Jar Files

As the final topic for this chapter, we look again at jar files. Recall that a jar file is
a “java archive” that can contain a number of class files. When creating a program
that uses more than one class, it’s usually a good idea to place all the classes that are
required by the program into a jar file, since then a user will only need that one file
to run the program. Jar files can also be used for stand-alone applications. In fact, it
is possible to make a so-called executable jar file. A user can run an executable
jar file in much the same way as any other application, usually by double-clicking the
icon of the jar file. (The user’s computer must have a correct version of JAVA installed,
and the computer must be configured correctly for this to work. The configuration is
usually done automatically when JAVA is installed, at least on Windows and Mac
OS.)

The question, then, is how to create a jar file. The answer depends on what pro-
gramming environment you are using. There are two basic types of programming
environment – command line and IDE. Any IDE (Integrated Programming Environ-
ment) for JAVA should have a command for creating jar files. In the Eclipse IDE, for
example, it’s done as follows: In the Package Explorer pane, select the programming
project (or just all the individual source code files that you need). Right-click on the
selection, and choose “Export” from the menu that pops up. In the window that ap-
pears, select “JAR file” and click “Next”. In the window that appears next, enter a
name for the jar file in the box labeled “JAR file”. (Click the “Browse” button next to
this box to select the file name using a file dialog box.) The name of the file should
end with “.jar”. If you are creating a regular jar file, not an executable one, you can
hit “Finish” at this point, and the jar file will be created. You could do this, for exam-
ple, if the jar file contains an applet but no main program. To create an executable
file, hit the “Next” button twice to get to the “Jar Manifest Specification” screen. At
the bottom of this screen is an input box labeled “Main class”. You have to enter the
name of the class that contains the main() method that will be run when the jar file
is executed. If you hit the “Browse” button next to the “Main class” box, you can select
the class from a list of classes that contain main() methods. Once you’ve selected the
main class, you can click the “Finish” button to create the executable jar file.

It is also possible to create jar files on the command line. The JAVA Development

51

Kit includes a command-line program named jar that can be used to create jar files.
If all your classes are in the default package (like the examples in this book), then the
jar command is easy to use. To create a non-executable jar file on the command line,
change to the directory that contains the class files that you want to include in the jar.
Then give the command jar cf JarFileName.jar ∗.class where JarFileName can
be any name that you want to use for the jar file. The “∗“ in “∗.class” is a wildcard
that makes ∗.class match every class file in the current directory. This means that
all the class files in the directory will be included in the jar file. If you want to include
only certain class files, you can name them individually, separated by spaces. (Things
get more complicated if your classes are not in the default package. In that case, the
class files must be in subdirectories of the directory in which you issue the jar file.)

Making an executable jar file on the command line is a little more complicated.
There has to be some way of specifying which class contains the main() method. This
is done by creating a manifest file. The manifest file can be a plain text file con-
taining a single line of the form Main−Class: ClassName where ClassName should
be replaced by the name of the class that contains the main() method. For example,
if the main() method is in the class MosaicDrawFrame, then the manifest file should
read “Main−Class: MosaicDrawFrame”. You can give the manifest file any name you
like. Put it in the same directory where you will issue the jar command, and use
a command of the form jar cmf ManifestFileName JarFileName.jar ∗.class to
create the jar file. (The jar command is capable of performing a variety of different
operations. The first parameter to the command, such as “cf” or “cmf”, tells it which
operation to perform.)

By the way, if you have successfully created an executable jar file, you can run it
on the command line using the command “java −jar”. For example:
java −jar JarFileName.jar

2.6 Creating Abstractions

IN THIS SECTION, we look at some specific examples of object-oriented design in a do-
main that is simple enough that we have a chance of coming up with something
reasonably reusable. Consider card games that are played with a standard deck of
playing cards (a so-called “poker” deck, since it is used in the game of poker).

2.6.1 Designing the classes

When designing object-oriented software, a crucial first step is to identify the objects
that will make up the application. One approach to do this is to identify the nouns in
the problem description. These become candidates for objects. Next we can identify
verbs in the description: these suggest methods for the objects.

Consider the following description of a card game:

In a typical card game, each player gets a hand of cards. The deck is
shuffled and cards are dealt one at a time from the deck and added to the
players’ hands. In some games, cards can be removed from a hand, and
new cards can be added. The game is won or lost depending on the value
(ace, 2, ..., king) and suit (spades, diamonds, clubs, hearts) of the cards
that a player receives.

52

If we look for nouns in this description, there are several candidates for objects:
game, player, hand, card, deck, value, and suit. Of these, the value and the suit of
a card are simple values, and they will just be represented as instance variables in
a Card object. In a complete program, the other five nouns might be represented by
classes. But let’s work on the ones that are most obviously reusable: card, hand, and
deck.

If we look for verbs in the description of a card game, we see that we can shuffle
a deck and deal a card from a deck. This gives use us two candidates for instance
methods in a Deck class: shuffle() and dealCard(). Cards can be added to and
removed from hands. This gives two candidates for instance methods in a Hand class:
addCard() and removeCard(). Cards are relatively passive things, but we need to be
able to determine their suits and values. We will discover more instance methods as
we go along.

The Deck Class:

First, we’ll design the deck class in detail. When a deck of cards is first created, it
contains 52 cards in some standard order. The Deck class will need a constructor to
create a new deck. The constructor needs no parameters because any new deck is
the same as any other. There will be an instance method called shuffle() that will
rearrange the 52 cards into a random order. The dealCard() instance method will
get the next card from the deck. This will be a method with a return type of Card,
since the caller needs to know what card is being dealt. It has no parameters – when
you deal the next card from the deck, you don’t provide any information to the deck;
you just get the next card, whatever it is. What will happen if there are no more cards
in the deck when its dealCard() method is called? It should probably be considered
an error to try to deal a card from an empty deck, so the deck can throw an exception
in that case. But this raises another question: How will the rest of the program know
whether the deck is empty? Of course, the program could keep track of how many
cards it has used. But the deck itself should know how many cards it has left, so the
program should just be able to ask the deck object. We can make this possible by
specifying another instance method, cardsLeft(), that returns the number of cards
remaining in the deck. This leads to a full specification of all the methods in the Deck
class:

/∗ ∗ Const ruc tor . Create a s h u f f l e d deck o f cards .
∗ @precondit ion : None
∗ @postcondit ion : A deck o f 52 , s h u f f l e d cards i s created . ∗ /
public Deck()

/∗ ∗ Shu f f l e a l l cards i n the deck i n t o a random order .
∗ @precondit ion : None
∗ @postcondit ion : The e x i s t i n g deck o f cards w i th the cards
∗ i n random order . ∗ /
public void shuffle()

/∗ ∗ Returns the s ize o f the deck
∗ @return the number o f cards t h a t are s t i l l l e f t i n the deck .
∗ @precondit ion : None
∗ @postcondit ion : The deck i s unchanged . ∗ /
public int size()

53

/∗ ∗ Determine i f t h i s deck i s empty
∗ @return t rue i f t h i s deck has no cards l e f t i n the deck .
∗ @precondit ion : None
∗ @postcondit ion : The deck i s unchanged . ∗ /
public boolean isEmpty()

/∗ ∗ Deal one card from t h i s deck
∗ @return a Card from the deck .
∗ @precondit ion : The deck i s not empty
∗ @postcondit ion : The deck has one less card . ∗ /
public Card deal()

This is everything you need to know in order to use the Deck class. Of course,
it doesn’t tell us how to write the class. This has been an exercise in design, not in
programming. With this information, you can use the class in your programs without
understanding the implementation. The description above is a contract between the
users of the class and implementors of the class—it is the “public interface” of the
class.

The Hand Class:

We can do a similar analysis for the Hand class. When a hand object is first created,
it has no cards in it. An addCard() instance method will add a card to the hand.
This method needs a parameter of type Card to specify which card is being added.
For the removeCard() method, a parameter is needed to specify which card to re-
move. But should we specify the card itself (“Remove the ace of spades”), or should
we specify the card by its position in the hand (“Remove the third card in the hand”)?
Actually, we don’t have to decide, since we can allow for both options. We’ll have two
removeCard() instance methods, one with a parameter of type Card specifying the
card to be removed and one with a parameter of type int specifying the position of
the card in the hand. (Remember that you can have two methods in a class with
the same name, provided they have different types of parameters.) Since a hand can
contain a variable number of cards, it’s convenient to be able to ask a hand object
how many cards it contains. So, we need an instance method getCardCount() that
returns the number of cards in the hand. When I play cards, I like to arrange the
cards in my hand so that cards of the same value are next to each other. Since this is
a generally useful thing to be able to do, we can provide instance methods for sorting
the cards in the hand. Here is a full specification for a reusable Hand class:

/∗ ∗ Create a Hand ob jec t t h a t i s i n i t i a l l y empty .
∗ @precondit ion : None
∗ @postcondit ion : An empty hand ob jec t i s created . ∗ /
public Hand() {

/∗ ∗ Discard a l l cards from the hand , making the hand empty .
∗ @precondit ion : None
∗ @postcondit ion : The hand ob jec t i s empty . ∗ /
public void clear() {

/∗ ∗ I f the s p e c i f i e d card i s i n the hand , i t i s removed .
∗ @param c the Card to be removed .
∗ @precondit ion : c i s a Card ob jec t and i s non−n u l l .
∗ @postcondit ion : The s p e c i f i e d card i s removed i f i t e x i s t s . ∗ /
public void removeCard(Card c) {

54

/∗ ∗ Add the card c to the hand .
∗ @param The Card to be added .
∗ @precondit ion : c i s a Card ob jec t and i s non−n u l l .
∗ @postcondit ion : The hand ob jec t conta ins the Card c
∗ and now has one more card .
∗ @throws Nu l lPo in te rExcep t ion i s thrown i f c i s not a
∗ Card or i s n u l l . ∗ /
public void addCard(Card c) {

/∗ ∗ Remove the card i n the s p e c i f i e d p o s i t i o n from the hand .
∗ @param p o s i t i o n the p o s i t i o n o f the card t h a t i s to be removed ,
∗ where p o s i t i o n s s t a r t from zero .
∗ @precondit ion : p o s i t i o n i s v a l i d i . e . 0 < p o s i t i o n < number cards
∗ @postcondit ion : The card i n the s p e c i f i e d p o s i t i o n i s removed
∗ and there i s one less card i n the hand .
∗ @throws I l lega lArgumentExcept ion i f the p o s i t i o n does not e x i s t i n
∗ the hand . ∗ /
public void removeCard(int position) {

/∗ ∗ Return the number o f cards i n the hand .
∗ @return i n t the number o f cards i n the hand
∗ @precondit ion : none
∗ @postcondit ion : No change i n s ta te o f Hand . ∗ /
public int getCardCount() {

/∗ ∗ Gets the card i n a s p e c i f i e d p o s i t i o n i n the hand .
∗ (Note t h a t t h i s card i s not removed from the hand !)
∗ @param p o s i t i o n the p o s i t i o n o f the card t h a t i s to be re turned
∗ @return Card the Card a t the s p e c i f i e d p o s i t i o n .
∗ @throws I l lega lArgumentExcept ion i f p o s i t i o n does not e x i s t .
∗ @precondit ion : p o s i t i o n i s v a l i d i . e . 0 < p o s i t i o n < number cards .
∗ @postcondit ion : The s ta te o f the Hand i s unchanged . ∗ /
public Card getCard(int position) {

/∗ ∗ Sorts the cards i n the hand i n s u i t order and i n value order
∗ w i t h i n s u i t s . Note t h a t aces have the lowest value , 1 .
∗ @precondit ion : none
∗ @postcondit ion : Cards o f the same
∗ s u i t are grouped together , and w i t h i n a s u i t the cards
∗ are sor ted by value . ∗ /

public void sortBySuit() {

/∗ ∗ Sorts the cards i n the hand so t h a t cards are sor ted i n t o
∗ order o f i nc reas ing value . Cards wi th the same value
∗ are sor ted by s u i t . Note t h a t aces are considered
∗ to have the lowest value .
∗ @precondit ion : none
∗ @postcondit ion : Cards are sor ted i n order o f i nc reas ing value . ∗ /

public void sortByValue() {

The Card Class

The class will have a constructor that specifies the value and suit of the card that
is being created. There are four suits, which can be represented by the integers 0,

55

1, 2, and 3. It would be tough to remember which number represents which suit,
so I’ve defined named constants in the Card class to represent the four possibilities.
For example, Card.SPADES is a constant that represents the suit, spades. (These
constants are declared to be public final static ints. It might be better to use an
enumerated type, but for now we will stick to integer-valued constants. I’ll return to
the question of using enumerated types in this example at the end of the chapter.)
The possible values of a card are the numbers 1, 2, ..., 13, with 1 standing for an
ace, 11 for a jack, 12 for a queen, and 13 for a king. Again, I’ve defined some named
constants to represent the values of aces and face cards.

A Card object can be constructed knowing the value and the suit of the card. For
example, we can call the constructor with statements such as:

card1 = new Card(Card.ACE, Card.SPADES); / / Const ruct ace of spades .
card2 = new Card(10, Card.DIAMONDS); / / Const ruct 10 o f diamonds .
card3 = new Card(v, s); / / This i s OK, as long as v and s

/ / are i n t e g e r expressions .

A Card object needs instance variables to represent its value and suit. I’ve made
these private so that they cannot be changed from outside the class, and I’ve pro-
vided getter methods getSuit() and getValue() so that it will be possible to discover
the suit and value from outside the class. The instance variables are initialized in
the constructor, and are never changed after that. In fact, I’ve declared the instance
variables suit and value to be final, since they are never changed after they are
initialized. (An instance variable can be declared final provided it is either given an
initial value in its declaration or is initialized in every constructor in the class.)

Finally, I’ve added a few convenience methods to the class to make it easier to
print out cards in a human-readable form. For example, I want to be able to print
out the suit of a card as the word “Diamonds”, rather than as the meaningless code
number 2, which is used in the class to represent diamonds. Since this is some-
thing that I’ll probably have to do in many programs, it makes sense to include
support for it in the class. So, I’ve provided instance methods getSuitAsString()
and getValueAsString() to return string representations of the suit and value of a
card. Finally, I’ve defined the instance method toString() to return a string with
both the value and suit, such as “Queen of Hearts”. Recall that this method will be
used whenever a Card needs to be converted into a String, such as when the card is
concatenated onto a string with the + operator. Thus, the statement

System.out.println(" Your card i s the " + card);

is equivalent to

System.out.println(" Your card i s the " + card.toString());

If the card is the queen of hearts, either of these will print out
‘‘Your card is the Queen of Hearts’’.

Here is the complete Card class. It is general enough to be highly reusable, so the
work that went into designing, writing, and testing it pays off handsomely in the long
run.

/∗ ∗ An ob jec t o f type Card represents a p lay ing card from a
∗ standard Poker deck , i n c l u d i n g Jokers . The card has a s u i t , which
∗ can be spades , hearts , diamonds , clubs , or j oke r . A spade , heart ,
∗ diamond , or c lub has one of the 13 values : ace , 2 , 3 , 4 , 5 , 6 , 7 ,
∗ 8 , 9 , 10 , jack , queen , or k ing . Note t h a t " ace " i s considered to be
∗ the sma l les t value . A joke r can also have an assoc iated value ;

56

∗ t h i s value can be anyth ing and can be used to keep t rack o f severa l
∗ d i f f e r e n t j oke rs .
∗ /

public class Card {
public final static int SPADES = 0; / / Codes f o r the 4 s u i t s .
public final static int HEARTS = 1;
public final static int DIAMONDS = 2;
public final static int CLUBS = 3;

public final static int ACE = 1; / / Codes f o r the non−numeric cards .
public final static int JACK = 11; / / Cards 2 through 10 have t h e i r
public final static int QUEEN = 12; / / numer ica l values f o r t h e i r codes .
public final static int KING = 13;

/∗ ∗ This card ’ s s u i t , one of the constants SPADES, HEARTS, DIAMONDS,
∗ CLUBS. The s u i t cannot be changed a f t e r the card i s
∗ const ruc ted . ∗ /

private final int suit;

/∗ ∗ The card ’ s value . For a normal cards , t h i s i s one of the values
∗ 1 through 13 , w i th 1 represen t ing ACE. The value cannot be changed
∗ a f t e r the card i s const ruc ted . ∗ /

private final int value;

/∗ ∗ Creates a card w i th a s p e c i f i e d s u i t and value .
∗ @param theValue the value o f the new card . For a regu la r card (non−j o ke r) ,
∗ the value must be i n the range 1 through 13 , w i th 1 represen t ing an Ace .
∗ You can use the constants Card .ACE, Card . JACK, Card .QUEEN, and Card . KING .
∗ For a Joker , the value can be anyth ing .
∗ @param theSu i t the s u i t o f the new card . This must be one of the values
∗ Card .SPADES, Card .HEARTS, Card .DIAMONDS, Card .CLUBS, or Card .JOKER.
∗ @throws I l lega lArgumentExcept ion i f the parameter values are not i n the
∗ permiss ib le ranges ∗ /

public Card(int theValue, int theSuit) {
if (theSuit != SPADES && theSuit != HEARTS && theSuit != DIAMONDS &&

theSuit != CLUBS)
throw new IllegalArgumentException(" I l l e g a l playing card s u i t ");

if (theValue < 1 || theValue > 13)
throw new IllegalArgumentException(" I l l e g a l playing card value ");

value = theValue;
suit = theSuit;

}

/∗ ∗ Returns the s u i t o f t h i s card .
∗ @returns the s u i t , which i s one of the constants Card .SPADES,
∗ Card .HEARTS, Card .DIAMONDS, Card .CLUBS ∗ /

public int getSuit() {
return suit;

}

/∗ ∗ Returns the value o f t h i s card .
∗ @return the value , which i s one the numbers 1 through 13. ∗ /

public int getValue() {
return value;

}

57

/∗ ∗ Returns a S t r i n g rep resen ta t i on o f the card ’ s s u i t .
∗ @return one of the s t r i n g s " Spades " , " Hearts " , " Diamonds " , " Clubs " . ∗ /

public String getSuitAsString() {
switch (suit) {
case SPADES: return " Spades ";
case HEARTS: return " Hearts ";
case DIAMONDS: return "Diamonds ";
case CLUBS: return " Clubs ";
default: return " Nu l l ";
}

}

/∗ ∗ Returns a S t r i n g rep resen ta t i on o f the card ’ s value .
∗ @return f o r a regu la r card , one of the s t r i n g s " Ace " , " 2 " ,
∗ " 3 " , . . . , "10 " , " Jack " , "Queen " , or " King " . ∗ /

public String getValueAsString() {
switch (value) {

case 1: return "Ace";
case 2: return " 2 ";
case 3: return " 3 ";
case 4: return " 4 ";
case 5: return " 5 ";
case 6: return " 6 ";
case 7: return " 7 ";
case 8: return " 8 ";
case 9: return " 9 ";
case 10: return " 10 ";
case 11: return " Jack ";
case 12: return "Queen";
default: return " King ";
}

}

/∗ ∗ Returns a s t r i n g rep resen ta t i on o f t h i s card , i n c l u d i n g both
∗ i t s s u i t and i t s value . Sample r e t u r n values
∗ are : "Queen of Hearts " , "10 o f Diamonds " , " Ace of Spades " , ∗ /

public String toString() {
return getValueAsString() + " of " + getSuitAsString();

}

} / / end c lass Card

2.7 Example: A Simple Card Game

We will finish this section by presenting a complete program that uses the Card and
Deck classes. The program lets the user play a very simple card game called High-
Low. A deck of cards is shuffled, and one card is dealt from the deck and shown to the
user. The user predicts whether the next card from the deck will be higher or lower
than the current card. If the user predicts correctly, then the next card from the deck
becomes the current card, and the user makes another prediction. This continues
until the user makes an incorrect prediction. The number of correct predictions is
the user’s score.

58

My program has a method that plays one game of HighLow. This method has a
return value that represents the user’s score in the game. The main()method lets the
user play several games of HighLow. At the end, it reports the user’s average score.

Note that the method that plays one game of HighLow returns the user’s score in
the game as its return value. This gets the score back to the main program, where it
is needed. Here is the program:

import java.util.Scanner;
/∗ ∗
∗ This program l e t s the user p lay HighLow , a simple card game
∗ t h a t i s descr ibed i n the output statements a t the beginning o f
∗ the main () method . A f t e r the user p lays severa l games ,
∗ the user ’ s average score i s repor ted .
∗ /

public class HighLow {

Scanner keyboard = new Scanner(System.in);

public static void main(String[] args) {

System.out.println(" T h i s program l e t s you play the simple card game, ");
System.out.println(" HighLow . A card i s dealt from a deck of cards . ");
System.out.println("You have to predict whether the next card w i l l be");
System.out.println(" higher or lower . Your score in the game i s the ");
System.out.println("number of correct predict ions you make before ");
System.out.println(" you guess wrong . ");
System.out.println();

int gamesPlayed = 0; / / Number o f games user has played .
int sumOfScores = 0; / / The sum of a l l the scores from

/ / a l l the games played .
double averageScore; / / Average score , computed by d i v i d i n g

/ / sumOfScores by gamesPlayed .
boolean playAgain; / / Record user ’ s response when user i s

/ / asked whether he wants to p lay
/ / another game .

do {
int scoreThisGame; / / Score f o r one game .
scoreThisGame = play(); / / Play the game and get the score .
sumOfScores += scoreThisGame;
gamesPlayed++;
System.out.print(" Play again? ");
playAgain = keyboard.nextBoolean();

} while (playAgain);

averageScore = ((double)sumOfScores) / gamesPlayed;

System.out.println();
System.out.println("You played " + gamesPlayed + " games. ");
System.out.printf(" Your average score was %1.3 f .\n ", averageScore);

} / / end main ()

59

/∗ ∗
∗ Let ’ s the user p lay one game of HighLow , and re tu rns the
∗ user ’ s score on t h a t game . The score i s the number o f
∗ c o r r e c t guesses t h a t the user makes .
∗ /

private static int play() {

Deck deck = new Deck(); / / Get a new deck of cards , and
/ / s to re a re ference to i t i n
/ / the va r iab le , deck .

Card currentCard; / / The cu r ren t card , which the user sees .

Card nextCard; / / The next card i n the deck . The user t r i e s
/ / to p r e d i c t whether t h i s i s h igher or lower
/ / than the cu r ren t card .

int correctGuesses ; / / The number o f c o r r e c t p r e d i c t i o n s the
/ / user has made . At the end of the game,
/ / t h i s w i l l be the user ’ s score .

char guess; / / The user ’ s guess . ’H ’ i f the user p r e d i c t s t h a t
/ / the next card w i l l be higher , ’ L ’ i f the user
/ / p r e d i c t s t h a t i t w i l l be lower .

deck.shuffle(); / / Shu f f l e the deck i n t o a random order before
/ / s t a r t i n g the game .

correctGuesses = 0;
currentCard = deck.dealCard();
System.out.println(" The f i r s t card i s the " + currentCard);

while (true) { / / Loop ends when user ’ s p r e d i c t i o n i s wrong .

/∗ Get the user ’ s p red i c t i on , ’H ’ or ’ L ’ (or ’ h ’ or ’ l ’) . ∗ /

System.out.print(" W i l l the next card be higher (H) or lower (L)? ");
do {

guess = keyboard.next().charAt(0);
guess = Character.toUpperCase(guess);
if (guess != ’H’ && guess != ’ L ’)

System.out.print(" Please respond with H or L : ");
} while (guess != ’H’ && guess != ’ L ’);

/∗ Get the next card and show i t to the user . ∗ /

nextCard = deck.dealCard();
System.out.println(" The next card i s " + nextCard);

60

/∗ Check the user ’ s p r e d i c t i o n . ∗ /

if (nextCard.getValue() == currentCard.getValue()) {
System.out.println(" The value i s the same as the previous card . ");
System.out.println("You lose on t i e s . Sor ry ! ");
break; / / End the game .

}
else if (nextCard.getValue() > currentCard.getValue()) {

if (guess == ’H’) {
System.out.println(" Your prediction was correct . ");
correctGuesses++;

}
else {

System.out.println(" Your prediction was incorrect . ");
break; / / End the game .

}
}
else { / / nextCard i s lower

if (guess == ’ L ’) {
System.out.println(" Your prediction was correct . ");
correctGuesses++;

}
else {

System.out.println(" Your prediction was incorrect . ");
break; / / End the game .

}
}

/∗ To set up f o r the next i t e r a t i o n o f the loop , the nextCard
becomes the currentCard , s ince the currentCard has to be
the card t h a t the user sees , and the nextCard w i l l be
set to the next card i n the deck a f t e r the user makes
h is p r e d i c t i o n . ∗ /

currentCard = nextCard;
System.out.println();
System.out.println(" The card i s " + currentCard);

} / / end of wh i le loop

System.out.println();
System.out.println(" The game i s over . ");
System.out.println("You made " + correctGuesses

+ " correct predict ions . ");
System.out.println();

return correctGuesses;

} / / end play ()
} / / end c lass

61

62

Chapter 3
Tools for Working with

Abstractions

3.1 Introduction to Software Engineering

THE DIFFICULTIES INHERENT with the development of software has led many computer
scientists to suggest that software development should be treated as an engineering
activity. They argue for a disciplined approach where the software engineer uses
carefully thought out methods and processes.

The term software engineering has several meanings (from wikipedia):

* As the broad term for all aspects of the practice of computer programming, as
opposed to the theory of computer programming, which is called computer sci-
ence;

* As the term embodying the advocacy of a specific approach to computer pro-
gramming, one that urges that it be treated as an engineering profession rather
than an art or a craft, and advocates the codification of recommended practices
in the form of software engineering methodologies.

* Software engineering is

(1) ”the application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software, that is, the applica-
tion of engineering to software,” and

(2) ”the study of approaches as in (1).” IEEE Standard 610.12

3.1.1 Software Engineering Life-Cycles

A decades-long goal has been to find repeatable, predictable processes or method-
ologies that improve productivity and quality of software. Some try to systematize
or formalize the seemingly unruly task of writing software. Others apply project
management techniques to writing software. Without project management, software
projects can easily be delivered late or over budget. With large numbers of software
projects not meeting their expectations in terms of functionality, cost, or delivery
schedule, effective project management is proving difficult.

Software engineering requires performing many tasks, notably the following, some
of which may not seem to directly produce software.

63

• Requirements Analysis Extracting the requirements of a desired software
product is the first task in creating it. While customers probably believe they
know what the software is to do, it may require skill and experience in software
engineering to recognize incomplete, ambiguous or contradictory requirements.

• Specification Specification is the task of precisely describing the software to
be written, usually in a mathematically rigorous way. In reality, most successful
specifications are written to understand and fine-tune applications that were al-
ready well-developed. Specifications are most important for external interfaces,
that must remain stable.

• Design and Architecture Design and architecture refer to determining how
software is to function in a general way without being involved in details. Usu-
ally this phase is divided into two sub-phases.

• Coding Reducing a design to code may be the most obvious part of the software
engineering job, but it is not necessarily the largest portion.

• Testing Testing of parts of software, especially where code by two different
engineers must work together, falls to the software engineer.

• Documentation An important (and often overlooked) task is documenting the
internal design of software for the purpose of future maintenance and enhance-
ment. Documentation is most important for external interfaces.

• Maintenance Maintaining and enhancing software to cope with newly discov-
ered problems or new requirements can take far more time than the initial
development of the software. Not only may it be necessary to add code that does
not fit the original design but just determining how software works at some
point after it is completed may require significant effort by a software engineer.
About 2/3 of all software engineering work is maintenance, but this statistic can
be misleading. A small part of that is fixing bugs. Most maintenance is extend-
ing systems to do new things, which in many ways can be considered new work.
In comparison, about 2/3 of all civil engineering, architecture, and construction
work is maintenance in a similar way.

3.1.2 Object-oriented Analysis and Design

A large programming project goes through a number of stages, starting with specifi-
cation of the problem to be solved, followed by analysis of the problem and design of
a program to solve it. Then comes coding, in which the program’s design is expressed
in some actual programming language. This is followed by testing and debugging
of the program. After that comes a long period of maintenance, which means fix-
ing any new problems that are found in the program and modifying it to adapt it to
changing requirements. Together, these stages form what is called the software life
cycle. (In the real world, the ideal of consecutive stages is seldom if ever achieved.
During the analysis stage, it might turn out that the specifications are incomplete or
inconsistent. A problem found during testing requires at least a brief return to the
coding stage. If the problem is serious enough, it might even require a new design.
Maintenance usually involves redoing some of the work from previous stages....)

64

Large, complex programming projects are only likely to succeed if a careful, sys-
tematic approach is adopted during all stages of the software life cycle. The sys-
tematic approach to programming, using accepted principles of good design, is called
software engineering. The software engineer tries to efficiently construct programs
that verifyably meet their specifications and that are easy to modify if necessary.
There is a wide range of “methodologies” that can be applied to help in the system-
atic design of programs. (Most of these methodologies seem to involve drawing little
boxes to represent program components, with labeled arrows to represent relation-
ships among the boxes.)

We have been discussing object orientation in programming languages, which is
relevant to the coding stage of program development. But there are also object-
oriented methodologies for analysis and design. The question in this stage of the
software life cycle is, How can one discover or invent the overall structure of a pro-
gram? As an example of a rather simple object-oriented approach to analysis and
design, consider this advice: Write down a description of the problem. Underline all
the nouns in that description. The nouns should be considered as candidates for be-
coming classes or objects in the program design. Similarly, underline all the verbs.
These are candidates for methods. This is your starting point. Further analysis might
uncover the need for more classes and methods, and it might reveal that subclassing
can be used to take advantage of similarities among classes.

This is perhaps a bit simple-minded, but the idea is clear and the general ap-
proach can be effective: Analyze the problem to discover the concepts that are in-
volved, and create classes to represent those concepts. The design should arise from
the problem itself, and you should end up with a program whose structure reflects
the structure of the problem in a natural way.

3.1.3 Object Oriented design

OOP design rests on three principles:

• Abstraction: Ignore the details. In philosophical terminology, abstraction is
the thought process wherein ideas are distanced from objects. In computer sci-
ence, abstraction is a mechanism and practice to reduce and factor out details
so that one can focus on few concepts at a time.

Abstraction uses a strategy of simplification, wherein formerly concrete details
are left ambiguous, vague, or undefined. [wikipedia:Abstraction]

• Modularization: break into pieces. A module can be defined variously, but
generally must be a component of a larger system, and operate within that
system independently from the operations of the other components. Modularity
is the property of computer programs that measures the extent to which they
have been composed out of separate parts called modules.

Programs that have many direct interrelationships between any two random
parts of the program code are less modular than programs where those rela-
tionships occur mainly at well-defined interfaces between modules.

• Information hiding: separate the implementation and the function. The prin-
ciple of information hiding is the hiding of design decisions in a computer pro-
gram that are most likely to change, thus protecting other parts of the program

65

from change if the design decision is changed. Protecting a design decision in-
volves providing a stable interface which shields the remainder of the program
from the implementation (the details that are most likely to change).

We strive for responsibility-driven design: each class should be responsible
for its own data. We strive for loose coupling: each class is largely independent
and communicates with other classes via a small well-defined interface. We strive for
cohesion: each class performs one and only one task (for readability, reuse).

3.2 Class-Responsibility-Collaboration cards

CLASS-RESPONSIBILITY-COLLABORATION CARDS (CRC cards) are a brainstorming tool
used in the design of object-oriented software. They were proposed by Ward Cun-
ningham. They are typically used when first determining which classes are needed
and how they will interact.

CRC cards are usually created from index cards on which are written:

1. The class name.

2. The package name (if applicable).

3. The responsibilities of the class.

4. The names of other classes that the class will collaborate with to fulfill its re-
sponsibilities.

For example consider the CRC Card for a Playing Card class:

The responsibilities are listed on the left. The classes that the Playing Card class
will collaborate with are listed on the right.

The idea is that class design is undertaken by a team of developers. CRC cards are
used as a brainstorming technique. The team attempts to determine all the classes
and their responsibilities that will be needed for the application. The team runs
through various usage scenarios of the application. For e.g. one such scenario for
a game of cards may be “the player picks a card from the deck and hand adds it to
his hand”. The team uses the CRC cards to check if this scenario can be handled by
the responsibilites assigned to the classes. In this way, the design is refined until the
team agrees on a set of classes and has agreed on their responsibilities.

Using a small card keeps the complexity of the design at a minimum. It focuses
the designer on the essentials of the class and prevents him from getting into its
details and inner workings at a time when such detail is probably counter-productive.
It also forces the designer to refrain from giving the class too many responsibilities.

66

3.3 The Unified Modelling Language

THIS SECTION WILL GIVE YOU A QUICK OVERVIEW of the basics of UML. It is taken from
the user documentation of the UML tool Umbrello and wikipedia. Keep in mind that
this is not a comprehensive tutorial on UML but rather a brief introduction to UML
which can be read as a UML tutorial. If you would like to learn more about the
Unified Modelling Language, or in general about software analysis and design, refer
to one of the many books available on the topic. There are also a lot of tutorials on
the Internet which you can take as a starting point.

The Unified Modelling Language (UML) is a diagramming language or notation to
specify, visualize and document models of Object Oriented software systems. UML is
not a development method, that means it does not tell you what to do first and what
to do next or how to design your system, but it helps you to visualize your design
and communicate with others. UML is controlled by the Object Management Group
(OMG) and is the industry standard for graphically describing software. The OMG
have recently completed version 2 of the UML standard—known as UML2.

UML is designed for Object Oriented software design and has limited use for other
programming paradigms.

UML is not a method by itself, however it was designed to be compatible with the
leading object-oriented software development methods of its time (e.g., OMT, Booch,
Objectory). Since UML has evolved, some of these methods have been recast to take
advantage of the new notation (e.g., OMT) and new methods have been created based
on UML. Most well known is the Rational Unified Process (RUP) created by the Ra-
tional Software Corporation.

3.3.1 Modelling

There are three prominent parts of a system’s model:

• Functional Model

Showcases the functionality of the system from the user’s Point of View. In-
cludes Use Case Diagrams.

• Object Model

Showcases the structure and substructure of the system using objects, attributes,
operations, and associations. Includes Class Diagrams.

• Dynamic Model

Showcases the internal behavior of the system. Includes Sequence Diagrams,
Activity Diagrams and State Machine Diagrams.

UML is composed of many model elements that represent the different parts of a
software system. The UML elements are used to create diagrams, which represent
a certain part, or a point of view of the system. In UML 2.0 there are 13 types of
diagrams. Some of the more important diagrams are:

• Use Case Diagrams show actors (people or other users of the system), use cases
(the scenarios when they use the system), and their relationships

• Class Diagrams show classes and the relationships between them

67

• Sequence Diagrams show objects and a sequence of method calls they make to
other objects.

• Collaboration Diagrams show objects and their relationship, putting emphasis
on the objects that participate in the message exchange

• State Diagrams show states, state changes and events in an object or a part of
the system

• Activity Diagrams show activities and the changes from one activity to another
with the events occurring in some part of the system

• Component Diagrams show the high level programming components (such as
KParts or Java Beans).

• Deployment Diagrams show the instances of the components and their relation-
ships.

3.3.2 Use Case Diagrams

Use Case Diagrams describe the relationships and dependencies between a group of
Use Cases and the Actors participating in the process.

It is important to notice that Use Case Diagrams are not suited to represent the
design, and cannot describe the internals of a system. Use Case Diagrams are meant
to facilitate the communication with the future users of the system, and with the
customer, and are specially helpful to determine the required features the system is
to have. Use Case Diagrams tell, what the system should do but do not–and cannot–
specify how this is to be achieved.

A Use Case describes–from the point of view of the actors–a group of activities in
a system that produces a concrete, tangible result.

Use Cases are descriptions of the typical interactions between the users of a sys-
tem and the system itself. They represent the external interface of the system and
specify a form of requirements of what the system has to do (remember, only what,
not how).

When working with Use Cases, it is important to remember some simple rules:

• Each Use Case is related to at least one actor

• Each Use Case has an initiator (i.e. an actor)

• Each Use Case leads to a relevant result (a result with a business value)

An actor is an external entity (outside of the system) that interacts with the sys-
tem by participating (and often initiating) a Use Case. Actors can be in real life
people (for example users of the system), other computer systems or external events.

Actors do not represent the physical people or systems, but their role . This means
that when a person interacts with the system in different ways (assuming different
roles) he will be represented by several actors. For example a person that gives cus-
tomer support by the telephone and takes orders from the customer into the system
would be represented by an actor “Support Staff” and an actor “Sales Representative”

Use Case Descriptions are textual narratives of the Use Case. They usually take
the form of a note or a document that is somehow linked to the Use Case, and explains
the processes or activities that take place in the Use Case.

68

Figure 3.1: Umbrello UML Modeller showing a Use Case Diagram

3.3.3 Class Diagrams

Class Diagrams show the different classes that make up a system and how they relate
to each other. Class Diagrams are said to be ”static” diagrams because they show the
classes, along with their methods and attributes as well as the static relationships
between them: which classes ”know” about which classes or which classes ”are part”
of another class, but do not show the method calls between them.

A Class defines the attributes and the methods of a set of objects. All objects of
this class (instances of this class) share the same behavior, and have the same set of
attributes (each object has its own set). The term ”Type” is sometimes used instead
of Class, but it is important to mention that these two are not the same, and Type is
a more general term.

In UML, Classes are represented by rectangles, with the name of the class, and
can also show the attributes and operations of the class in two other ”compartments”
inside the rectangle.

In UML, Attributes are shown with at least their name, and can also show their
type, initial value and other properties. Attributes can also be displayed with their
visibility:

• + Stands for public attributes

• # Stands for protected attributes

• - Stands for private attributes

Operations (methods) are also displayed with at least their name, and can also
show their parameters and return types. Operations can, just as Attributes, display
their visibility:

69

Figure 3.2: Umbrello UML Modeller showing a Class Diagram

Figure 3.3: Visual representation of a Class in UML

70

Figure 3.4: Visual representation of a generalization in UML

• + Stands for public operations

• # Stands for protected operations

• - Stands for private operations

Class Associations

Classes can relate (be associated with) to each other in different ways:
Inheritance is one of the fundamental concepts of Object Orientated program-

ming, in which a class ”gains” all of the attributes and operations of the class it
inherits from, and can override/modify some of them, as well as add more attributes
and operations of its own.

• Generalization In UML, a Generalization association between two classes
puts them in a hierarchy representing the concept of inheritance of a derived
class from a base class. In UML, Generalizations are represented by a line
connecting the two classes, with an arrow on the side of the base class.

• Association An association represents a relationship between classes, and gives
the common semantics and structure for many types of ”connections” between
objects.

Associations are the mechanism that allows objects to communicate to each
other. It describes the connection between different classes (the connection be-
tween the actual objects is called object connection, or link .

Associations can have a role that specifies the purpose of the association and
can be uni- or bidirectional (indicates if the two objects participating in the
relationship can send messages to the other, of if only one of them knows about
the other). Each end of the association also has a multiplicity value, which
dictates how many objects on this side of the association can relate to one object
on the other side.

In UML, associations are represented as lines connecting the classes participat-
ing in the relationship, and can also show the role and the multiplicity of each of
the participants. Multiplicity is displayed as a range [min..max] of non-negative
values, with a star (*) on the maximum side representing infinite.

• Aggregations Aggregations are a special type of associations in which the two
participating classes don’t have an equal status, but make a ”whole-part” re-
lationship. An Aggregation describes how the class that takes the role of the

71

Figure 3.5: Visual representation of an Association in UML Aggregation

Figure 3.6: Visual representation of an Aggregation relationship in UML

whole, is composed (has) of other classes, which take the role of the parts. For
Aggregations, the class acting as the whole always has a multiplicity of one.

In UML, Aggregations are represented by an association that shows a rhomb
on the side of the whole.

• Composition Compositions are associations that represent very strong aggre-
gations. This means, Compositions form whole-part relationships as well, but
the relationship is so strong that the parts cannot exist on its own. They exist
only inside the whole, and if the whole is destroyed the parts die too.

In UML, Compositions are represented by a solid rhomb on the side of the
whole.

Other Class Diagram Items Class diagrams can contain several other items
besides classes.

• Interfaces are abstract classes which means instances can not be directly cre-
ated of them. They can contain operations but no attributes. Classes can in-
herit from interfaces (through a realisation association) and instances can then
be made of these diagrams.

• Datatypes are primitives which are typically built into a programming lan-
guage. Common examples include integers and booleans. They can not have
relationships to classes but classes can have relationships to them.

• Enums are a simple list of values. A typical example is an enum for days of the
week. The options of an enum are called Enum Literals. Like datatypes they
can not have relationships to classes but classes can have relationships to them.

• Packages represent a namespace in a programming language. In a diagram
they are used to represent parts of a system which contain more than one class,
maybe hundereds of classes.

Figure 3.7:

72

Figure 3.8: Umbrello UML Modeller showing a Sequence Diagram

3.3.4 Sequence Diagrams

Sequence Diagrams show the message exchange (i.e. method call) between several
Objects in a specific time-delimited situation. Objects are instances of classes. Se-
quence Diagrams put special emphasis in the order and the times in which the mes-
sages to the objects are sent.

In Sequence Diagrams objects are represented through vertical dashed lines, with
the name of the Object on the top. The time axis is also vertical, increasing down-
wards, so that messages are sent from one Object to another in the form of arrows
with the operation and parameters name.

Messages can be either synchronous, the normal type of message call where con-
trol is passed to the called object until that method has finished running, or asyn-
chronous where control is passed back directly to the calling object. Synchronous
messages have a vertical box on the side of the called object to show the flow of pro-
gram control.

3.3.5 Collaboration Diagrams

Collaboration Diagrams show the interactions occurring between the objects partic-
ipating in a specific situation. This is more or less the same information shown by
Sequence Diagrams but there the emphasis is put on how the interactions occur in
time while the Collaboration Diagrams put the relationships between the objects and
their topology in the foreground.

In Collaboration Diagrams messages sent from one object to another are repre-
sented by arrows, showing the message name, parameters, and the sequence of the
message. Collaboration Diagrams are specially well suited to showing a specific pro-
gram flow or situation and are one of the best diagram types to quickly demonstrate
or explain one process in the program logic.

73

Figure 3.9: Umbrello UML Modeller showing a Collaboration Diagram

3.3.6 State Diagram

State Diagrams show the different states of an Object during its life and the stimuli
that cause the Object to change its state.

State Diagrams view Objects as state machines or finite automata that can be in
one of a set of finite states and that can change its state via one of a finite set of
stimuli. For example an Object of type NetServer can be in one of following states
during its life:

• Ready

• Listening

• Working

• Stopped

and the events that can cause the Object to change states are

• Object is created

• Object receives message listen

• A Client requests a connection over the network

• A Client terminates a request

• The request is executed and terminated

• Object receives message stop ... etc

74

Figure 3.10: Umbrello UML Modeller showing a State Diagram

Activity Diagram

Activity Diagrams describe the sequence of activities in a system with the help of
Activities. Activity Diagrams are a special form of State Diagrams, that only (or
mostly) contains Activities.

Activity Diagrams are always associated to a Class , an Operation or a Use Case .
Activity Diagrams support sequential as well as parallel Activities. Parallel exe-

cution is represented via Fork/Wait icons, and for the Activities running in parallel,
it is not important the order in which they are carried out (they can be executed at
the same time or one after the other)

Component Diagrams

Component Diagrams show the software components (either component technologies
such as KParts, CORBA components or Java Beans or just sections of the system
which are clearly distinguishable) and the artifacts they are made out of such as
source code files, programming libraries or relational database tables.

Deployment Diagrams

Deployment diagrams show the runtime component instances and their associations.
They include Nodes which are physical resources, typically a single computer. They
also show interfaces and objects (class instances).

75

Figure 3.11: Umbrello UML Modeller showing an Activity Diagram

76

Chapter 4
Inheritance,

Polymorphism, and
Abstract Classes

Contents
4.1 Extending Existing Classes . 77
4.2 Inheritance and Class Hierarchy 80
4.3 Example: Vehicles . 81
4.4 Polymorphism . 83
4.5 Abstract Classes . 86
4.6 this and super . 88

4.6.1 The Special Variable this . 88
4.6.2 The Special Variable super . 89
4.6.3 Constructors in Subclasses . 90

A CLASS REPRESENTS A SET OF OBJECTS which share the same structure and behav-
iors. The class determines the structure of objects by specifying variables that are
contained in each instance of the class, and it determines behavior by providing the
instance methods that express the behavior of the objects. This is a powerful idea.
However, something like this can be done in most programming languages. The cen-
tral new idea in object-oriented programming–the idea that really distinguishes it
from traditional programming–is to allow classes to express the similarities among
objects that share some, but not all, of their structure and behavior. Such similarities
can be expressed using inheritance and polymorphism.

4.1 Extending Existing Classes

IN DAY-TO-DAY PROGRAMMING, especially for programmers who are just beginning to
work with objects, subclassing is used mainly in one situation: There is an existing
class that can be adapted with a few changes or additions. This is much more common
than designing groups of classes and subclasses from scratch. The existing class can
be extended to make a subclass. The syntax for this is

77

public class Subclass−name
extends Existing−class−name {

.

. / / Changes and a d d i t i o n s .

.
}

As an example, suppose you want to write a program that plays the card game,
Blackjack. You can use the Card, Hand, and Deck classes developed previously. How-
ever, a hand in the game of Blackjack is a little different from a hand of cards in
general, since it must be possible to compute the “value” of a Blackjack hand accord-
ing to the rules of the game. The rules are as follows: The value of a hand is obtained
by adding up the values of the cards in the hand.

• The value of a numeric card such as a three or a ten is its numerical value.

• The value of a Jack, Queen, or King is 10.

• The value of an Ace can be either 1 or 11. An Ace should be counted as 11 unless
doing so would put the total value of the hand over 21. Note that this means
that the second, third, or fourth Ace in the hand will always be counted as 1.

One way to handle this is to extend the existing Hand class by adding a method
that computes the Blackjack value of the hand. Here’s the definition of such a class:
public class BlackjackHand extends Hand {

/∗ ∗
∗ Computes and re tu rns the value o f t h i s hand i n the game
∗ of B lack jack .
∗ /

public int getBlackjackValue() {

int val; / / The value computed f o r the hand .
boolean ace; / / This w i l l be set to t r ue i f the

/ / hand conta ins an ace .
int cards; / / Number o f cards i n the hand .

val = 0;
ace = false;
cards = getCardCount();

for (int i = 0; i < cards; i++) {
/ / Add the value o f the i−th card i n the hand .

Card card; / / The i−th card ;
int cardVal; / / The b lack jack value o f the i−th card .
card = getCard(i);
cardVal = card.getValue(); / / The normal value , 1 to 13.
if (cardVal > 10) {

cardVal = 10; / / For a Jack , Queen , or King .
}
if (cardVal == 1) {

ace = true; / / There i s a t l e a s t one ace .
}
val = val + cardVal;

}

78

/ / Now, va l i s the value o f the hand , count ing any ace as 1.
/ / I f there i s an ace , and i f changing i t s value from 1 to
/ / 11 would leave the score less than or equal to 21 ,
/ / then do so by adding the ex t ra 10 po in t s to va l .

if (ace == true && val + 10 <= 21)
val = val + 10;

return val;

} / / end getBlack jackValue ()

} / / end c lass BlackjackHand

Since BlackjackHand is a subclass of Hand, an object of type BlackjackHand con-
tains all the instance variables and instance methods defined in Hand, plus the new
instance method named getBlackjackValue(). For example, if bjh is a variable
of type BlackjackHand, then all of the following are legal: bjh.getCardCount(),
bjh.removeCard(0), and bjh.getBlackjackValue(). The first two methods are de-
fined in Hand, but are inherited by BlackjackHand.

Inherited variables and methods from the Hand class can also be used in the def-
inition of BlackjackHand (except for any that are declared to be private, which pre-
vents access even by subclasses). The statement “cards = getCardCount();” in the
above definition of getBlackjackValue() calls the instance method getCardCount(),
which was defined in Hand.

Extending existing classes is an easy way to build on previous work. We’ll see
that many standard classes have been written specifically to be used as the basis for
making subclasses.

Access modifiers such as public and private are used to control access to mem-
bers of a class. There is one more access modifier, protected, that comes into the
picture when subclasses are taken into consideration. When protected is applied
as an access modifier to a method or member variable in a class, that member can
be used in subclasses – direct or indirect – of the class in which it is defined, but
it cannot be used in non-subclasses. (There is one exception: A protected member
can also be accessed by any class in the same package as the class that contains the
protected member. Recall that using no access modifier makes a member accessible
to classes in the same package, and nowhere else. Using the protected modifier is
strictly more liberal than using no modifier at all: It allows access from classes in the
same package and from subclasses that are not in the same package.)

When you declare a method or member variable to be protected, you are saying
that it is part of the implementation of the class, rather than part of the public inter-
face of the class. However, you are allowing subclasses to use and modify that part of
the implementation.

For example, consider a PairOfDice class that has instance variables die1 and
die2 to represent the numbers appearing on the two dice. We could make those vari-
ables private to make it impossible to change their values from outside the class,
while still allowing read access through getter methods. However, if we think it pos-
sible that PairOfDice will be used to create subclasses, we might want to make it pos-
sible for subclasses to change the numbers on the dice. For example, a GraphicalDice
subclass that draws the dice might want to change the numbers at other times be-
sides when the dice are rolled. In that case, we could make die1 and die2 protected,

79

which would allow the subclass to change their values without making them public
to the rest of the world. (An even better idea would be to define protected setter
methods for the variables. A setter method could, for example, ensure that the value
that is being assigned to the variable is in the legal range 1 through 6.)

4.2 Inheritance and Class Hierarchy

The term inheritance refers to the fact that one class can inherit part or all of
its structure and behavior from another class. The class that does the inheriting is
said to be a subclass of the class from which it inherits. If class B is a subclass of
class A, we also say that class A is a superclass of class B. (Sometimes the terms
derived class and base class are used instead of subclass and superclass; this is
the common terminology inC++.) A subclass can add to the structure and behavior
that it inherits. It can also replace or modify inherited behavior (though not inherited
structure). The relationship between subclass and superclass is sometimes shown by
a diagram in which the subclass is shown below, and connected to, its superclass.

In Java, to create a class named “B” as a subclass of a class named “A”, you would
write
class B extends A {

.

. / / a d d i t i o n s to , and m o d i f i c a t i o n s of ,

. / / s t u f f i n h e r i t e d from c lass A

.
}

Several classes can be declared as subclasses of the same superclass. The sub-
classes, which might be referred to as “sibling classes,” share some structures and
behaviors – namely, the ones they inherit from their common superclass. The super-
class expresses these shared structures and behaviors. In the diagram to the left,
classes B, C, and D are sibling classes. Inheritance can also extend over several “gen-
erations” of classes. This is shown in the diagram, where class E is a subclass of

80

class D which is itself a subclass of class A. In this case, class E is considered to be a
subclass of class A, even though it is not a direct subclass. This whole set of classes
forms a small class hierarchy.

4.3 Example: Vehicles

Let’s look at an example. Suppose that a program has to deal with motor vehicles,
including cars, trucks, and motorcycles. (This might be a program used by a Depart-
ment of Motor Vehicles to keep track of registrations.) The program could use a class
named Vehicle to represent all types of vehicles. Since cars, trucks, and motorcycles
are types of vehicles, they would be represented by subclasses of the Vehicle class,
as shown in this class hierarchy diagram:

The Vehicle class would include instance variables such as registrationNumber
and owner and instance methods such as transferOwnership(). These are variables
and methods common to all vehicles. The three subclasses of Vehicle – Car, Truck,
and Motorcycle – could then be used to hold variables and methods specific to partic-
ular types of vehicles. The Car class might add an instance variable numberOfDoors,
the Truck class might have numberOfAxels, and the Motorcycle class could have a
boolean variable hasSidecar. (Well, it could in theory at least, even if it might give a
chuckle to the people at the Department of Motor Vehicles.) The declarations of these
classes in Java program would look, in outline, like this (although in practice, they
would probably be public classes, defined in separate files):

class Vehicle {
int registrationNumber;
Person owner; / / (Assuming t h a t a Person c lass has been def ined !)
void transferOwnership(Person newOwner) {

. . .
}
. . .

}
class Car extends Vehicle {

int numberOfDoors;
. . .

}
class Truck extends Vehicle {

int numberOfAxels;
. . .

}
class Motorcycle extends Vehicle {

boolean hasSidecar;
. . .

}

81

Suppose that myCar is a variable of type Car that has been declared and initial-
ized with the statement Car myCar = new Car(); Given this declaration, a program
could refer to myCar.numberOfDoors, since numberOfDoors is an instance variable
in the class Car. But since class Car extends class Vehicle, a car also has all the
structure and behavior of a vehicle. This means that myCar.registrationNumber,
myCar.owner, and myCar.transferOwnership() also exist.

Now, in the real world, cars, trucks, and motorcycles are in fact vehicles. The
same is true in a program. That is, an object of type Caror Truck or Motorcycle is
automatically an object of type Vehicle too. This brings us to the following Important
Fact:

A variable that can hold a reference to an object of class A can also hold a
reference to an object belonging to any subclass of A.

The practical effect of this is that an object of type Car can be assigned to a vari-
able of type Vehicle; i.e. it would be legal to say Vehicle myVehicle = myCar; or
even Vehicle myVehicle = new Car();.

After either of these statements, the variable myVehicle holds a reference to a
Vehicle object that happens to be an instance of the subclass, Car. The object “re-
members” that it is in fact a Car, and not just a Vehicle. Information about the
actual class of an object is stored as part of that object. It is even possible to test
whether a given object belongs to a given class, using the instanceof operator. The
test: if (myVehicle instanceof Car) ... determines whether the object referred
to by myVehicle is in fact a car.

On the other hand, the assignment statement myCar = myVehicle; would be il-
legal because myVehicle could potentially refer to other types of vehicles that are
not cars. This is similar to a problem we saw previously: The computer will not al-
low you to assign an int value to a variable of type short, because not every int
is a short. Similarly, it will not allow you to assign a value of type Vehicle to
a variable of type Car because not every vehicle is a car. As in the case of int s
and shorts, the solution here is to use type-casting. If, for some reason, you hap-
pen to know that myVehicle does in fact refer to a Car, you can use the type cast
(Car)myVehicle to tell the computer to treat myVehicle as if it were actually of
type Car. So, you could say myCar = (Car)myVehicle; and you could even refer
to ((Car)myVehicle).numberOfDoors. As an example of how this could be used in a
program, suppose that you want to print out relevant data about a vehicle. You could
say:

System.out.println(" Vehicle Data : ");
System.out.println(" Regi s t rat ion number : "+ myVehicle.registrationNumber);
if (myVehicle instanceof Car) {

System.out.println(" Type of vehicle : Car ");
Car c;
c = (Car)myVehicle;
System.out.println("Number of doors : " + c.numberOfDoors);

}
else if (myVehicle instanceof Truck) {

System.out.println(" Type of vehicle : Truck ");
Truck t;
t = (Truck)myVehicle;
System.out.println("Number of axels : " + t.numberOfAxels);

}

82

else if (myVehicle instanceof Motorcycle) {
System.out.println(" Type of vehicle : Motorcycle ");
Motorcycle m;
m = (Motorcycle)myVehicle;
System.out.println(" Has a sidecar : " + m.hasSidecar);

}

Note that for object types, when the computer executes a program, it checks
whether type-casts are valid. So, for example, if myVehicle refers to an object of
type Truck, then the type cast (Car)myVehicle would be an error. When this happes,
an exception of type ClassCastException is thrown.

4.4 Polymorphism

As another example, consider a program that deals with shapes drawn on the screen.
Let’s say that the shapes include rectangles, ovals, and roundrects of various colors.
(A “roundrect” is just a rectangle with rounded corners.)

Three classes, Rectangle, Oval, and RoundRect, could be used to represent the
three types of shapes. These three classes would have a common superclass, Shape,
to represent features that all three shapes have in common. The Shape class could
include instance variables to represent the color, position, and size of a shape, and it
could include instance methods for changing the color, position, and size. Changing
the color, for example, might involve changing the value of an instance variable, and
then redrawing the shape in its new color:

class Shape {

Color color; / / Color o f the shape . (Reca l l t h a t c lass Color
/ / i s def ined i n package java . awt . Assume
/ / t h a t t h i s c lass has been imported .)

void setColor(Color newColor) {
/ / Method to change the co lo r o f the shape .

color = newColor; / / change value o f ins tance v a r i a b l e
redraw(); / / redraw shape , which w i l l appear i n new co lo r

}

void redraw() {
/ / method f o r drawing the shape

? ? ? / / what commands should go here?
}

. . . / / more ins tance v a r i a b l e s and methods

} / / end of c lass Shape

83

Now, you might see a problem here with the method redraw(). The problem is
that each different type of shape is drawn differently. The method setColor() can
be called for any type of shape. How does the computer know which shape to draw
when it executes the redraw() ? Informally, we can answer the question like this:
The computer executes redraw() by asking the shape to redraw itself. Every shape
object knows what it has to do to redraw itself.

In practice, this means that each of the specific shape classes has its own redraw()
method:

class Rectangle extends Shape {
void redraw() {

. . . / / commands f o r drawing a rec tang le
}
. . . / / poss ib ly , more methods and v a r i a b l e s

}
class Oval extends Shape {

void redraw() {
. . . / / commands f o r drawing an oval

}
. . . / / poss ib ly , more methods and v a r i a b l e s

}
class RoundRect extends Shape {

void redraw() {
. . . / / commands f o r drawing a rounded rec tang le

}
. . . / / poss ib ly , more methods and v a r i a b l e s

}

If oneShape is a variable of type Shape, it could refer to an object of any of the
types, Rectangle, Oval, or RoundRect. As a program executes, and the value of
oneShape changes, it could even refer to objects of different types at different times!
Whenever the statement oneShape.redraw(); is executed, the redraw method that is
actually called is the one appropriate for the type of object to which oneShape actually
refers. There may be no way of telling, from looking at the text of the program, what
shape this statement will draw, since it depends on the value that oneShape happens
to have when the program is executed. Even more is true. Suppose the statement
is in a loop and gets executed many times. If the value of oneShape changes as the
loop is executed, it is possible that the very same statement “oneShape.redraw();”
will call different methods and draw different shapes as it is executed over and over.
We say that the redraw() method is polymorphic. A method is polymorphic if the
action performed by the method depends on the actual type of the object to which
the method is applied. Polymorphism is one of the major distinguishing features of
object-oriented programming.

Perhaps this becomes more understandable if we change our terminology a bit:
In object-oriented programming, calling a method is often referred to as sending a
message to an object. The object responds to the message by executing the appro-
priate method. The statement “oneShape.redraw();” is a message to the object re-
ferred to by oneShape. Since that object knows what type of object it is, it knows how
it should respond to the message. From this point of view, the computer always exe-
cutes “oneShape.redraw();” in the same way: by sending a message. The response
to the message depends, naturally, on who receives it. From this point of view, objects
are active entities that send and receive messages, and polymorphism is a natural,
even necessary, part of this view. Polymorphism just means that different objects can

84

respond to the same message in different ways.
One of the most beautiful things about polymorphism is that it lets code that you

write do things that you didn’t even conceive of, at the time you wrote it. Suppose
that I decide to add beveled rectangles to the types of shapes my program can deal
with. A beveled rectangle has a triangle cut off each corner:

To implement beveled rectangles, I can write a new subclass, BeveledRect, of
class Shape and give it its own redraw() method. Automatically, code that I wrote
previously – such as the statement oneShape.redraw() – can now suddenly start
drawing beveled rectangles, even though the beveled rectangle class didn’t exist when
I wrote the statement!

In the statement “oneShape.redraw();”, the redraw message is sent to the object
oneShape. Look back at the method from the Shape class for changing the color of a
shape:

void setColor(Color newColor) {
color = newColor; / / change value o f ins tance v a r i a b l e
redraw(); / / redraw shape , which w i l l appear i n new co lo r

}

A redraw message is sent here, but which object is it sent to? Well, the setColor
method is itself a message that was sent to some object. The answer is that the
redraw message is sent to that same object, the one that received the setColor mes-
sage. If that object is a rectangle, then it is the redraw() method from the Rectangle
class that is executed. If the object is an oval, then it is the redraw() method from
the Oval class. This is what you should expect, but it means that the redraw();
statement in the setColor() method does not necessarily call the redraw() method
in the Shape class! The redraw() method that is executed could be in any subclass of
Shape.

Again, this is not a real surprise if you think about it in the right way. Remember
that an instance method is always contained in an object. The class only contains
the source code for the method. When a Rectangle object is created, it contains a
redraw() method. The source code for that method is in the Rectangle class. The ob-
ject also contains a setColor() method. Since the Rectangle class does not define a
setColor() method, the source code for the rectangle’s setColor() method comes
from the superclass, Shape, but the method itself is in the object of type Rectangle.
Even though the source codes for the two methods are in different classes, the meth-
ods themselves are part of the same object. When the rectangle’s setColor() method
is executed and calls redraw(), the redraw() method that is executed is the one in
the same object.

85

4.5 Abstract Classes

Whenever a Rectangle, Oval, or RoundRect object has to draw itself, it is the redraw()
method in the appropriate class that is executed. This leaves open the question, What
does the redraw() method in the Shape class do? How should it be defined?

The answer may be surprising: We should leave it blank! The fact is that the
class Shape represents the abstract idea of a shape, and there is no way to draw such
a thing. Only particular, concrete shapes like rectangles and ovals can be drawn. So,
why should there even be a redraw() method in the Shape class? Well, it has to be
there, or it would be illegal to call it in the setColor() method of the Shape class, and
it would be illegal to write “oneShape.redraw() ;”, where oneShape is a variable of
type Shape. The compiler would complain that oneShape is a variable of type Shape
and there’s no redraw() method in the Shape class.

Nevertheless the version of redraw() in the Shape class itself will never actually
be called. In fact, if you think about it, there can never be any reason to construct an
actual object of type Shape ! You can have variables of type Shape, but the objects
they refer to will always belong to one of the subclasses of Shape. We say that Shape
is an abstract class. An abstract class is one that is not used to construct objects,
but only as a basis for making subclasses. An abstract class exists only to express
the common properties of all its subclasses. A class that is not abstract is said to be
concrete. You can create objects belonging to a concrete class, but not to an abstract
class. A variable whose type is given by an abstract class can only refer to objects
that belong to concrete subclasses of the abstract class.

Similarly, we say that the redraw() method in class Shape is an abstract method,
since it is never meant to be called. In fact, there is nothing for it to do – any actual
redrawing is done by redraw() methods in the subclasses of Shape. The redraw()
method in Shape has to be there. But it is there only to tell the computer that all
Shapes understand the redraw message. As an abstract method, it exists merely to
specify the common interface of all the actual, concrete versions of redraw() in the
subclasses of Shape. There is no reason for the abstract redraw() in class Shape to
contain any code at all.

Shape and its redraw() method are semantically abstract. You can also tell the
computer, syntactically, that they are abstract by adding the modifier “abstract” to
their definitions. For an abstract method, the block of code that gives the implemen-
tation of an ordinary method is replaced by a semicolon. An implementation must
be provided for the abstract method in any concrete subclass of the abstract class.
Here’s what the Shape class would look like as an abstract class:

public abstract class Shape {

Color color; / / co l o r o f shape .

void setColor(Color newColor) { / / method to change the co lo r o f the shape
color = newColor; / / change value o f ins tance v a r i a b l e
redraw(); / / redraw shape , which w i l l appear i n new co lo r

}

abstract void redraw();
/ / abs t r ac t method−−must be def ined i n concrete subclasses

. . . / / more ins tance v a r i a b l e s and methods
} / / end of c lass Shape

86

Once you have declared the class to be abstract, it becomes illegal to try to create
actual objects of type Shape, and the computer will report a syntax error if you try to
do so.

Recall that a class that is not explicitly declared to be a subclass of some other
class is automatically made a subclass of the standard class Object. That is, a class
declaration with no “extends” part such as public class myClass { . . . is ex-
actly equivalent to public class myClass extends Object {

This means that class Object is at the top of a huge class hierarchy that includes
every other class. (Semantially, Object is an abstract class, in fact the most abstract
class of all. Curiously, however, it is not declared to be abstract syntactially, which
means that you can create objects of type Object. What you would do with them,
however, I have no idea.)

Since every class is a subclass of Object, a variable of type Object can refer to
any object whatsoever, of any type. Java has several standard data structures that
are designed to hold Object s, but since every object is an instance of class Object,
these data structures can actually hold any object whatsoever. One example is the
“ArrayList” data structure, which is defined by the class ArrayList in the package
java.util. An ArrayList is simply a list of Object s. This class is very convenient,
because an ArrayList can hold any number of objects, and it will grow, when neces-
sary, as objects are added to it. Since the items in the list are of type Object, the list
can actually hold objects of any type.

A program that wants to keep track of various Shape s that have been drawn on
the screen can store those shapes in an ArrayList. Suppose that the ArrayList is
named listOfShapes. A shape, oneShape for example, can be added to the end of the
list by calling the instance method “listOfShapes.add(oneShape);” and removed
from the list with the instance method “listOfShapes.remove(oneShape);”. The
number of shapes in the list is given by the method “listOfShapes.size()”. It is
possible to retrieve the ith object from the list with the call “listOfShapes.get(i)”.
(Items in the list are numbered from 0 to listOfShapes.size()−1.) However, note
that this method returns an Object, not a Shape. (Of course, the people who wrote
the ArrayList class didn’t even know about Shapes, so the method they wrote could
hardly have a return type of Shape!) Since you know that the items in the list
are, in fact, Shapes and not just Objects, you can type-cast the Object returned
by listOfShapes.get(i) to be a value of type Shape by saying:
oneShape = (Shape)listOfShapes.get(i);.

Let’s say, for example, that you want to redraw all the shapes in the list. You could
do this with a simple for loop, which is lovely example of object-oriented program-
ming and of polymorphism:

for (int i = 0; i < listOfShapes.size(); i++) {
Shape s; / / i−th element o f the l i s t , considered as a Shape
s = (Shape)listOfShapes.get(i);
s.redraw(); / / What ’ s drawn here depends on what type of shape s i s !

}

The sample source code file ShapeDraw.java uses an abstract Shape class and an
ArrayList to hold a list of shapes. The file defines an applet in which the user can
add various shapes to a drawing area. Once a shape is in the drawing area, the user
can use the mouse to drag it around.

You might want to look at this file, even though you won’t be able to understand
all of it at this time. Even the definitions of the shape classes are somewhat different

87

from those that I have described in this section. (For example, the draw() method
has a parameter of type Graphics. This parameter is required because of the way
Java handles all drawing.) I’ll return to this example in later chapters when you
know more about GUI programming. However, it would still be worthwhile to look at
the definition of the Shape class and its subclasses in the source code. You might also
check how an ArrayList is used to hold the list of shapes.

If you click one of the buttons along the bottom of this applet, a shape will be
added to the screen in the upper left corner of the applet. The color of the shape is
given by the “pop-up menu” in the lower right. Once a shape is on the screen, you can
drag it around with the mouse. A shape will maintain the same front-to-back order
with respect to other shapes on the screen, even while you are dragging it. However,
you can move a shape out in front of all the other shapes if you hold down the shift
key as you click on it.

In the applet the only time when the actual class of a shape is used is when that
shape is added to the screen. Once the shape has been created, it is manipulated
entirely as an abstract shape. The method that implements dragging, for example,
works only with variables of type Shape. As the Shape is being dragged, the dragging
method just calls the Shape’s draw method each time the shape has to be drawn, so
it doesn’t have to know how to draw the shape or even what type of shape it is. The
object is responsible for drawing itself. If I wanted to add a new type of shape to the
program, I would define a new subclass of Shape, add another button to the applet,
and program the button to add the correct type of shape to the screen. No other
changes in the programming would be necessary.

4.6 this and super

ALTHOUGH THE BASIC IDEAS of object-oriented programming are reasonably simple and
clear, they are subtle, and they take time to get used to. And unfortunately, beyond
the basic ideas there are a lot of details. This section and the next cover more of those
annoying details. You should not necessarily master everything in these two sections
the first time through, but you should read it to be aware of what is possible. For the
most part, when I need to use this material later in the text, I will explain it again
briefly, or I will refer you back to it. In this section, we’ll look at two variables, this
and super, that are automatically defined in any instance method.

4.6.1 The Special Variable this

A static member of a class has a simple name, which can only be used inside the class.
For use outside the class, it has a full name of the form class−name.simple−name.
For example, “System.out” is a static member variable with simple name “out” in the
class “System”. It’s always legal to use the full name of a static member, even within
the class where it’s defined. Sometimes it’s even necessary, as when the simple name
of a static member variable is hidden by a local variable of the same name.

Instance variables and instance methods also have simple names. The simple
name of such an instance member can be used in instance methods in the class where
the instance member is defined. Instance members also have full names, but remem-
ber that instance variables and methods are actually contained in objects, not classes.
The full name of an instance member has to contain a reference to the object that con-
tains the instance member. To get at an instance variable or method from outside the

88

class definition, you need a variable that refers to the object. Then the full name is
of the form variable−name.simple−name. But suppose you are writing the definition
of an instance method in some class. How can you get a reference to the object that
contains that instance method? You might need such a reference, for example, if you
want to use the full name of an instance variable, because the simple name of the
instance variable is hidden by a local variable or parameter.

Java provides a special, predefined variable named “this ” that you can use for
such purposes. The variable, this, is used in the source code of an instance method to
refer to the object that contains the method. This intent of the name, this, is to refer
to “this object,” the one right here that this very method is in. If x is an instance vari-
able in the same object, then this.x can be used as a full name for that variable. If
otherMethod() is an instance method in the same object, then this.otherMethod()
could be used to call that method. Whenever the computer executes an instance
method, it automatically sets the variable, this, to refer to the object that contains
the method.

One common use of thisis in constructors. For example:

public class Student {

private String name; / / Name of the student .

public Student(String name) {
/ / Const ruc tor . Create a student w i th s p e c i f i e d name .

this.name = name;
} .

. / / More v a r i a b l e s and methods .

.
}

In the constructor, the instance variable called name is hidden by a formal pa-
rameter. However, the instance variable can still be referred to by its full name,
this.name. In the assignment statement, the value of the formal parameter, name,
is assigned to the instance variable, this.name. This is considered to be acceptable
style: There is no need to dream up cute new names for formal parameters that are
just used to initialize instance variables. You can use the same name for the param-
eter as for the instance variable.

There are other uses for this. Sometimes, when you are writing an instance
method, you need to pass the object that contains the method to a method, as an
actual parameter. In that case, you can use this as the actual parameter. For ex-
ample, if you wanted to print out a string representation of the object, you could say
“System.out.println(this);”. Or you could assign the value of this to another
variable in an assignment statement. In fact, you can do anything with this that
you could do with any other variable, except change its value.

4.6.2 The Special Variable super

Java also defines another special variable, named “super”, for use in the definitions
of instance methods. The variable super is for use in a subclass. Like this, super
refers to the object that contains the method. But it’s forgetful. It forgets that the
object belongs to the class you are writing, and it remembers only that it belongs to
the superclass of that class. The point is that the class can contain additions and
modifications to the superclass. super doesn’t know about any of those additions and

89

modifications; it can only be used to refer to methods and variables in the superclass.
Let’s say that the class you are writing contains an instance method doSomething().

Consider the method call statement super.doSomething(). Now, super doesn’t know
anything about the doSomething() method in the subclass. It only knows about
things in the superclass, so it tries to execute a method named doSomething() from
the superclass. If there is none – if the doSomething() method was an addition rather
than a modification – you’ll get a syntax error.

The reason super exists is so you can get access to things in the superclass that
are hidden by things in the subclass. For example, super.x always refers to an in-
stance variable named x in the superclass. This can be useful for the following reason:
If a class contains an instance variable with the same name as an instance variable
in its superclass, then an object of that class will actually contain two variables with
the same name: one defined as part of the class itself and one defined as part of the
superclass. The variable in the subclass does not replace the variable of the same
name in the superclass; it merely hides it. The variable from the superclass can still
be accessed, using super.

When you write a method in a subclass that has the same signature as a method
in its superclass, the method from the superclass is hidden in the same way. We say
that the method in the subclass overrides the method from the superclass. Again,
however, super can be used to access the method from the superclass.

The major use of super is to override a method with a new method that extends
the behavior of the inherited method, instead of replacing that behavior entirely.
The new method can use super to call the method from the superclass, and then
it can add additional code to provide additional behavior. As an example, suppose
you have a PairOfDice class that includes a roll() method. Suppose that you
want a subclass, GraphicalDice, to represent a pair of dice drawn on the computer
screen. The roll() method in the GraphicalDice class should do everything that
the roll() method in the PairOfDice class does. We can express this with a call to
super.roll(), which calls the method in the superclass. But in addition to that, the
roll() method for a GraphicalDice object has to redraw the dice to show the new
values. The GraphicalDice class might look something like this:

public class GraphicalDice extends PairOfDice {

public void roll() {
/ / Ro l l the dice , and redraw them .

super.roll(); / / Ca l l the r o l l method from PairOfDice .
redraw(); / / Ca l l a method to draw the dice .

} .
. / / More s t u f f , i n c l u d i n g d e f i n i t i o n o f redraw () .
.

}

Note that this allows you to extend the behavior of the roll() method even if you
don’t know how the method is implemented in the superclass!

4.6.3 Constructors in Subclasses

Constructors are not inherited. That is, if you extend an existing class to make a
subclass, the constructors in the superclass do not become part of the subclass. If
you want constructors in the subclass, you have to define new ones from scratch. If

90

you don’t define any constructors in the subclass, then the computer will make up a
default constructor, with no parameters, for you.

This could be a problem, if there is a constructor in the superclass that does a lot
of necessary work. It looks like you might have to repeat all that work in the subclass!
This could be a real problem if you don’t have the source code to the superclass, and
don’t know how it works, or if the constructor in the superclass initializes private
member variables that you don’t even have access to in the subclass!

Obviously, there has to be some fix for this, and there is. It involves the special
variable, super. As the very first statement in a constructor, you can use super to call
a constructor from the superclass. The notation for this is a bit ugly and misleading,
and it can only be used in this one particular circumstance: It looks like you are
calling super as a method (even though super is not a method and you can’t call
constructors the same way you call other methods anyway). As an example, assume
that the PairOfDice class has a constructor that takes two integers as parameters.
Consider a subclass:

public class GraphicalDice extends PairOfDice {

public GraphicalDice() { / / Const ruc tor f o r t h i s c lass .

super(3,4); / / Ca l l the cons t ruc to r from the
/ / PairOfDice class , w i th parameters 3 , 4 .

initializeGraphics(); / / Do some i n i t i a l i z a t i o n s p e c i f i c
/ / to the GraphicalDice c lass .

} .
. / / More cons t ruc to rs , methods , v a r i a b l e s . . .
.

}

The statement “super(3,4);” calls the constructor from the superclass. This call
must be the first line of the constructor in the subclass. Note that if you don’t explic-
itly call a constructor from the superclass in this way, then the default constructor
from the superclass, the one with no parameters, will be called automatically.

This might seem rather technical, but unfortunately it is sometimes necessary.
By the way, you can use the special variable this in exactly the same way to call
another constructor in the same class. This can be useful since it can save you from
repeating the same code in several constructors.

91

92

Chapter 5
Interfaces, Nested Classes,

and Other Details

Contents
5.1 Interfaces . 93

5.2 Nested Classes . 96

5.2.1 Anonymous Inner Classes . 98

5.3 Mixing Static and Non-static . 99

5.3.1 Static Import . 100

5.4 Enums as Classes . 101

THIS SECTION simply pulls together a few more miscellaneous features of object
oriented programming in Java. Read it now, or just look through it and refer back
to it later when you need this material. (You will need to know about the first topic,
interfaces, almost as soon as we begin GUI programming.)

5.1 Interfaces

Some object-oriented programming languages, such as C++, allow a class to extend
two or more superclasses. This is called multiple inheritance . In the illustra-
tion below, for example, classE is shown as having both classA and classB as direct
superclasses, while classF has three direct superclasses.

93

Such multiple inheritance is not allowed in Java. The designers of Java wanted
to keep the language reasonably simple, and felt that the benefits of multiple inher-
itance were not worth the cost in increased complexity. However, Java does have a
feature that can be used to accomplish many of the same goals as multiple inheri-
tance: interfaces.

We’ve encountered the term “interface” before, in connection with black boxes in
general and methods in particular. The interface of a method consists of the name of
the method, its return type, and the number and types of its parameters. This is the
information you need to know if you want to call the method. A method also has an
implementation: the block of code which defines it and which is executed when the
method is called.

In Java, interface is a reserved word with an additional, technical meaning. An
“interface” in this sense consists of a set of instance method interfaces, without
any associated implementations. (Actually, a Java interface can contain other things
as well, but we won’t discuss them here.) A class can implement an interface by
providing an implementation for each of the methods specified by the interface. Here
is an example of a very simple Java interface:

public interface Drawable {
public void draw(Graphics g);

}

This looks much like a class definition, except that the implementation of the
draw() method is omitted. A class that implements the interface Drawable must
provide an implementation for this method. Of course, the class can also include
other methods and variables. For example,

public class Line implements Drawable {
public void draw(Graphics g) {

. . . / / do something −− presumably , draw a l i n e
} . . . / / o ther methods and v a r i a b l e s

}

Note that to implement an interface, a class must do more than simply pro-
vide an implementation for each method in the interface; it must also state that

94

it implements the interface, using the reserved word implements as in this exam-
ple: “public class Line implements Drawable”. Any class that implements the
Drawable interface defines a draw() instance method. Any object created from such
a class includes a draw() method. We say that an object implements an interface
if it belongs to a class that implements the interface. For example, any object of type
Line implements the Drawable interface.

While a class can extend only one other class, it can implement any number of
interfaces. In fact, a class can both extend one other class and implement one or more
interfaces. So, we can have things like

class FilledCircle extends Circle
implements Drawable, Fillable {

. . .
}

The point of all this is that, although interfaces are not classes, they are some-
thing very similar. An interface is very much like an abstract class, that is, a class
that can never be used for constructing objects, but can be used as a basis for making
subclasses. The methods in an interface are abstract methods, which must be imple-
mented in any concrete class that implements the interface. And as with abstract
classes, even though you can’t construct an object from an interface, you can declare
a variable whose type is given by the interface. For example, if Drawable is an inter-
face, and if Line and FilledCircle are classes that implement Drawable, then you
could say:

Drawable figure; / / Declare a v a r i a b l e o f type Drawable . I t can
/ / r e f e r to any ob jec t t h a t implements the
/ / Drawable i n t e r f a c e .

figure = new Line(); / / f i g u r e now r e f e r s to an ob jec t o f c lass Line
figure.draw(g); / / c a l l s draw () method from c lass Line

figure = new FilledCircle(); / / Now, f i g u r e r e f e r s to an ob jec t
/ / o f c lass F i l l e d C i r c l e .

figure.draw(g); / / c a l l s draw () method from c lass F i l l e d C i r c l e

A variable of type Drawable can refer to any object of any class that implements
the Drawable interface. A statement like figure.draw(g), above, is legal because
figure is of type Drawable, and any Drawable object has a draw() method. So,
whatever object figure refers to, that object must have a draw() method.

Note that a type is something that can be used to declare variables. A type can
also be used to specify the type of a parameter in a method, or the return type of a
method. In Java, a type can be either a class, an interface, or one of the eight built-in
primitive types. These are the only possibilities. Of these, however, only classes can
be used to construct new objects.

You are not likely to need to write your own interfaces until you get to the point
of writing fairly complex programs. However, there are a few interfaces that are
used in important ways in Java’s standard packages. You’ll learn about some of these
standard interfaces in the next few chapters.

95

5.2 Nested Classes

A class seems like it should be a pretty important thing. A class is a high-level build-
ing block of a program, representing a potentially complex idea and its associated
data and behaviors. I’ve always felt a bit silly writing tiny little classes that exist
only to group a few scraps of data together. However, such trivial classes are often
useful and even essential. Fortunately, in Java, I can ease the embarrassment, be-
cause one class can be nested inside another class. My trivial little class doesn’t have
to stand on its own. It becomes part of a larger more respectable class. This is par-
ticularly useful when you want to create a little class specifically to support the work
of a larger class. And, more seriously, there are other good reasons for nesting the
definition of one class inside another class.

In Java, a nested class is any class whose definition is inside the definition of
another class. Nested classes can be either named or anonymous. I will come back to
the topic of anonymous classes later in this section. A named nested class, like most
other things that occur in classes, can be either static or non-static.

The definition of a static nested looks just like the definition of any other class,
except that it is nested inside another class and it has the modifier static as part of
its declaration. A static nested class is part of the static structure of the containing
class. It can be used inside that class to create objects in the usual way. If it has not
been declared private, then it can also be used outside the containing class, but when
it is used outside the class, its name must indicate its membership in the containing
class. This is similar to other static components of a class: A static nested class is
part of the class itself in the same way that static member variables are parts of the
class itself.

For example, suppose a class named WireFrameModel represents a set of lines
in three-dimensional space. (Such models are used to represent three-dimensional
objects in graphics programs.) Suppose that the WireFrameModel class contains a
static nested class, Line, that represents a single line. Then, outside of the class
WireFrameModel, the Line class would be referred to as WireFrameModel.Line. Of
course, this just follows the normal naming convention for static members of a class.
The definition of the WireFrameModel class with its nested Line class would look, in
outline, like this:

public class WireFrameModel {

. . . / / o ther members o f the WireFrameModel c lass

static public class Line {
/ / Represents a l i n e from the p o in t (x1 , y1 , z1)
/ / to the po in t (x2 , y2 , z2) i n 3−dimensional space .

double x1, y1, z1;
double x2, y2, z2;

} / / end c lass Line

. . . / / o ther members o f the WireFrameModel c lass

} / / end WireFrameModel

Inside the WireFrameModel class, a Line object would be created with the con-
structor “new Line()”. Outside the class, “new WireFrameModel.Line()” would be
used.

96

A static nested class has full access to the static members of the containing class,
even to the private members. Similarly, the containing class has full access to the
members of the nested class. This can be another motivation for declaring a nested
class, since it lets you give one class access to the private members of another class
without making those members generally available to other classes.

When you compile the above class definition, two class files will be created. Even
though the definition of Line is nested inside WireFrameModel, the compiled Line
class is stored in a separate file. The full name of the class file for the Line class will
be WireFrameModel$Line.class.

Non-static nested classes are referred to as inner classes. Inner classes are not,
in practice, very different from static nested classes, but a non-static nested class is
actually associated with an object rather than to the class in which it is nested. This
can take some getting used to.

Any non-static member of a class is not really part of the class itself (although its
source code is contained in the class definition). This is true for inner classes, just
as it is for any other non-static part of a class. The non-static members of a class
specify what will be contained in objects that are created from that class. The same
is true – at least logically – for inner classes. It’s as if each object that belongs to
the containing class has its own copy of the nested class. This copy has access to
all the instance methods and instance variables of the object, even to those that are
declared private. The two copies of the inner class in two different objects differ
because the instance variables and methods they refer to are in different objects. In
fact, the rule for deciding whether a nested class should be static or non-static is
simple: If the nested class needs to use any instance variable or instance method,
make it non-static. Otherwise, it might as well be static.

From outside the containing class, a non-static nested class has to be referred to
using a name of the form variableName. NestedClassName, where variableName is a
variable that refers to the object that contains the class. This is actually rather rare,
however. A non-static nested class is generally used only inside the class in which it
is nested, and there it can be referred to by its simple name.

In order to create an object that belongs to an inner class, you must first have an
object that belongs to the containing class. (When working inside the class, the object
“this” is used implicitly.) The inner class object is permanently associated with the
containing class object, and it has complete access to the members of the containing
class object. Looking at an example will help, and will hopefully convince you that
inner classes are really very natural. Consider a class that represents poker games.
This class might include a nested class to represent the players of the game. This
structure of the PokerGame class could be:

public class PokerGame { / / Represents a game of poker .

private class Player { / / Represents one of the p layers i n t h i s game .
...

} / / end c lass Player

private Deck deck; / / A deck o f cards f o r p lay ing the game .
private int pot; / / The amount o f money t h a t has been bet .
...

} / / end c lass PokerGame

If game is a variable of type PokerGame, then, conceptually, game contains its own

97

copy of the Player class. In an an instance method of a PokerGame object, a new
Player object would be created by saying “new Player()”, just as for any other class.
(A Player object could be created outside the PokerGame class with an expression
such as “game.newÂăPlayer()”. Again, however, this is very rare.) The Player object
will have access to the deck and pot instance variables in the PokerGame object. Each
PokerGame object has its own deck and pot and Players. Players of that poker game
use the deck and pot for that game; players of another poker game use the other
game’s deck and pot. That’s the effect of making the Player class non-static. This is
the most natural way for players to behave. A Player object represents a player of
one particular poker game. If Player were a static nested class, on the other hand, it
would represent the general idea of a poker player, independent of a particular poker
game.

5.2.1 Anonymous Inner Classes

In some cases, you might find yourself writing an inner class and then using that class
in just a single line of your program. Is it worth creating such a class? Indeed, it can
be, but for cases like this you have the option of using an anonymous inner class.
An anonymous class is created with a variation of the newoperator that has the form
new superclass−or−interface(parameter−list) {

methods−and−variables
}

This constructor defines a new class, without giving it a name, and it simulta-
neously creates an object that belongs to that class. This form of the newoperator
can be used in any statement where a regular “new” could be used. The intention of
this expression is to create: “a new object belonging to a class that is the same as
superclass-or-interface but with these methods-and-variables added.” The effect is to
create a uniquely customized object, just at the point in the program where you need
it. Note that it is possible to base an anonymous class on an interface, rather than a
class. In this case, the anonymous class must implement the interface by defining all
the methods that are declared in the interface. If an interface is used as a base, the
parameter−list is empty. Otherwise, it contains parameters for a constructor in the
superclass.

Anonymous classes are often used for handling events in graphical user inter-
faces, and we will encounter them several times in the chapters on GUI program-
ming. For now, we will look at one not-very-plausible example. Consider the Drawable
interface, which is defined earlier in this section. Suppose that we want a Drawable
object that draws a filled, red, 100-pixel square. Rather than defining a new, separate
class and then using that class to create the object, we can use an anonymous class
to create the object in one statement:
Drawable redSquare = new Drawable() {

void draw(Graphics g) {
g.setColor(Color.red);
g.fillRect(10,10,100,100);

}
};

The semicolon at the end of this statement is not part of the class definition. It’s
the semicolon that is required at the end of every declaration statement.

When a Java class is compiled, each anonymous nested class will produce a sep-
arate class file. If the name of the main class is MainClass, for example, then the

98

names of the class files for the anonymous nested classes will be MainClass$1.class,
MainClass$2.class, MainClass$3.class, and so on.

5.3 Mixing Static and Non-static

Classes, as I’ve said, have two very distinct purposes. A class can be used to group
together a set of static member variables and static member methods. Or it can be
used as a factory for making objects. The non-static variables and methods in the
class definition specify the instance variables and methods of the objects. In most
cases, a class performs one or the other of these roles, not both.

Sometimes, however, static and non-static members are mixed in a single class.
In this case, the class plays a dual role. Sometimes, these roles are completely sepa-
rate. It is also possible for the static and non-static parts of a class to interact. This
happens when instance methods use static member variables or call static member
methods. An instance method belongs to an object, not to the class itself, and there
can be many objects with their own versions of the instance method. But there is only
one copy of a static member variable. So, effectively, we have many objects sharing
that one variable.

Suppose, for example, that we want to write a PairOfDice class that uses the
Random class for rolling the dice. To do this, a PairOfDice object needs access to an
object of type Random. But there is no need for each PairOfDice object to have a
separate Randomobject. (In fact, it would not even be a good idea: Because of the way
ran dom number generators work, a program should, in general, use only one source
of random numbers.) A nice solution is to have a single Random variable as a static
member of the PairOfDice class, so that it can be shared by all PairOfDice objects.
For example:

import java.util.Random;

public class PairOfDice {

\code{private static Random randGen = new Random();}

public int die1; / / Number showing on the f i r s t d ie .
public int die2; / / Number showing on the second d ie .

public PairOfDice() {
/ / Const ruc tor . Creates a p a i r o f d ice t h a t
/ / i n i t i a l l y shows random values .

roll();
}
public void roll() {

/ / Ro l l the d ice by s e t t i n g each of the d ice to be
/ / a random number between 1 and 6.

die1 = randGen.nextInt(6) + 1;
die2 = randGen.nextInt(6) + 1;

}
} / / end c lass PairOfDice

As another example, let’s rewrite the Student class. I’ve added an ID for each
student and a static member called nextUniqueID . Although there is an ID variable
in each student object, there is only one nextUniqueID variable.

99

public class Student {

private String name; / / Student ’ s name .
private int ID; / / Unique ID number f o r t h i s s tudent .
public double test1, test2, test3; / / Grades on three t e s t s .

private static int nextUniqueID = 0;
/ / keep t r ack o f next a v a i l a b l e unique ID number

Student(String theName) {
/ / Const ruc tor f o r Student ob jec ts ; prov ides a name f o r the Student ,
/ / and assigns the student a unique ID number .

name = theName;
nextUniqueID++;
ID = nextUniqueID;

}
public String getName() {

/ / Accessor method f o r reading value o f p r i v a t e
/ / ins tance var iab le , name .

return name;
}
public int getID() {

/ / Accessor method f o r reading value o f ID .
return ID;

}
public double getAverage() {

/ / Compute average t e s t grade .
return (test1 + test2 + test3) / 3;

}
} / / end of c lass Student

The initialization “nextUniqueID = 0” is done once, when the class is first loaded.
Whenever a Student object is constructed and the constructor says “nextUniqueID++;”,
it’s always the same static member variable that is being incremented. When the very
first Student object is created, nextUniqueID becomes 1. When the second object is
created, nextUniqueID becomes 2. After the third object, it becomes 3. And so on.
The constructor stores the new value of nextUniqueID in the ID variable of the object
that is being created. Of course, ID is an instance variable, so every object has its
own individual ID variable. The class is constructed so that each student will au-
tomatically get a different value for its IDvariable. Furthermore, the ID variable is
private, so there is no way for this variable to be tampered with after the object has
been created. You are guaranteed, just by the way the class is designed, that every
student object will have its own permanent, unique identification number. Which is
kind of cool if you think about it.

5.3.1 Static Import

The import directive makes it possible to refer to a class such as java.awt.Color
using its simple name, Color. All you have to do is say import java.awt.Color or
import java.awt.∗. Uou still have to use compound names to refer to static member
variables such as System.out and to static methods such as Math.sqrt.

Java 5.0 introduced a new form of the import directive that can be used to import
static members of a class in the same way that the ordinary import directive im-
ports classes from a package. The new form of the directive is called a static import,

100

and it has syntax

import static package−name class−name static−member−name;

to import one static member name from a class, or

import static package−name class−name.∗;

to import all the public static members from a class. For example, if you preface a
class definition with

import static java.lang.System.out;

then you can use the simple name out instead of the compound name System.out.
This means you can use out.println instead of System.out.println. If you are
going to work extensively with the Mathclass, you can preface your class definition
with

import static java.lang.Math.∗;

This would allow to say sqrtinstead of Math.sqrt, log instead of Math.log, PI
instead of Math.PI, and so on.

Note that the static import directive requires a package−name, even for classes
in the standard package java.lang. One consequence of this is that you can’t do a
static import from a class in the default package.

5.4 Enums as Classes

Enumerated types are actually classes, and each enumerated type constant is a
pubic, final, static member variable in that class (even though they are not de-
clared with these modifiers). The value of the variable is an object belonging to the
enumerated type class. There is one such object for each enumerated type constant,
and these are the only objects of the class that can ever be created. It is really these
objects that represent the possible values of the enumerated types. The enumerated
type constants are actually variables that refer to these objects.

When an enumerated type is defined inside another class, it is a nested class
inside the enclosing class. In fact, it is a static nested class, whether you declare it
to be static or not. But it can also be declared as a non-nested class, in a file of its
own. For example, we could define the following enumerated type in a file named
Suit.java:

public enum Suit {

SPADES, HEARTS, DIAMONDS, CLUBS

}

This enumerated type represents the four possible suits for a playing card, and it
could have been used in the example Card.java.

Furthermore, in addition to its list of values, an enumerated type can contain
some of the other things that a regular class can contain, including methods and
additional member variables. Just add a semicolon (;) at the end of the list of values,
and then add definitions of the methods and variables in the usual way. For example,
we might make an enumerated type to represent the possible values of a playing
card. It might be useful to have a method that returns the corresponding value in
the game of Blackjack. As another example, suppose that when we print out one of

101

the values, we’d like to see something different from the default string representation
(the identifier that names the constant). In that case, we can override the toString()
method in the class to print out a different string representation. This would gives
something like:

public enum CardValue {

ACE, TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT,
NINE, TEN, JACK, QUEEN, KING;

/∗ ∗
∗ Return the value o f t h i s CardValue i n the game of B lack jack .
∗ Note t h a t the value re turned f o r an ace i s 1 .
∗ /

public int blackJackValue() {
if (this == JACK || this == QUEEN || this == KING)

return 10;
else

return 1 + ordinal();
}
/∗ ∗
∗ Return a S t r i n g rep resen ta t i on o f t h i s CardValue , using numbers
∗ f o r the numer ical cards and names f o r the ace and face cards .
∗ /

public String toString() {
switch (this) { / / " t h i s " i s one of the enumerated type values
case ACE: / / o r d i n a l number o f ACE

return "Ace";
case JACK: / / o r d i n a l number o f JACK

return " Jack ";
case QUEEN: / / o r d i n a l number o f QUEEN

return "Queen";
case KING: / / o r d i n a l number o f KING

return " King ";
default: / / i t ’ s a numeric card value

int numericValue = 1 + ordinal();
return " " + numericValue;

}

} / / end CardValue

blackjackValue() and toString() are instance methods in CardValue. Since
CardValue.JACK is an object belonging to the class CardValue, you can, off-course,
call CardValue.JACK.blackjackValue(). Suppose that cardVal is declared to be a
variable of type CardValue, so that it can refer to any of the values in the enumer-
ated type. We can call cardVal.blackjackValue() to find the Blackjack value of the
CardValue object to which cardVal refers, and System.out.println(cardVal) will
implicitly call the method cardVal.toString() to obtain the print representation of
that CardValue. (One other thing to keep in mind is that since CardValue is a class,
the value of cardVal can be null, which means it does not refer to any object.)

Remember that ACE, TWO, ..., KING are the only possible objects of type CardValue,
so in an instance methods in that class, this will refer to one of those values. Recall
that the instance method ordinal() is defined in any enumerated type and gives the
position of the enumerated type value in the list of possible values, with counting
starting from zero.

102

(If you find it annoying to use the class name as part of the name of every enu-
merated type constant, you can use static import to make the simple names of the
constants directly available – but only if you put the enumerated type into a pack-
age. For example, if the enumerated type CardValue is defined in a package named
cardgames, then you could place

import static cardgames.CardValue.∗;

at the beginning of a source code file. This would allow you, for example, to use the
name JACK in that file instead of CardValue.JACK.)

103

104

Chapter 6
Graphical User Interfaces

in JAVA

Contents
6.1 Introduction: The Modern User Interface 106
6.2 The Basic GUI Application . 107

6.2.1 JFrame and JPanel . 109
6.2.2 Components and Layout . 111
6.2.3 Events and Listeners . 112

6.3 Applets and HTML . 113
6.3.1 JApplet . 113
6.3.2 Reusing Your JPanels . 115
6.3.3 Applets on Web Pages . 117

6.4 Graphics and Painting . 119
6.4.1 Coordinates . 121
6.4.2 Colors . 122
6.4.3 Fonts . 123
6.4.4 Shapes . 124
6.4.5 An Example . 126

6.5 Mouse Events . 129
6.5.1 Event Handling . 130
6.5.2 MouseEvent and MouseListener 131
6.5.3 Anonymous Event Handlers . 134

6.6 Basic Components . 137
6.6.1 JButton . 139
6.6.2 JLabel . 140
6.6.3 JCheckBox . 140
6.6.4 JTextField and JTextArea . 141

6.7 Basic Layout . 143
6.7.1 Basic Layout Managers . 144
6.7.2 A Simple Calculator . 146
6.7.3 A Little Card Game . 148

105

6.8 Images and Resources . 152
6.8.1 Images . 153
6.8.2 Image File I/O . 155

6.1 Introduction: The Modern User Interface

WHEN COMPUTERS WERE FIRST INTRODUCED, ordinary people,including most program-
mers, couldn’t get near them. They were locked up in rooms with white-coated at-
tendants who would take your programs and data, feed them to the computer, and
return the computer’s response some time later. When timesharing – where the com-
puter switches its attention rapidly from one person to another – was invented in the
1960s, it became possible for several people to interact directly with the computer
at the same time. On a timesharing system, users sit at “terminals” where they type
commands to the computer, and the computer types back its response. Early personal
computers also used typed commands and responses, except that there was only one
person involved at a time. This type of interaction between a user and a computer is
called a command-line interface.

Today most people interact with computers in a completely different way. They
use a Graphical User Interface, or GUI. The computer draws interface components on
the screen. The components include things like windows, scroll bars, menus, buttons,
and icons. Usually, a mouse is used to manipulate such components.

A lot of GUI interface components have become fairly standard. That is, they have
similar appearance and behavior on many different computer platforms including
MACINTOSH, WINDOWS, and LINUX. JAVA programs, which are supposed to run
on many different platforms without modification to the program, can use all the
standard GUI components. They might vary a little in appearance from platform to
platform, but their functionality should be identical on any computer on which the
program runs.

Below is a very simple JAVA program–actually an “applet,”–that shows a few stan-
dard GUI interface components. There are four components that the user can interact
with: a button, a checkbox, a text field, and a pop-up menu. These components are
labeled. There are a few other components in the applet. The labels themselves are
components (even though you can’t interact with them). The right half of the applet
is a text area component, which can display multiple lines of text, and a scrollbar
component appears alongside the text area when the number of lines of text becomes
larger than will fit in the text area. And in fact, in JAVA terminology, the whole applet
is itself considered to be a “component.”

JAVA actually has two complete sets of GUI components. One of these, the AWT
or Abstract Windowing Toolkit, was available in the original version of JAVA. The
other, which is known as Swing, is included in JAVA version 1.2 or later, and is used

106

in preference to the AWT in most modern JAVA programs. The applet that is shown
above uses components that are part of Swing.

When a user interacts with the GUI components in this applet, an “event” is gen-
erated. For example, clicking a push button generates an event, and pressing return
while typing in a text field generates an event. Each time an event is generated, a
message is sent to the applet telling it that the event has occurred, and the applet
responds according to its program. In fact, the program consists mainly of “event
handlers” that tell the applet how to respond to various types of events. In this ex-
ample, the applet has been programmed to respond to each event by displaying a
message in the text area.

The use of the term “message” here is deliberate. Messages are sent to objects. In
fact, JAVA GUI components are implemented as objects. JAVA includes many prede-
fined classes that represent various types of GUI components. Some of these classes
are subclasses of others. Here is a diagram showing some of Swing’s GUI classes and
their relationships:

Note that all GUI classes are subclasses, directly or indirectly, of a class called
JComponent, which represents general properties that are shared by all Swing com-
ponents. Two of the direct subclasses of JComponent themselves have subclasses. The
classes JTextArea and JTextField, which have certain behaviors in common, are
grouped together as subclasses of JTextComponent. Also, JButton and JToggleButton
are subclasses of JAbstractButton, which represents properties common to both but-
tons and checkboxes.

Just from this brief discussion, perhaps you can see how GUI programming can
make effective use of object-oriented design. In fact, GUI’s, with their “visible ob-
jects,” are probably a major factor contributing to the popularity of OOP.

6.2 The Basic GUI Application

THERE ARE TWO BASIC TYPES of GUI program in JAVA: stand-alone applications and
applets. An applet is a program that runs in a rectangular area on a Web page.
Applets are generally small programs, meant to do fairly simple things, although
there is nothing to stop them from being very complex. Applets were responsible for
a lot of the initial excitement about JAVA when it was introduced, since they could
do things that could not otherwise be done on Web pages. However, there are now
easier ways to do many of the more basic things that can be done with applets, and

107

they are no longer the main focus of interest in JAVA. Nevertheless, there are still
some things that can be done best with applets, and they are still fairly common on
the Web.

A stand-alone application is a program that runs on its own, without depending on
a Web browser. You’ve been writing stand-alone applications all along. Any class that
has a main() method defines a stand-alone application; running the program just
means executing this main() method. However, the programs that you’ve seen up
till now have been “command-line” programs, where the user and computer interact
by typing things back and forth to each other. A GUI program offers a much richer
type of user interface, where the user uses a mouse and keyboard to interact with
GUI components such as windows, menus, buttons, check boxes, text input boxes,
scroll bars, and so on. The main method of a GUI program creates one or more
such components and displays them on the computer screen. Very often, that’s all
it does. Once a GUI component has been created, it follows its own programming—
programming that tells it how to draw itself on the screen and how to respond to
events such as being clicked on by the user.

A GUI program doesn’t have to be immensely complex. We can, for example write
a very simple GUI “Hello World” program that says “Hello” to the user, but does it by
opening a window where the greeting is displayed:

import javax.swing.JOptionPane;

public class HelloWorldGUI1 {

public static void main(String[] args) {
JOptionPane.showMessageDialog(null, " Hel lo World ! "); }

}

When this program is run, a window appears on the screen that contains the mes-
sage “Hello World!”. The window also contains an “OK” button for the user to click
after reading the message. When the user clicks this button, the window closes
and the program ends. By the way, this program can be placed in a file named
HelloWorldGUI1.java, compiled, and run just like any other JAVA program.

Now, this program is already doing some pretty fancy stuff. It creates a window, it
draws the contents of that window, and it handles the event that is generated when
the user clicks the button. The reason the program was so easy to write is that all
the work is done by showMessageDialog(), a static method in the built-in class
JOptionPane. (Note: the source code “imports” the class javax.swing.JOptionPane
to make it possible to refer to the JOptionPane class using its simple name.)

If you want to display a message to the user in a GUI program, this is a good way
to do it: Just use a standard class that already knows how to do the work! And in fact,
JOptionPane is regularly used for just this purpose (but as part of a larger program,
usually). Of course, if you want to do anything serious in a GUI program, there is a
lot more to learn. To give you an idea of the types of things that are involved, we’ll
look at a short GUI program that does the same things as the previous program –
open a window containing a message and an OK button, and respond to a click on
the button by ending the program – but does it all by hand instead of by using the
built-in JOptionPane class. Mind you, this is not a good way to write the program,
but it will illustrate some important aspects of GUI programming in JAVA.

Here is the source code for the program. I will explain how it works below, but it
will take the rest of the chapter before you will really understand completely.

108

import java.awt.∗;
import java.awt.event.∗;
import javax.swing.∗;

public class HelloWorldGUI2 {

private static class HelloWorldDisplay extends JPanel {
public void paintComponent(Graphics g) {

super.paintComponent(g);
g.drawString(" Hel lo World ! ", 20, 30);

}
}

private static class ButtonHandler implements ActionListener {
public void actionPerformed(ActionEvent e) {

System.exit(0);
}

}

public static void main(String[] args) {

HelloWorldDisplay displayPanel = new HelloWorldDisplay();
JButton okButton = new JButton("OK");
ButtonHandler listener = new ButtonHandler();
okButton.addActionListener(listener);

JPanel content = new JPanel();
content.setLayout(new BorderLayout());
content.add(displayPanel, BorderLayout.CENTER);
content.add(okButton, BorderLayout.SOUTH);

JFrame window = new JFrame(" GUI Test ");
window.setContentPane(content);
window.setSize(250,100);
window.setLocation(100,100);
window.setVisible(true);

}

}

6.2.1 JFrame and JPanel

In a JAVA GUI program, each GUI component in the interface is represented by an
object in the program. One of the most fundamental types of component is the window.
Windows have many behaviors. They can be opened and closed. They can be resized.
They have “titles” that are displayed in the title bar above the window. And most
important, they can contain other GUI components such as buttons and menus.

JAVA, of course, has a built-in class to represent windows. There are actually
several different types of window, but the most common type is represented by the
JFrame class (which is included in the package javax.swing). A JFrame is an inde-
pendent window that can, for example, act as the main window of an application.
One of the most important things to understand is that a JFrame object comes with
many of the behaviors of windows already programmed in. In particular, it comes

109

with the basic properties shared by all windows, such as a titlebar and the ability to
be opened and closed. Since a JFrame comes with these behaviors, you don’t have to
program them yourself! This is, of course, one of the central ideas of object-oriented
programming. What a JFrame doesn’t come with, of course, is content, the stuff that
is contained in the window. If you don’t add any other content to a JFrame, it will just
display a large blank area. You can add content either by creating a JFrame object
and then adding the content to it or by creating a subclass of JFrame and adding the
content in the constructor of that subclass.

The main program above declares a variable, window, of type JFrame and sets it
to refer to a new window object with the statement:
JFrame window = new JFrame("GUI Test");.

The parameter in the constructor, “GUI Test”, specifies the title that will be dis-
played in the titlebar of the window. This line creates the window object, but the
window itself is not yet visible on the screen. Before making the window visible,
some of its properties are set with these statements:

window.setContentPane(content);
window.setSize(250,100);
window.setLocation(100,100);

The first line here sets the content of the window. (The content itself was created
earlier in the main program.) The second line says that the window will be 250 pixels
wide and 100 pixels high. The third line says that the upper left corner of the window
will be 100 pixels over from the left edge of the screen and 100 pixels down from the
top. Once all this has been set up, the window is actually made visible on the screen
with the command:window.setVisible(true);.

It might look as if the program ends at that point, and, in fact, the main() method
does end. However, the the window is still on the screen and the program as a whole
does not end until the user clicks the OK button.

The content that is displayed in a JFrame is called its content pane. (In addition
to its content pane, a JFrame can also have a menu bar, which is a separate thing that
I will talk about later.) A basic JFrame already has a blank content pane; you can ei-
ther add things to that pane or you can replace the basic content pane entirely. In
my sample program, the line window.setContentPane(content) replaces the origi-
nal blank content pane with a different component. (Remember that a “component”
is just a visual element of a graphical user interface). In this case, the new content is
a component of type JPanel.

JPanel is another of the fundamental classes in Swing. The basic JPanel is, again,
just a blank rectangle. There are two ways to make a useful JPanel: The first is to
add other components to the panel; the second is to draw something in the panel.
Both of these techniques are illustrated in the sample program. In fact, you will find
two JPanels in the program: content, which is used to contain other components,
and displayPanel, which is used as a drawing surface.

Let’s look more closely at displayPanel. displayPanel is a variable of type
HelloWorldDisplay, which is a nested static class inside the HelloWorldGUI2 class.
This class defines just one instance method, paintComponent(), which overrides a
method of the same name in the JPanel class:

110

private static class HelloWorldDisplay extends JPanel {
public void paintComponent(Graphics g) {

super.paintComponent(g);
g.drawString(" Hel lo World ! ", 20, 30);

}
}

The paintComponent() method is called by the system when a component needs to
be painted on the screen. In the JPanel class, the paintComponent method simply
fills the panel with the panel’s background color. The paintComponent() method
in HelloWorldDisplay begins by calling super.paintComponent(g). This calls the
version of paintComponent() that is defined in the superclass, JPanel; that is, it fills
the panel with the background color. Then it calls g.drawString() to paint the string
“Hello World!” onto the panel. The net result is that whenever a HelloWorldDisplay
is shown on the screen, it displays the string “Hello World!”.

We will often use JPanels in this way, as drawing surfaces. Usually, when we do
this, we will define a nested class that is a subclass of JPanel and we will write a
paintComponent method in that class to draw the desired content in the panel.

6.2.2 Components and Layout

Another way of using a JPanel is as a container to hold other components. JAVA has
many classes that define GUI components. Before these components can appear on
the screen, they must be added to a container. In this program, the variable named
content refers to a JPanel that is used as a container, and two other components are
added to that container. This is done in the statements:

content.add(displayPanel, BorderLayout.CENTER);
content.add(okButton, BorderLayout.SOUTH);

Here, content refers to an object of type JPanel; later in the program, this panel
becomes the content pane of the window. The first component that is added to
content is displayPanel which, as discussed above, displays the message, “Hello
World!”. The second is okButton which represents the button that the user clicks
to close the window. The variable okButton is of type JButton, the JAVA class that
represents push buttons.

The “BorderLayout” stuff in these statements has to do with how the two com-
ponents are arranged in the container. When components are added to a container,
there has to be some way of deciding how those components are arranged inside the
container. This is called “laying out” the components in the container, and the most
common technique for laying out components is to use a layout manager. A layout
manager is an object that implements some policy for how to arrange the components
in a container; different types of layout manager implement different policies. One
type of layout manager is defined by the BorderLayout class. In the program, the
statement

content.setLayout(new BorderLayout());

creates a new BorderLayout object and tells the content panel to use the new ob-
ject as its layout manager. Essentially, this line determines how components that
are added to the content panel will be arranged inside the panel. We will cover lay-
out managers in much more detail later, but for now all you need to know is that
adding okButton in the BorderLayout.SOUTH position puts the button at the bottom

111

of the panel, and putting the component displayPanel in the BorderLayout.CENTER
position makes it fill any space that is not taken up by the button.

This example shows a general technique for setting up a GUI: Create a container
and assign a layout manager to it, create components and add them to the container,
and use the container as the content pane of a window or applet. A container is
itself a component, so it is possible that some of the components that are added to
the top-level container are themselves containers, with their own layout managers
and components. This makes it possible to build up complex user interfaces in a
hierarchical fashion, with containers inside containers inside containers...

6.2.3 Events and Listeners

The structure of containers and components sets up the physical appearance of a
GUI, but it doesn’t say anything about how the GUI behaves. That is, what can
the user do to the GUI and how will it respond? GUIs are largely event−driven;
that is, the program waits for events that are generated by the user’s actions (or by
some other cause). When an event occurs, the program responds by executing an
event−handling method. In order to program the behavior of a GUI, you have to
write event-handling methods to respond to the events that you are interested in.

Event listeners are the most common technique for handling events in JAVA. A
listener is an object that includes one or more event-handling methods. When an
event is detected by another object, such as a button or menu, the listener object
is notified and it responds by running the appropriate event-handling method. An
event is detected or generated by an object. Another object, the listener, has the
responsibility of responding to the event. The event itself is actually represented by
a third object, which carries information about the type of event, when it occurred,
and so on. This division of responsibilities makes it easier to organize large programs.

As an example, consider the OK button in the sample program. When the user
clicks the button, an event is generated. This event is represented by an object be-
longing to the class ActionEvent. The event that is generated is associated with the
button; we say that the button is the source of the event. The listener object in this
case is an object belonging to the class ButtonHandler, which is defined as a nested
class inside HelloWorldGUI2:

private static class ButtonHandler implements ActionListener {
public void actionPerformed(ActionEvent e) {

System.exit(0);
}

}

This class implements the ActionListener interface – a requirement for listener ob-
jects that handle events from buttons. The event-handling method is named
actionPerformed, as specified by the ActionListener interface. This method con-
tains the code that is executed when the user clicks the button; in this case, the code
is a call to System.exit(), which will terminate the program.

There is one more ingredient that is necessary to get the event from the button
to the listener object: The listener object must register itself with the button as an
event listener. This is done with the statement:

okButton.addActionListener(listener);

This statement tells okButton that when the user clicks the button, the ActionEvent
that is generated should be sent to listener. Without this statement, the button

112

has no way of knowing that some other object would like to listen for events from the
button.

This example shows a general technique for programming the behavior of a GUI:
Write classes that include event-handling methods. Create objects that belong to
these classes and register them as listeners with the objects that will actually detect
or generate the events. When an event occurs, the listener is notified, and the code
that you wrote in one of its event-handling methods is executed. At first, this might
seem like a very roundabout and complicated way to get things done, but as you gain
experience with it, you will find that it is very flexible and that it goes together very
well with object oriented programming. (We will return to events and listeners in
much more detail in later sections.)

6.3 Applets and HTML

ALTHOUGH STAND-ALONE APPLICATIONS are probably more important than applets at
this point in the history of JAVA, applets are still widely used. They can do things on
Web pages that can’t easily be done with other technologies. It is easy to distribute
applets to users: The user just has to open a Web page, and the applet is there, with
no special installation required (although the user must have an appropriate version
of JAVA installed on their computer). And of course, applets are fun; now that the
Web has become such a common part of life, it’s nice to be able to see your work
running on a web page.

The good news is that writing applets is not much different from writing stand-
alone applications. The structure of an applet is essentially the same as the structure
of the JFrames that were introduced in the previously, and events are handled in the
same way in both types of program. So, most of what you learn about applications
applies to applets, and vice versa.

Of course, one difference is that an applet is dependent on a Web page, so to use
applets effectively, you have to learn at least a little about creating Web pages. Web
pages are written using a language called HTML (HyperText Markup Language).

6.3.1 JApplet

The JApplet class (in package javax.swing) can be used as a basis for writing applets
in the same way that JFrame is used for writing stand-alone applications. The basic
JApplet class represents a blank rectangular area. Since an applet is not a stand-
alone application, this area must appear on a Web page, or in some other environment
that knows how to display an applet. Like a JFrame, a JApplet contains a content
pane (and can contain a menu bar). You can add content to an applet either by adding
content to its content pane or by replacing the content pane with another component.
In my examples, I will generally create a JPanel and use it as a replacement for the
applet’s content pane.

To create an applet, you will write a subclass of JApplet. The JApplet class de-
fines several instance methods that are unique to applets. These methods are called
by the applet’s environment at certain points during the applet’s “life cycle.” In the
JApplet class itself, these methods do nothing; you can override these methods in a
subclass. The most important of these special applet methods is public void init().

An applet’s init() method is called when the applet is created. You can use
the init() method as a place where you can set up the physical structure of the

113

applet and the event handling that will determine its behavior. (You can also do
some initialization in the constructor for your class, but there are certain aspects of
the applet’s environment that are set up after its constructor is called but before the
init() method is called, so there are a few operations that will work in the init()
method but will not work in the constructor.) The other applet life-cycle methods are
start(), stop(), and destroy(). I will not use these methods for the time being and
will not discuss them here except to mention that destroy() is called at the end of
the applet’s lifetime and can be used as a place to do any necessary cleanup, such as
closing any windows that were opened by the applet.

With this in mind, we can look at our first example of a JApplet. It is, of course,
an applet that says “Hello World!”. To make it a little more interesting, I have added
a button that changes the text of the message, and a state variable, currentMessage
that holds the text of the current message. This example is very similar to the
stand-alone application HelloWorldGUI2 from the previous section. It uses an event-
handling class to respond when the user clicks the button, a panel to display the
message, and another panel that serves as a container for the message panel and the
button. The second panel becomes the content pane of the applet. Here is the source
code for the applet; again, you are not expected to understand all the details at this
time:

import java.awt.∗;
import java.awt.event.∗;
import javax.swing.∗;

/∗ ∗
∗ A simple app le t t h a t can d i sp lay the messages " He l lo World "
∗ and " Goodbye World " . The app le t conta ins a button , and i t
∗ swi tches from one message to the other when the but ton i s
∗ c l i c k e d .
∗ /

public class HelloWorldApplet extends JApplet {

private String currentMessage = " Hel lo World ! ";
private MessageDisplay displayPanel;

private class MessageDisplay extends JPanel { / / Def ines the d i sp lay panel .
public void paintComponent(Graphics g) {

super.paintComponent(g);
g.drawString(currentMessage, 20, 30);

}
}

private class ButtonHandler implements ActionListener { / / The event l i s t e n e r .
public void actionPerformed(ActionEvent e) {

if (currentMessage.equals(" Hel lo World ! "))
currentMessage = "Goodbye World ! ";

else
currentMessage = " Hel lo World ! ";

displayPanel.repaint(); / / Pa in t d i sp lay panel w i th new message .
}

}

114

/∗ ∗
∗ The app le t ’ s i n i t () method creates the but ton and d i sp lay panel and
∗ adds them to the applet , and i t sets up a l i s t e n e r to respond to
∗ c l i c k s on the but ton .
∗ /

public void init() {

displayPanel = new MessageDisplay();
JButton changeMessageButton = new JButton("Change Message");
ButtonHandler listener = new ButtonHandler();
changeMessageButton.addActionListener(listener);

JPanel content = new JPanel();
content.setLayout(new BorderLayout());
content.add(displayPanel, BorderLayout.CENTER);
content.add(changeMessageButton, BorderLayout.SOUTH);

setContentPane(content);
}

}

You should compare this class with HelloWorldGUI2.java from the previous section.
One subtle difference that you will notice is that the member variables and nested
classes in this example are non-static. Remember that an applet is an object. A single
class can be used to make several applets, and each of those applets will need its own
copy of the applet data, so the member variables in which the data is stored must
be non-static instance variables. Since the variables are non-static, the two nested
classes, which use those variables, must also be non-static. (Static nested classes
cannot access non-static member variables in the containing class) Remember the
basic rule for deciding whether to make a nested class static: If it needs access to any
instance variable or instance method in the containing class, the nested class must
be non-static; otherwise, it can be declared to be static.

You can try out the applet itself. Click the “Change Message” button to switch the
message back and forth between “Hello World!” and “Goodbye World!”:

6.3.2 Reusing Your JPanels

Both applets and frames can be programmed in the same way: Design a JPanel, and
use it to replace the default content pane in the applet or frame. This makes it very
easy to write two versions of a program, one which runs as an applet and one which
runs as a frame. The idea is to create a subclass of JPanel that represents the content
pane for your program; all the hard programming work is done in this panel class.
An object of this class can then be used as the content pane either in a frame or in an
applet. Only a very simple main() program is needed to show your panel in a frame,
and only a very simple applet class is needed to show your panel in an applet, so it’s
easy to make both versions.

As an example, we can rewrite HelloWorldApplet by writing a subclass of JPanel.
That class can then be reused to make a frame in a standalone application. This
class is very similar to HelloWorldApplet, but now the initialization is done in a
constructor instead of in an init() method:

115

import java.awt.∗;
import java.awt.event.∗;
import javax.swing.∗;

public class HelloWorldPanel extends JPanel {

private String currentMessage = " Hel lo World ! ";
private MessageDisplay displayPanel;

private class MessageDisplay extends JPanel { / / Def ines the d i sp lay panel .
public void paintComponent(Graphics g) {

super.paintComponent(g);
g.drawString(currentMessage, 20, 30);

}
}

private class ButtonHandler implements ActionListener { / / The event l i s t e n e r .
public void actionPerformed(ActionEvent e) {

if (currentMessage.equals(" Hel lo World ! "))
currentMessage = "Goodbye World ! ";

else
currentMessage = " Hel lo World ! ";

displayPanel.repaint(); / / Pa in t d i sp lay panel w i th new message .
}

}

/∗ ∗
∗ The cons t ruc to r creates the components t h a t w i l l be conta ined i n s i d e t h i s
∗ panel , and then adds those components to t h i s panel .
∗ /

public HelloWorldPanel() {

displayPanel = new MessageDisplay(); / / Create the d i sp lay subpanel .

JButton changeMessageButton = new JButton("Change Message"); / / The but ton .
ButtonHandler listener = new ButtonHandler();
changeMessageButton.addActionListener(listener);

setLayout(new BorderLayout()); / / Set the layou t manager f o r t h i s panel .
add(displayPanel, BorderLayout.CENTER); / / Add the d i sp lay panel .
add(changeMessageButton, BorderLayout.SOUTH); / / Add the but ton .

}

}

Once this class exists, it can be used in an applet. The applet class only has to
create an object of type HelloWorldPanel and use that object as its content pane:

import javax.swing.JApplet;

public class HelloWorldApplet2 extends JApplet {
public void init() {

HelloWorldPanel content = new HelloWorldPanel();
setContentPane(content);

}
}

116

Similarly, its easy to make a frame that uses an object of type HelloWorldPanel
as its content pane:

import javax.swing.JFrame;

public class HelloWorldGUI3 {

public static void main(String[] args) {
JFrame window = new JFrame(" GUI Test ");
HelloWorldPanel content = new HelloWorldPanel();
window.setContentPane(content);
window.setSize(250,100);
window.setLocation(100,100);
window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
window.setVisible(true);

}

}

One new feature of this example is the line

window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

This says that when the user closes the window by clicking the close box in the title
bar of the window, the program should be terminated. This is necessary because
no other way is provided to end the program. Without this line, the default close
operation of the window would simply hide the window when the user clicks the close
box, leaving the program running. This brings up one of the difficulties of reusing
the same panel class both in an applet and in a frame: There are some things that
a stand-alone application can do that an applet can’t do. Terminating the program
is one of those things. If an applet calls System.exit() , it has no effect except to
generate an error.

Nevertheless, in spite of occasional minor difficulties, many of the GUI examples
in this book will be written as subclasses of JPanel that can be used either in an
applet or in a frame.

6.3.3 Applets on Web Pages

The <applet> tag can be used to add a JAVA applet to a Web page. This tag must
have a matching </applet>. A required modifier named code gives the name of the
compiled class file that contains the applet class. The modifiers height and width
are required to specify the size of the applet, in pixels. If you want the applet to be
centered on the page, you can put the applet in a paragraph with center alignment
So, an applet tag to display an applet named HelloWorldApplet centered on a Web
page would look like this:

<p align=center>
<applet code= " HelloWorldApplet . c lass " height=100 width=250>
</applet>
</p>

This assumes that the file HelloWorldApplet.class is located in the same direc-
tory with the HTML document. If this is not the case, you can use another modifier,
codebase, to give the URL of the directory that contains the class file. The value of
code itself is always just a class, not a URL.

117

If the applet uses other classes in addition to the applet class itself, then those
class files must be in the same directory as the applet class (always assuming that
your classes are all in the “default package”; see Subection2.6.4). If an applet requires
more than one or two class files, it’s a good idea to collect all the class files into a
single jar file. Jar files are “archive files” which hold a number of smaller files. If
your class files are in a jar archive, then you have to specify the name of the jar file
in an archive modifier in the <applet> tag, as in

<applet code= " HelloWorldApplet . c lass " archive= " HelloWorld . j a r "
height=50...

Applets can use applet parameters to customize their behavior. Applet parame-
ters are specified by using <param> tags, which can only occur between an <applet>
tag and the closing </applet>. The param tag has required modifiers named name
and value, and it takes the form

<param name= ‘‘param−name ’ ’ value=‘‘param−value ’ ’>

The parameters are available to the applet when it runs. An applet can use the
predefined method getParameter() to check for parameters specified in param tags.
The getParameter() method has the following interface:

String getParameter(String paramName)

The parameter paramName corresponds to the param−name in a param tag. If the
specified paramName occurs in one of the param tags, then getParameter(paramName)
returns the associated param−value. If the specified paramName does not occur in
any param tag, then getParameter(paramName) returns the value null. Parameter
names are case-sensitive, so you cannot use “size” in the param tag and ask for “Size”
in getParameter. The getParameter() method is often called in the applet’s init()
method. It will not work correctly in the applet’s constructor, since it depends on in-
formation about the applet’s environment that is not available when the constructor
is called.

Here is an example of an applet tag with several params:

<applet code= "ShowMessage. c lass " width=200 height=50>
<param name= "message" value= "Goodbye World ! ">
<param name= " font " value= " S e r i f ">
<param name= " s i z e " value= " 36 ">

</applet>

The ShowMessage applet would presumably read these parameters in its init()
method, which could go something like this:

118

String message; / / Ins tance v a r i a b l e : message to be d isp layed .
String fontName; / / Ins tance v a r i a b l e : f o n t to use f o r d i sp lay .
int fontSize; / / Ins tance v a r i a b l e : s i ze o f the d i sp lay f o n t .

public void init() {
String value;
value = getParameter("message"); / / Get message param , i f any .
if (value == null)

message = " Hel lo World ! "; / / De fau l t value , i f no param i s present .
else

message = value; / / Value from PARAM tag .
value = getParameter(" font ");
if (value == null)

fontName = " SansSer i f "; / / De fau l t value , i f no param i s present .
else

fontName = value;
value = getParameter(" s i z e ");
try {

fontSize = Integer.parseInt(value); / / Convert s t r i n g to number .
}
catch (NumberFormatException e) {

fontSize = 20; / / De fau l t value , i f no param i s present , or i f
} / / the parameter value i s not a l e g a l i n t e g e r .
.
.
.

Elsewhere in the applet, the instance variables message, fontName, and fontSize
would be used to determine the message displayed by the applet and the appear-
ance of that message. Note that the value returned by getParameter() is always a
String. If the param represents a numerical value, the string must be converted into
a number, as is done here for the size parameter.

6.4 Graphics and Painting

EVERTHING YOU SEE ON A COMPUTER SCREEN has to be drawn there, even the text. The
JAVA API includes a range of classes and methods that are devoted to drawing. In
this section, I’ll look at some of the most basic of these.

The physical structure of a GUI is built of components. The term component
refers to a visual element in a GUI, including buttons, menus, text-input boxes,
scroll bars, check boxes, and so on. In JAVA, GUI components are represented by
objects belonging to subclasses of the class java.awt.Component. Most components
in the Swing GUI – although not top-level components like JApplet and JFrame – be-
long to subclasses of the class javax.swing.JComponent, which is itself a subclass of
java.awt.Component. Every component is responsible for drawing itself. If you want
to use a standard component, you only have to add it to your applet or frame. You
don’t have to worry about painting it on the screen. That will happen automatically,
since it already knows how to draw itself.

Sometimes, however, you do want to draw on a component. You will have to do this
whenever you want to display something that is not included among the standard,
pre-defined component classes. When you want to do this, you have to define your
own component class and provide a method in that class for drawing the component.
I will always use a subclass of JPanel when I need a drawing surface of this kind,

119

as I did for the MessageDisplay class in the example HelloWorldApplet.java in the
previous section. A JPanel, like any JComponent, draws its content in the method

public void paintComponent(Graphics g)

To create a drawing surface, you should define a subclass of JPanel and provide a
custom paintComponent() method. Create an object belonging to this class and use
it in your applet or frame. When the time comes for your component to be drawn on
the screen, the system will call its paintComponent() to do the drawing. That is, the
code that you put into the paintComponent() method will be executed whenever the
panel needs to be drawn on the screen; by writing this method, you determine the
picture that will be displayed in the panel.

Note that the paintComponent() method has a parameter of type Graphics. The
Graphics object will be provided by the system when it calls your method. You
need this object to do the actual drawing. To do any drawing at all in JAVA, you
need a graphics context. A graphics context is an object belonging to the class
java.awt.Graphics. Instance methods are provided in this class for drawing shapes,
text, and images. Any given Graphics object can draw to only one location. In this
chapter, that location will always be a GUI component belonging to some subclass
of JPanel. The Graphics class is an abstract class, which means that it is impossi-
ble to create a graphics context directly, with a constructor. There are actually two
ways to get a graphics context for drawing on a component: First of all, of course,
when the paintComponent() method of a component is called by the system, the pa-
rameter to that method is a graphics context for drawing on the component. Second,
every component has an instance method called getGraphics(). This method re-
turns a graphics context that can be used for drawing on the component outside its
paintComponent() method. The official line is that you should not do this, and I will
avoid it for the most part. But I have found it convenient to use getGraphics() in a
few cases.

The paintComponent() method in the JPanel class simply fills the panel with the
panel’s background color. When defining a subclass of JPanel for use as a drawing
surface, you will almost always want to fill the panel with the background color be-
fore drawing other content onto the panel (although it is not necessary to do this if
the drawing commands in the method cover the background of the component com-
pletely.) This is traditionally done with a call to super.paintComponent(g), so most
paintComponent() methods that you write will have the form:

public void paintComponent(g) {
super.paintComponent(g); . . .

/ / Draw the content o f the component .
}

Most components do, in fact, do all drawing operations in their paintComponent()
methods. What happens if, in the middle of some other method, you realize that the
content of the component needs to be changed? You should not call paintComponent()
directly to make the change; this method is meant to be called only by the system.
Instead, you have to inform the system that the component needs to be redrawn,
and let the system do its job by calling paintComponent(). You do this by calling
the component’s repaint() method. The method public void repaint(); is de-
fined in the Component class, and so can be used with any component. You should
call repaint() to inform the system that the component needs to be redrawn. The
repaint() method returns immediately, without doing any painting itself. The sys-

120

tem will call the component’s paintComponent() method later, as soon as it gets a
chance to do so, after processing other pending events if there are any.

Note that the system can also call paintComponent() for other reasons. It is
called when the component first appears on the screen. It will also be called if the
component is resized or if it is covered up by another window and then uncovered.
The system does not save a copy of the component’s contents when it is covered. When
it is uncovered, the component is responsible for redrawing itself. (As you will see,
some of our early examples will not be able to do this correctly.)

This means that, to work properly, the paintComponent() method must be smart
enough to correctly redraw the component at any time. To make this possible, a
program should store data about the state of the component in its instance vari-
ables. These variables should contain all the information necessary to redraw the
component completely. The paintComponent() method should use the data in these
variables to decide what to draw. When the program wants to change the content
of the component, it should not simply draw the new content. It should change
the values of the relevant variables and call repaint(). When the system calls
paintComponent(), that method will use the new values of the variables and will
draw the component with the desired modifications. This might seem a roundabout
way of doing things. Why not just draw the modifications directly? There are at least
two reasons. First of all, it really does turn out to be easier to get things right if all
drawing is done in one method. Second, even if you did make modifications directly,
you would still have to make the paintComponent() method aware of them in some
way so that it will be able to redraw the component correctly on demand.

You will see how all this works in practice as we work through examples in the
rest of this chapter. For now, we will spend the rest of this section looking at how to
get some actual drawing done.

6.4.1 Coordinates

The screen of a computer is a grid of little squares called pixels. The color of each
pixel can be set individually, and drawing on the screen just means setting the colors
of individual pixels.

A graphics context draws in a rectangle made up of pixels. A position in the
rectangle is specified by a pair of integer coordinates, (x,y). The upper left corner has
coordinates (0,0). The x coordinate increases from left to right, and the y coordinate
increases from top to bottom. The illustration shows a 16-by-10 pixel component

121

(with very large pixels). A small line, rectangle, and oval are shown as they would be
drawn by coloring individual pixels. (Note that, properly speaking, the coordinates
don’t belong to the pixels but to the grid lines between them.)

For any component, you can find out the size of the rectangle that it occupies by
calling the instance methods getWidth() and getHeight(), which return the number
of pixels in the horizontal and vertical directions, respectively. In general, it’s not a
good idea to assume that you know the size of a component, since the size is often set
by a layout manager and can even change if the component is in a window and that
window is resized by the user. This means that it’s good form to check the size of a
component before doing any drawing on that component. For example, you can use a
paintComponent() method that looks like:

public void paintComponent(Graphics g) {
super.paintComponent(g);
int width = getWidth(); / / Find out the width o f t h i s component .
int height = getHeight(); / / Find out i t s he igh t .
. . . / / Draw the content o f the component .

}

Of course, your drawing commands will have to take the size into account. That
is, they will have to use (x,y) coordinates that are calculated based on the actual
height and width of the component.

6.4.2 Colors

You will probably want to use some color when you draw. JAVA is designed to work
with the RGB color system. An RGB color is specified by three numbers that give
the level of red, green, and blue, respectively, in the color. A color in JAVA is an object
of the class, java.awt.Color. You can construct a new color by specifying its red,
blue, and green components. For example,

Color myColor = new Color(r,g,b);

There are two constructors that you can call in this way. In the one that I al-
most always use, r, g, and b are integers in the range 0 to 255. In the other,
they are numbers of type float in the range 0.0F to 1.0F. (Recall that a literal
of type float is written with an “F” to distinguish it from a double number.) Of-
ten, you can avoid constructing new colors altogether, since the Color class defines
several named constants representing common colors: Color.WHITE, Color.BLACK,
Color.RED, Color.GREEN, Color.BLUE, Color.CYAN, Color.MAGENTA, Color.YELLOW,
Color.PINK, Color.ORANGE, Color.LIGHT_GRAY, Color.GRAY, and Color.DARK_GRAY.
(There are older, alternative names for these constants that use lower case rather
than upper case constants, such as Color.red instead of Color.RED, but the upper
case versions are preferred because they follow the convention that constant names
should be upper case.)

An alternative to RGB is the HSB color system. In the HSB system, a color is
specified by three numbers called the hue, the saturation, and the brightness. The
hue is the basic color, ranging from red through orange through all the other colors
of the rainbow. The brightness is pretty much what it sounds like. A fully saturated
color is a pure color tone. Decreasing the saturation is like mixing white or gray paint
into the pure color. In JAVA, the hue, saturation and brightness are always specified
by values of type float in the range from 0.0F to 1.0F. The Color class has a static

122

member method named getHSBColor for creating HSB colors. To create the color
with HSB values given by h, s, and b, you can say:

Color myColor = Color.getHSBColor(h,s,b);

For example, to make a color with a random hue that is as bright and as saturated
as possible, you could use:

Color randomColor = Color.getHSBColor(
(float)Math.random(), 1.0F, 1.0F);

The type cast is necessary because the value returned by Math.random() is of type
double, and Color.getHSBColor() requires values of type float. (By the way, you
might ask why RGB colors are created using a constructor while HSB colors are cre-
ated using a static member method. The problem is that we would need two different
constructors, both of them with three parameters of type float. Unfortunately, this
is impossible. You can have two constructors only if the number of parameters or the
parameter types differ.)

The RGB system and the HSB system are just different ways of describing the
same set of colors. It is possible to translate between one system and the other. The
best way to understand the color systems is to experiment with them. In the following
applet, you can use the scroll bars to control the RGB and HSB values of a color. A
sample of the color is shown on the right side of the applet.

One of the properties of a Graphics object is the current drawing color, which is
used for all drawing of shapes and text. If g is a graphics context, you can change the
current drawing color for g using the method g.setColor(c), where c is a Color. For
example, if you want to draw in green, you would just say g.setColor(Color.GREEN)
before doing the drawing. The graphics context continues to use the color until you
explicitly change it with another setColor() command. If you want to know what
the current drawing color is, you can call the method g.getColor(), which returns
an object of type Color. This can be useful if you want to change to another drawing
color temporarily and then restore the previous drawing color.

Every component has an associated foreground color and background color.
Generally, the component is filled with the background color before anything else is
drawn (although some components are “transparent,” meaning that the background
color is ignored). When a new graphics context is created for a component, the cur-
rent drawing color is set to the foreground color. Note that the foreground color and
background color are properties of the component, not of a graphics context.

Foreground and background colors can be set by the instance methods
setForeground(c) and setBackground(c), which are defined in the Component class
and therefore are available for use with any component. This can be useful even for
standard components, if you want them to use colors that are different from the de-
faults.

6.4.3 Fonts

A font represents a particular size and style of text. The same character will appear
different in different fonts. In JAVA, a font is characterized by a font name, a style,
and a size. The available font names are system dependent, but you can always use
the following four strings as font names: “Serif”, “SansSerif”, “Monospaced”, and
“Dialog”. (A “serif” is a little decoration on a character, such as a short horizontal
line at the bottom of the letter i. “SansSerif” means “without serifs.” “Monospaced”

123

means that all the characters in the font have the same width. The “Dialog” font is
the one that is typically used in dialog boxes.)

The style of a font is specified using named constants that are defined in the Font
class. You can specify the style as one of the four values:

• Font.PLAIN,

• Font.ITALIC,

• Font.BOLD, or

• Font.BOLD + Font.ITALIC.

The size of a font is an integer. Size typically ranges from about 10 to 36, although
larger sizes can also be used. The size of a font is usually about equal to the height of
the largest characters in the font, in pixels, but this is not an exact rule. The size of
the default font is 12.

JAVA uses the class named java.awt.Font for representing fonts. You can con-
struct a new font by specifying its font name, style, and size in a constructor:

Font plainFont = new Font(" S e r i f ", Font.PLAIN, 12);
Font bigBoldFont = new Font(" SansSer i f ", Font.BOLD, 24);

Every graphics context has a current font, which is used for drawing text. You can
change the current font with the setFont() method. For example, if g is a graphics
context and bigBoldFont is a font, then the command g.setFont(bigBoldFont) will
set the current font of g to bigBoldFont. The new font will be used for any text that
is drawn after the setFont() command is given. You can find out the current font of
g by calling the method g.getFont(), which returns an object of type Font.

Every component has an associated font that can be set with the setFont(font)
instance method, which is defined in the Component class. When a graphics context
is created for drawing on a component, the graphic context’s current font is set equal
to the font of the component.

6.4.4 Shapes

The Graphics class includes a large number of instance methods for drawing various
shapes, such as lines, rectangles, and ovals. The shapes are specified using the (x,y)
coordinate system described above. They are drawn in the current drawing color of
the graphics context. The current drawing color is set to the foreground color of the
component when the graphics context is created, but it can be changed at any time
using the setColor() method.

Here is a list of some of the most important drawing methods. With all these
commands, any drawing that is done outside the boundaries of the component is
ignored. Note that all these methods are in the Graphics class, so they all must be
called through an object of type Graphics.

• drawString(String str, int x, int y)
Draws the text given by the string str. The string is drawn using the current
color and font of the graphics context. x specifies the position of the left end of
the string. y is the y-coordinate of the baseline of the string. The baseline is a
horizontal line on which the characters rest. Some parts of the characters, such
as the tail on a y or g, extend below the baseline.

124

• drawLine(int x1, int y1, int x2, int y2)
Draws a line from the point (x1,y1) to the point (x2,y2). The line is drawn
as if with a pen that hangs one pixel to the right and one pixel down from the
(x,y) point where the pen is located. For example, if g refers to an object of
type Graphics, then the command g.drawLine(x,y,x,y), which corresponds
to putting the pen down at a point, colors the single pixel with upper left corner
at the point (x,y).

• drawRect(int x, int y, int width, int height)
Draws the outline of a rectangle. The upper left corner is at (x,y), and the
width and height of the rectangle are as specified. If width equals height, then
the rectangle is a square. If the width or the height is negative, then nothing is
drawn. The rectangle is drawn with the same pen that is used for drawLine().
This means that the actual width of the rectangle as drawn is width+1, and
similarly for the height. There is an extra pixel along the right edge and the
bottom edge. For example, if you want to draw a rectangle around the edges of
the component, you can say
“g.drawRect(0, 0, getWidth()−1,getHeight()−1);”, where g is a graphics
context for the component. If you use
“g.drawRect(0, 0, getWidth(), getHeight());”, then the right and bottom
edges of the rectangle will be drawn outside the component.

• drawOval(int x, int y, int width, int height)
Draws the outline of an oval. The oval is one that just fits inside the rectangle
specified by x, y, width, and height. If width equals height, the oval is a circle.

• drawRoundRect(int x, int y, int width, int height, int xdiam, int ydiam)
Draws the outline of a rectangle with rounded corners. The basic rectangle is
specified by x, y, width, and height, but the corners are rounded. The degree
of rounding is given by xdiam and ydiam. The corners are arcs of an ellipse
with horizontal diameter xdiam and vertical diameter ydiam. A typical value
for xdiam and ydiam is 16, but the value used should really depend on how big
the rectangle is.

• draw3DRect(int x, int y, int width, int height, boolean raised)
Draws the outline of a rectangle that is supposed to have a three-dimensional
effect, as if it is raised from the screen or pushed into the screen. The basic
rectangle is specified by x, y, width, and height. The raised parameter tells
whether the rectangle seems to be raised from the screen or pushed into it. The
3D effect is achieved by using brighter and darker versions of the drawing color
for different edges of the rectangle. The documentation recommends setting
the drawing color equal to the background color before using this method. The
effect won’t work well for some colors.

• drawArc(int x, int y, int width, int height, int startAngle, int arcAngle)
Draws part of the oval that just fits inside the rectangle specified by x, y, width,
and height. The part drawn is an arc that extends arcAngle degrees from a
starting angle at startAngle degrees. Angles are measured with 0 degrees at
the 3 o’clock position (the positive direction of the horizontal axis). Positive
angles are measured counterclockwise from zero, and negative angles are mea-
sured clockwise. To get an arc of a circle, make sure that width is equal to
height.

125

• fillRect(int x, int y, int width, int height)
Draws a filled-in rectangle. This fills in the interior of the rectangle that would
be drawn by drawRect(x,y,width,height). The extra pixel along the bottom
and right edges is not included. The width and height parameters give the
exact width and height of the rectangle. For example, if you wanted to fill in the
entire component, you could say
“g.fillRect(0, 0, getWidth(), getHeight());”

• fillOval(int x, int y, int width, int height)
Draws a filled-in oval.

• fillRoundRect(int x, int y, int width, int height, int xdiam, int ydiam)
Draws a filled-in rounded rectangle.

• fill3DRect(int x, int y, int width, int height, boolean raised)
Draws a filled-in three-dimensional rectangle.

• fillArc(int x, int y, int width, int height, int startAngle, int arcAngle)
Draw a filled-in arc. This looks like a wedge of pie, whose crust is the arc that
would be drawn by the drawArc method.

6.4.5 An Example

Let’s use some of the material covered in this section to write a subclass of JPanel for
use as a drawing surface. The panel can then be used in either an applet or a frame.
All the drawing will be done in the paintComponent() method of the panel class. The
panel will draw multiple copies of a message on a black background. Each copy of the
message is in a random color. Five different fonts are used, with different sizes and
styles. The message can be specified in the constructor; if the default constructor is
used, the message is the string “Java!”. The panel works OK no matter what its size.
Here’s an applet that uses the panel as its content pane:

The source for the panel class is shown below. I use an instance variable called
message to hold the message that the panel will display. There are five instance vari-
ables of type Font that represent different sizes and styles of text. These variables
are initialized in the constructor and are used in the paintComponent() method.

The paintComponent() method for the panel simply draws 25 copies of the mes-
sage. For each copy, it chooses one of the five fonts at random, and it calls g.setFont()
to select that font for drawing the text. It creates a random HSB color and uses
g.setColor() to select that color for drawing. It then chooses random (x,y) coordi-
nates for the location of the message. The x coordinate gives the horizontal position
of the left end of the string. The formula used for the x coordinate,
“−50 + (int)(Math.random() ∗ (width+40))” gives a random integer in the range
from −50 to width−10. This makes it possible for the string to extend beyond the left
edge or the right edge of the panel. Similarly, the formula for y allows the string to
extend beyond the top and bottom of the applet.

Here is the complete source code for the RandomStringsPanel

import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import javax.swing.JPanel;

126

/∗
∗ This panel d i sp lays 25 copies o f a message . The co lo r and
∗ p o s i t i o n o f each message i s se lec ted a t random . The f o n t
∗ of each message i s randomly chosen from among f i v e poss ib le
∗ f on t s . The messages are d isp layed on a black background .
∗ <p>This panel i s meant to be used as the content pane i n
∗ e i t h e r an app le t or a frame .
∗ /

public class RandomStringsPanel extends JPanel {

private String message; / / The message to be d isp layed . This can be set i n
/ / the cons t ruc to r . I f no value i s provided i n the
/ / cons t ruc to r , then the s t r i n g " Java ! " i s used .

private Font font1, font2, font3, font4, font5; / / The f i v e fon t s .

/∗ ∗
∗ Defau l t cons t r uc to r creates a panel t h a t d i sp lays the message " Java ! " .
∗
∗ /

public RandomStringsPanel() {
this(null); / / Ca l l the other cons t ruc to r , w i th parameter n u l l .

}

/∗ ∗
∗ Const ruc tor creates a panel to d i sp lay 25 copies o f a s p e c i f i e d message .
∗ @param messageString The message to be d isp layed . I f t h i s i s n u l l ,
∗ then the d e f a u l t message " Java ! " i s d isp layed .
∗ /

public RandomStringsPanel(String messageString) {

message = messageString;
if (message == null)

message = " Java ! ";

font1 = new Font(" S e r i f ", Font.BOLD, 14);
font2 = new Font(" SansSer i f ", Font.BOLD + Font.ITALIC, 24);
font3 = new Font("Monospaced", Font.PLAIN, 30);
font4 = new Font(" Dialog ", Font.PLAIN, 36);
font5 = new Font(" S e r i f ", Font.ITALIC, 48);

setBackground(Color.BLACK);

}

/∗ ∗ The paintComponent method i s respons ib le f o r drawing the content
∗ of the panel . I t draws 25 copies o f the message s t r i n g , using a
∗ random color , fon t , and p o s i t i o n f o r each s t r i n g .
∗ /

127

public void paintComponent(Graphics g) {

super.paintComponent(g); / / Ca l l the paintComponent method from the
/ / superclass , JPanel . This s imply f i l l s the
/ / e n t i r e panel w i th the background co lor , b lack .

int width = getWidth();
int height = getHeight();

for (int i = 0; i < 25; i++) {

/ / Draw one s t r i n g . F i r s t , se t the f o n t to be one of the f i v e
/ / a v a i l a b l e fon ts , a t random .

int fontNum = (int)(5∗Math.random()) + 1;
switch (fontNum) {

case 1:
g.setFont(font1);
break;

case 2:
g.setFont(font2);
break;

case 3:
g.setFont(font3);
break;

case 4:
g.setFont(font4);
break;

case 5:
g.setFont(font5);
break;

} / / end swi tch

/ / Set the co lo r to a b r i gh t , sa tu ra ted co lor , w i th random hue .

float hue = (float)Math.random();
g.setColor(Color.getHSBColor(hue, 1.0F, 1.0F));

/ / Se lec t the p o s i t i o n o f the s t r i n g , a t random .

int x,y;
x = −50 + (int)(Math.random()∗(width+40));
y = (int)(Math.random()∗(height+20));

/ / Draw the message .

g.drawString(message,x,y);

} / / end f o r

} / / end paintComponent ()

} / / end c lass RandomStringsPanel

This class defines a panel, which is not something that can stand on its own. To

128

see it on the screen, we have to use it in an applet or a frame. Here is a simple applet
class that uses a RandomStringsPanel as its content pane:
import javax.swing.JApplet;

/∗ ∗
∗ A RandomStringsApplet d i sp lays 25 copies o f a s t r i n g , using random colors ,
∗ fon ts , and p o s i t i o n s f o r the copies . The message can be s p e c i f i e d as the
∗ value o f an app le t param wi th name " message . " I f no param wi th name
∗ " message " i s present , then the d e f a u l t message " Java ! " i s d isp layed .
∗ The ac tua l content o f the app le t i s an ob jec t o f type RandomStringsPanel .
∗ /

public class RandomStringsApplet extends JApplet {

public void init() {
String message = getParameter("message");
RandomStringsPanel content = new RandomStringsPanel(message);
setContentPane(content);

}

}

Note that the message to be displayed in the applet can be set using an applet pa-
rameter when the applet is added to an HTML document. Remember that to use the
applet on a Web page, include both the panel class file, RandomStringsPanel.class,
and the applet class file, RandomStringsApplet.class, in the same directory as the
HTML document (or, alternatively, bundle the two class files into a jar file, and put
the jar file in the document directory).

Instead of writing an applet, of course, we could use the panel in the window of a
stand-alone application. You can find the source code for a main program that does
this in the file RandomStringsApp.java.

6.5 Mouse Events

EVENTS ARE CENTRAL TO PROGRAMMING for a graphical user interface. A GUI program
doesn’t have a main() method that outlines what will happen when the program is
run, in a step-by-step process from beginning to end. Instead, the program must
be prepared to respond to various kinds of events that can happen at unpredictable
times and in an order that the program doesn’t control. The most basic kinds of
events are generated by the mouse and keyboard. The user can press any key on the
keyboard, move the mouse, or press a button on the mouse. The user can do any of
these things at any time, and the computer has to respond appropriately.

In JAVA, events are represented by objects. When an event occurs, the system
collects all the information relevant to the event and constructs an object to contain
that information. Different types of events are represented by objects belonging to
different classes. For example, when the user presses one of the buttons on a mouse,
an object belonging to a class called MouseEvent is constructed. The object contains
information such as the source of the event (that is, the component on which the
user clicked), the (x,y) coordinates of the point in the component where the click
occurred, and which button on the mouse was pressed. When the user presses a
key on the keyboard, a KeyEvent is created. After the event object is constructed,
it is passed as a parameter to a designated method. By writing that method, the
programmer says what should happen when the event occurs.

129

As a JAVA programmer, you get a fairly high-level view of events. There is a lot
of processing that goes on between the time that the user presses a key or moves
the mouse and the time that a method in your program is called to respond to the
event. Fortunately, you don’t need to know much about that processing. But you
should understand this much: Even though your GUI program doesn’t have a main()
method, there is a sort of main method running somewhere that executes a loop of
the form

while the program is still running:
Wait for the next event to occur
Call a method to handle the event

This loop is called an event loop. Every GUI program has an event loop. In
JAVA, you don’t have to write the loop. It’s part of “the system.” If you write a GUI
program in some other language, you might have to provide a main method that runs
an event loop.

In this section, we’ll look at handling mouse events in JAVA, and we’ll cover the
framework for handling events in general. The next section will cover keyboard-
related events and timer events. JAVA also has other types of events, which are
produced by GUI components.

6.5.1 Event Handling

For an event to have any effect, a program must detect the event and react to it.
In order to detect an event, the program must “listen” for it. Listening for events
is something that is done by an object called an event listener. An event listener
object must contain instance methods for handling the events for which it listens. For
example, if an object is to serve as a listener for events of type MouseEvent, then it
must contain the following method (among several others):

public void mousePressed(MouseEvent evt) {
. . .

}

The body of the method defines how the object responds when it is notified that a
mouse button has been pressed. The parameter, evt, contains information about the
event. This information can be used by the listener object to determine its response.

The methods that are required in a mouse event listener are specified in an
interface named MouseListener. To be used as a listener for mouse events, an
object must implement this MouseListener interface. JAVA interfaces were cov-
ered previously. (To review briefly: An interface in JAVA is just a list of instance
methods. A class can “implement” an interface by doing two things. First, the class
must be declared to implement the interface, as in

class MyListener implements MouseListener
OR
class MyApplet extends JApplet implements MouseListener

Second, the class must include a definition for each instance method specified in the
interface. An interface can be used as the type for a variable or formal parameter.
We say that an object implements the MouseListener interface if it belongs to a
class that implements the MouseListener interface. Note that it is not enough for
the object to include the specified methods. It must also belong to a class that is
specifically declared to implement the interface.)

130

Many events in JAVA are associated with GUI components. For example, when
the user presses a button on the mouse, the associated component is the one that
the user clicked on. Before a listener object can “hear” events associated with a
given component, the listener object must be registered with the component. If a
MouseListener object, mListener, needs to hear mouse events associated with a
Component object, comp, the listener must be registered with the component by call-
ing “comp.addMouseListener(mListener);”. The addMouseListener() method is
an instance method in class Component, and so can be used with any GUI component
object. In our first few examples, we will listen for events on a JPanel that is being
used as a drawing surface.

The event classes, such as MouseEvent, and the listener interfaces, for example
MouseListener, are defined in the package java.awt.event. This means that if you
want to work with events, you either include the line “import java.awt.event.∗;”
at the beginning of your source code file or import the individual classes and inter-
faces.

Admittedly, there is a large number of details to tend to when you want to use
events. To summarize, you must

1. Put the import specification “import java.awt.event.∗;” (or individual im-
ports) at the beginning of your source code;

2. Declare that some class implements the appropriate listener interface, such as
MouseListener;

3. Provide definitions in that class for the methods from the interface;

4. Register the listener object with the component that will generate the events by
calling a method such as addMouseListener() in the component.

Any object can act as an event listener, provided that it implements the appropri-
ate interface. A component can listen for the events that it itself generates. A panel
can listen for events from components that are contained in the panel. A special class
can be created just for the purpose of defining a listening object. Many people con-
sider it to be good form to use anonymous inner classes to define listening objects.
You will see all of these patterns in examples in this textbook.

6.5.2 MouseEvent and MouseListener

The MouseListener interface specifies five different instance methods:

public void mousePressed(MouseEvent evt);
public void mouseReleased(MouseEvent evt);
public void mouseClicked(MouseEvent evt);
public void mouseEntered(MouseEvent evt);
public void mouseExited(MouseEvent evt);

The mousePressed method is called as soon as the user presses down on one of the
mouse buttons, and mouseReleased is called when the user releases a button. These
are the two methods that are most commonly used, but any mouse listener object
must define all five methods; you can leave the body of a method empty if you don’t
want to define a response. The mouseClicked method is called if the user presses
a mouse button and then releases it quickly, without moving the mouse. (When the
user does this, all three methods – mousePressed, mouseReleased, and mouseClicked

131

– will be called in that order.) In most cases, you should define mousePressed instead
of mouseClicked. The mouseEntered and mouseExited methods are called when the
mouse cursor enters or leaves the component. For example, if you want the compo-
nent to change appearance whenever the user moves the mouse over the component,
you could define these two methods.

As an example, we will look at a small addition to the RandomStringsPanel ex-
ample from the previous section. In the new version, the panel will repaint itself
when the user clicks on it. In order for this to happen, a mouse listener should listen
for mouse events on the panel, and when the listener detects a mousePressed event,
it should respond by calling the repaint() method of the panel. Here is an applet
version of the ClickableRandomStrings program for you to try; when you click the
applet, a new set of random strings is displayed:

For the new version of the program, we need an object that implements the
MouseListener interface. One way to create the object is to define a separate class,
such as:
import java.awt.Component;
import java.awt.event.∗;

/∗ ∗
∗ An ob jec t o f type RepaintOnClick i s a MouseListener t h a t
∗ w i l l respond to a mousePressed event by c a l l i n g the r e p a i n t ()
∗ method of the source o f the event . That is , a RepaintOnClick
∗ ob jec t can be added as a mouse l i s t e n e r to any Component ;
∗ when the user c l i c k s t h a t component , the component w i l l be
∗ repa in ted .
∗ /

public class RepaintOnClick implements MouseListener {

public void mousePressed(MouseEvent evt) {
Component source = (Component)evt.getSource();
source.repaint(); / / Ca l l r e p a i n t () on the Component t h a t was c l i c k e d .

}

public void mouseClicked(MouseEvent evt) { }
public void mouseReleased(MouseEvent evt) { }
public void mouseEntered(MouseEvent evt) { }
public void mouseExited(MouseEvent evt) { }

}

This class does three of the four things that we need to do in order to handle mouse
events: First, it imports java.awt.event.∗ for easy access to event-related classes.
Second, it is declared that the class “implements MouseListener”. And third, it pro-
vides definitions for the five methods that are specified in the MouseListener inter-
face. (Note that four of the five event-handling methods have empty defintions. We
really only want to define a response to mousePressed events, but in order to imple-
ment the MouseListener interface, a class must define all five methods.)

We must do one more thing to set up the event handling for this example: We
must register an event-handling object as a listener with the component that will
generate the events. In this case, the mouse events that we are interested in will
be generated by an object of type RandomStringsPanel. If panel is a variable that
refers to the panel object, we can create a mouse listener object and register it with
the panel with the statements:

132

/ / Create MouseListener ob jec t .
RepaintOnClick listener = new RepaintOnClick();

/ / Create MouseListener ob jec t .
panel.addMouseListener(listener);

Once this is done, the listener object will be notified of mouse events on the
panel. Whenever a mousePressed event occurs, the mousePressed() method in the
listener will be called. The code in this method calls the repaint() method in the
component that is the source of the event, that is, in the panel. The result is that the
RandomStringsPanel is repainted with its strings in new random colors, fonts, and
positions.

Although the RepaintOnClick class was written for use with the
RandomStringsPanel example, the event-handling class contains no reference at all
to the RandomStringsPanel class. How can this be? The mousePressed() method
in class RepaintOnClick looks at the source of the event, and calls its repaint()
method. If we have registered the RepaintOnClick object as a listener on a
RandomStringsPanel, then it is that panel that is repainted. But the listener ob-
ject could be used with any type of component, and it would work in the same way.

Similarly, RandomStringsPanel contains no reference to the RepaintOnClick class–
in fact, RandomStringsPanel was written before we even knew anything about mouse
events! The panel will send mouse events to any object that has registered with it as
a mouse listener. It does not need to know anything about that object except that it
is capable of receiving mouse events.

The relationship between an object that generates an event and an object that
responds to that event is rather loose. The relationship is set up by registering one
object to listen for events from the other object. This is something that can poten-
tially be done from outside both objects. Each object can be developed independently,
with no knowledge of the internal operation of the other object. This is the essence
of modular design: Build a complex system out of modules that interact only in
straightforward, easy to understand ways. Then each module is a separate design
problem that can be tackled independently.

To make this clearer, consider the application version of ClickableRandomStrings.
I have included RepaintOnClick as a nested subclass, although it could just as easily
be a separate class. The main point is that this program uses the same
RandomStringsPanel class that was used in the original program, which did not re-
spond to mouse clicks. The mouse handling has been “bolted on” to an existing class,
without having to make any changes at all to that class:

import java.awt.Component;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import javax.swing.JFrame;

133

/∗ ∗
∗ Disp lays a window t h a t shows 25 copies o f the s t r i n g " Java ! " i n
∗ random colors , fon ts , and p o s i t i o n s . The content o f the window
∗ i s an ob jec t o f type RandomStringsPanel . When the user c l i c k s
∗ the window , the content o f the window i s repain ted , w i th the
∗ s t r i n g s i n newly se lec ted random colors , fon ts , and p o s i t i o n s .
∗ /

public class ClickableRandomStringsApp {

public static void main(String[] args) {
JFrame window = new JFrame("Random S t r i n g s ");
RandomStringsPanel content = new RandomStringsPanel();
content.addMouseListener(new RepaintOnClick()); / / Reg is te r mouse l i s t e n e r .
window.setContentPane(content);
window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
window.setLocation(100,75);
window.setSize(300,240);
window.setVisible(true);

}

private static class RepaintOnClick implements MouseListener {

public void mousePressed(MouseEvent evt) {
Component source = (Component)evt.getSource();
source.repaint();

}

public void mouseClicked(MouseEvent evt) { }
public void mouseReleased(MouseEvent evt) { }
public void mouseEntered(MouseEvent evt) { }
public void mouseExited(MouseEvent evt) { }

}
}

Often, when a mouse event occurs, you want to know the location of the mouse cursor.
This information is available from the MouseEvent parameter to the event-handling
method, which contains instance methods that return information about the event.
If evt is the parameter, then you can find out the coordinates of the mouse cursor by
calling evt.getX() and evt.getY(). These methods return integers which give the x
and y coordinates where the mouse cursor was positioned at the time when the event
occurred. The coordinates are expressed in the coordinate system of the component
that generated the event, where the top left corner of the component is (0,0).

6.5.3 Anonymous Event Handlers

As I mentioned above, it is a fairly common practice to use anonymous nested classes
to define listener objects. A special form of the new operator is used to create an
object that belongs to an anonymous class. For example, a mouse listener object can
be created with an expression of the form:

134

new MouseListener() {
public void mousePressed(MouseEvent evt) { . . . }
public void mouseReleased(MouseEvent evt) { . . . }
public void mouseClicked(MouseEvent evt) { . . . }
public void mouseEntered(MouseEvent evt) { . . . }
public void mouseExited(MouseEvent evt) { . . . }

}

This is all just one long expression that both defines an un-named class and cre-
ates an object that belongs to that class. To use the object as a mouse listener, it
should be passed as the parameter to some component’s addMouseListener() method
in a command of the form:

component.addMouseListener(new MouseListener() {
public void mousePressed(MouseEvent evt) { . . . }
public void mouseReleased(MouseEvent evt) { . . . }
public void mouseClicked(MouseEvent evt) { . . . }
public void mouseEntered(MouseEvent evt) { . . . }
public void mouseExited(MouseEvent evt) { . . . }

});

Now, in a typical application, most of the method definitions in this class will be
empty. A class that implements an interface must provide definitions for all the
methods in that interface, even if the definitions are empty. To avoid the tedium of
writing empty method definitions in cases like this, JAVA provides adapter classes.
An adapter class implements a listener interface by providing empty definitions for
all the methods in the interface. An adapter class is useful only as a basis for making
subclasses. In the subclass, you can define just those methods that you actually want
to use. For the remaining methods, the empty definitions that are provided by the
adapter class will be used. The adapter class for the MouseListener interface is
named MouseAdapter. For example, if you want a mouse listener that only responds
to mouse-pressed events, you can use a command of the form:

component.addMouseListener(new MouseAdapter() {
public void mousePressed(MouseEvent evt) { . . . }

});

To see how this works in a real example, let’s write another version of the appli-
cation: ClickableRandomStringsApp. This version uses an anonymous class based
on MouseAdapter to handle mouse events:

import java.awt.Component;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import javax.swing.JFrame;

135

public class ClickableRandomStringsApp {

public static void main(String[] args) {
JFrame window = new JFrame("Random S t r i n g s ");
RandomStringsPanel content = new RandomStringsPanel();

content.addMouseListener(new MouseAdapter() {
/ / Reg is te r a mouse l i s t e n e r t h a t i s def ined by an anonymous subclass
/ / o f MouseAdapter . This rep laces the RepaintOnClick c lass t h a t was
/ / used i n the o r i g i n a l vers ion .
public void mousePressed(MouseEvent evt) {

Component source = (Component)evt.getSource();
source.repaint();

}
});

window.setContentPane(content);
window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
window.setLocation(100,75);
window.setSize(300,240);
window.setVisible(true);

}
}

Anonymous inner classes can be used for other purposes besides event handling.
For example, suppose that you want to define a subclass of JPanel to represent a
drawing surface. The subclass will only be used once. It will redefine the paintComponent()
method, but will make no other changes to JPanel. It might make sense to define the
subclass as an anonymous nested class. As an example, I present HelloWorldGUI4.java.
This version is a variation of HelloWorldGUI2.java that uses anonymous nested
classes where the original program uses ordinary, named nested classes:

import java.awt.∗;
import java.awt.event.∗;
import javax.swing.∗;

/∗ ∗
∗ A simple GUI program t h a t creates and opens a JFrame con ta in ing
∗ the message " He l lo World " and an "OK" but ton . When the user c l i c k s
∗ the OK button , the program ends . This vers ion uses anonymous
∗ classes to de f ine the message d i sp lay panel and the ac t i on l i s t e n e r
∗ ob jec t . Compare to HelloWorldGUI2 , which uses nested classes .
∗ /

public class HelloWorldGUI4 {
/∗ ∗
∗ The main program creates a window con ta in ing a Hel loWor ldDisp lay
∗ and a but ton t h a t w i l l end the program when the user c l i c k s i t .
∗ /

136

public static void main(String[] args) {

JPanel displayPanel = new JPanel() {
/ / An anonymous subclass o f JPanel t h a t d i sp lays " He l lo World ! " .

public void paintComponent(Graphics g) {
super.paintComponent(g);
g.drawString(" Hel lo World ! ", 20, 30);

}
};

JButton okButton = new JButton("OK");

okButton.addActionListener(new ActionListener() {
/ / An anonymous c lass t h a t de f ines the l i s t e n e r ob jec t .

public void actionPerformed(ActionEvent e) {
System.exit(0);

}
});

JPanel content = new JPanel();
content.setLayout(new BorderLayout());
content.add(displayPanel, BorderLayout.CENTER);
content.add(okButton, BorderLayout.SOUTH);

JFrame window = new JFrame(" GUI Test ");
window.setContentPane(content);
window.setSize(250,100);
window.setLocation(100,100);
window.setVisible(true);

}
}

6.6 Basic Components

IN PRECEDING SECTIONS, you’ve seen how to use a graphics context to draw on the
screen and how to handle mouse events and keyboard events. In one sense, that’s
all there is to GUI programming. If you’re willing to program all the drawing and
handle all the mouse and keyboard events, you have nothing more to learn. However,
you would either be doing a lot more work than you need to do, or you would be lim-
iting yourself to very simple user interfaces. A typical user interface uses standard
GUI components such as buttons, scroll bars, text-input boxes, and menus. These
components have already been written for you, so you don’t have to duplicate the
work involved in developing them. They know how to draw themselves, and they can
handle the details of processing the mouse and keyboard events that concern them.

Consider one of the simplest user interface components, a push button. The but-
ton has a border, and it displays some text. This text can be changed. Sometimes
the button is disabled, so that clicking on it doesn’t have any effect. When it is dis-
abled, its appearance changes. When the user clicks on the push button, the button
changes appearance while the mouse button is pressed and changes back when the
mouse button is released. In fact, it’s more complicated than that. If the user moves
the mouse outside the push button before releasing the mouse button, the button
changes to its regular appearance. To implement this, it is necessary to respond to

137

mouse exit or mouse drag events. Furthermore, on many platforms, a button can
receive the input focus. The button changes appearance when it has the focus. If the
button has the focus and the user presses the space bar, the button is triggered. This
means that the button must respond to keyboard and focus events as well.

Fortunately, you don’t have to program any of this, provided you use an object
belonging to the standard class javax.swing.JButton. A JButton object draws itself
and processes mouse, keyboard, and focus events on its own. You only hear from the
Button when the user triggers it by clicking on it or pressing the space bar while
the button has the input focus. When this happens, the JButton object creates an
event object belonging to the class java.awt.event.ActionEvent. The event object
is sent to any registered listeners to tell them that the button has been pushed. Your
program gets only the information it needs – the fact that a button was pushed.

The standard components that are defined as part of the Swing graphical user
interface API are defined by subclasses of the class JComponent, which is itself a
subclass of Component. (Note that this includes the JPanel class that we have already
been working with extensively.) Many useful methods are defined in the Component
and JComponent classes and so can be used with any Swing component. We begin by
looking at a few of these methods. Suppose that comp is a variable that refers to some
JComponent. Then the following methods can be used:

• comp.getWidth() and comp.getHeight() are methods that give the current
size of the component, in pixels. One warning: When a component is first cre-
ated, its size is zero. The size will be set later, probably by a layout manager. A
common mistake is to check the size of a component before that size has been
set, such as in a constructor.

• comp.setEnabled(true) and comp.setEnabled(false) can be used to enable
and disable the component. When a component is disabled, its appearance
might change, and the user cannot do anything with it. The boolean-valued
method, comp.isEnabled() can be called to discover whether the component is
enabled.

• comp.setVisible(true) and comp.setVisible(false) can be called to hide or
show the component.

• comp.setFont(font) sets the font that is used for text displayed on the compo-
nent. See Subection6.3.3 for a discussion of fonts.

• comp.setBackground(color) and comp.setForeground(color) set the back-
ground and foreground colors for the component.

• comp.setOpaque(true) tells the component that the area occupied by the com-
ponent should be filled with the component’s background color before the con-
tent of the component is painted. By default, only JLabels are non-opaque. A
non-opaque, or “transparent”, component ignores its background color and sim-
ply paints its content over the content of its container. This usually means that
it inherits the background color from its container.

• comp.setToolTipText(string) sets the specified string as a “tool tip” for the
component. The tool tip is displayed if the mouse cursor is in the component
and the mouse is not moved for a few seconds. The tool tip should give some
information about the meaning of the component or how to use it.

138

• comp.setPreferredSize(size) sets the size at which the component should be
displayed, if possible. The parameter is of type java.awt.Dimension, where
an object of type Dimension has two public integer-valued instance variables,
width and height. A call to this method usually looks something like
“setPreferredSize(new Dimension(100,50))”.
The preferred size is used as a hint by layout managers, but will not be re-
spected in all cases. Standard components generally compute a correct pre-
ferred size automatically, but it can be useful to set it in some cases. For exam-
ple, if you use a JPanel as a drawing surface, it might be a good idea to set a
preferred size for it.

Note that using any component is a multi-step process. The component object must
be created with a constructor. It must be added to a container. In many cases, a
listener must be registered to respond to events from the component. And in some
cases, a reference to the component must be saved in an instance variable so that
the component can be manipulated by the program after it has been created. In this
section, we will look at a few of the basic standard components that are available in
Swing. In the next section we will consider the problem of laying out components in
containers.

6.6.1 JButton

An object of class JButton is a push button that the user can click to trigger some
action. You’ve already seen buttons, but we consider them in much more detail here.
To use any component effectively, there are several aspects of the corresponding class
that you should be familiar with. For JButton, as an example, I list these aspects
explicitly:

• Constructors: The JButton class has a constructor that takes a string as a
parameter. This string becomes the text displayed on the button. For example
constructing the JButton with stopGoButton = new JButton(‘‘Go’’) creates
a button object that will display the text, “Go” (but remember that the button
must still be added to a container before it can appear on the screen).

• Events: When the user clicks on a button, the button generates an event of
type ActionEvent. This event is sent to any listener that has been registered
with the button as an ActionListener.

• Listeners: An object that wants to handle events generated by buttons must
implement the ActionListener interface. This interface defines just one method,
“pubic void actionPerformed(ActionEvent evt)”,
which is called to notify the object of an action event.

• Registration of Listeners: In order to actually receive notification of an event
from a button, an ActionListener must be registered with the button. This is
done with the button’s addActionListener() method. For example:
stopGoButton.addActionListener(buttonHandler);

• Event methods: When actionPerformed(evt) is called by the button, the pa-
rameter, evt, contains information about the event. This information can be re-
trieved by calling methods in the ActionEvent class. In particular,
evt.getActionCommand() returns a String giving the command associated with

139

the button. By default, this command is the text that is displayed on the button,
but it is possible to set it to some other string. The method evt.getSource() re-
turns a reference to the Object that produced the event, that is, to the JButton
that was pressed. The return value is of type Object, not JButton, because
other types of components can also produce ActionEvents.

• Component methods: Several useful methods are defined in the JButton
class. For example, stopGoButton.setText(‘‘Stop’’) changes the text dis-
played on the button to “Stop”. And stopGoButton.setActionCommand(‘‘sgb’’)
changes the action command associated to this button for action events.

Of course, JButtons have all the general Component methods, such as setEnabled()
and setFont(). The setEnabled() and setText() methods of a button are particu-
larly useful for giving the user information about what is going on in the program. A
disabled button is better than a button that gives an obnoxious error message such
as “Sorry, you can’t click on me now!”

6.6.2 JLabel

JLabel is certainly the simplest type of component. An object of type JLabel exists
just to display a line of text. The text cannot be edited by the user, although it can
be changed by your program. The constructor for a JLabel specifies the text to be
displayed:

JLabel message = new JLabel(" Hel lo World ! ");

There is another constructor that specifies where in the label the text is located, if
there is extra space. The possible alignments are given by the constants JLabel.LEFT,
JLabel.CENTER, and JLabel.RIGHT. For example,

JLabel message = new JLabel(" Hel lo World ! ", JLabel.CENTER);

creates a label whose text is centered in the available space. You can change the text
displayed in a label by calling the label’s setText() method:

message.setText("Goodby World ! ");

Since JLabel is a subclass of JComponent, you can use JComponent methods such
as setForeground() with labels. If you want the background color to have any effect,
call setOpaque(true) on the label, since otherwise the JLabel might not fill in its
background. For example:

JLabel message = new JLabel(" Hel lo World ! ", JLabel.CENTER);
message.setForeground(Color.red); / / D isp lay red t e x t . . .
message.setBackground(Color.black); / / on a black background . . .
message.setFont(new Font(" S e r i f ",Font.BOLD,18)); / / i n a b ig bold f o n t .
message.setOpaque(true); / / Make sure background i s f i l l e d i n .

6.6.3 JCheckBox

A JCheckBox is a component that has two states: selected or unselected. The user
can change the state of a check box by clicking on it. The state of a checkbox is
represented by a boolean value that is true if the box is selected and false if the box
is unselected. A checkbox has a label, which is specified when the box is constructed:

JCheckBox showTime = new JCheckBox("Show Current Time ");

140

Usually, it’s the user who sets the state of a JCheckBox, but you can also set the
state in your program using its setSelected(boolean) method. If you want the
checkbox showTime to be checked, you would say “showTime.setSelected(true)’’.
To uncheck the box, say “showTime.setSelected(false)’’. You can determine the
current state of a checkbox by calling its isSelected() method, which returns a
boolean value.

In many cases, you don’t need to worry about events from checkboxes. Your pro-
gram can just check the state whenever it needs to know it by calling the isSelected()
method. However, a checkbox does generate an event when its state is changed by
the user, and you can detect this event and respond to it if you want something to
happen at the moment the state changes. When the state of a checkbox is changed by
the user, it generates an event of type ActionEvent. If you want something to hap-
pen when the user changes the state, you must register an ActionListener with the
checkbox by calling its addActionListener() method. (Note that if you change the
state by calling the setSelected() method, no ActionEvent is generated. However,
there is another method in the JCheckBox class, doClick(), which simulates a user
click on the checkbox and does generate an ActionEvent.)

When handling an ActionEvent, call evt.getSource() in the actionPerformed()
method to find out which object generated the event. (Of course, if you are only lis-
tening for events from one component, you don’t even have to do this.) The returned
value is of type Object, but you can type-cast it to another type if you want. Once
you know the object that generated the event, you can ask the object to tell you its
current state. For example, if you know that the event had to come from one of two
checkboxes, cb1 or cb2, then your actionPerformed() method might look like this:

public void actionPerformed(ActionEvent evt) {
Object source = evt.getSource();
if (source == cb1) {

boolean newState = ((JCheckBox)cb1).isSelected();
... / / respond to the change of s t a t e

}
else if (source == cb2) {

boolean newState = ((JCheckBox)cb2).isSelected();
... / / respond to the change of s t a t e

}
}

Alternatively, you can use evt.getActionCommand() to retrieve the action com-
mand associated with the source. For a JCheckBox, the action command is, by default,
the label of the checkbox.

6.6.4 JTextField and JTextArea

The JTextField and JTextArea classes represent components that contain text that
can be edited by the user. A JTextField holds a single line of text, while a JTextArea
can hold multiple lines. It is also possible to set a JTextField or JTextArea to be
read-only so that the user can read the text that it contains but cannot edit the text.
Both classes are subclasses of an abstract class, JTextComponent, which defines their
common properties.

JTextField and JTextArea have many methods in common. The setText() in-
stance method, which takes a parameter of type String, can be used to change
the text that is displayed in an input component. The contents of the component

141

can be retrieved by calling its getText() instance method, which returns a value
of type String. If you want to stop the user from modifying the text, you can call
setEditable(false). Call the same method with a parameter of true to make the
input component user-editable again.

The user can only type into a text component when it has the input focus. The
user can give the input focus to a text component by clicking it with the mouse, but
sometimes it is useful to give the input focus to a text field programmatically. You
can do this by calling its requestFocus() method. For example, when I discover an
error in the user’s input, I usually call requestFocus() on the text field that contains
the error. This helps the user see where the error occurred and let’s the user start
typing the correction immediately.

The JTextField class has a constructor public JTextField(int columns) where
columns is an integer that specifies the number of characters that should be visible in
the text field. This is used to determine the preferred width of the text field. (Because
characters can be of different sizes and because the preferred width is not always re-
spected, the actual number of characters visible in the text field might not be equal
to columns.) You don’t have to specify the number of columns; for example, you might
use the text field in a context where it will expand to fill whatever space is available.
In that case, you can use the constructor JTextField(), with no parameters. You can
also use the following constructors, which specify the initial contents of the text field:
public JTextField(String contents);
public JTextField(String contents, int columns);

The constructors for a JTextArea are
public JTextArea()
public JTextArea(int rows, int columns)
public JTextArea(String contents)
public JTextArea(String contents, int rows, int columns)

The parameter rows specifies how many lines of text should be visible in the text
area. This determines the preferred height of the text area, just as columns deter-
mines the preferred width. However, the text area can actually contain any number
of lines; the text area can be scrolled to reveal lines that are not currently visible. It
is common to use a JTextArea as the CENTER component of a BorderLayout. In that
case, it isn’t useful to specify the number of lines and columns, since the TextArea
will expand to fill all the space available in the center area of the container.

The JTextArea class adds a few useful methods to those already inherited from
JTextComponent e.g. the instance method append(moreText), where moreText is of
type String, adds the specified text at the end of the current content of the text area.
(When using append() or setText() to add text to a JTextArea, line breaks can be
inserted in the text by using the newline character, ’\n’.) And setLineWrap(wrap),
where wrap is of type boolean, tells what should happen when a line of text is too
long to be displayed in the text area. If wrap is true, then any line that is too long will
be “wrapped” onto the next line; if wrap is false, the line will simply extend outside
the text area, and the user will have to scroll the text area horizontally to see the
entire line. The default value of wrap is false.

When the user is typing in a JTextField and presses return, an ActionEvent is
generated. If you want to respond to such events, you can register an ActionListener
with the text field, using the text field’s addActionListener() method. (Since a
JTextArea can contain multiple lines of text, pressing return in a text area does not
generate an event; is simply begins a new line of text.)

142

6.7 Basic Layout

COMPONENTS ARE THE FUNDAMENTAL BUILDING BLOCKS of a graphical user interface.
But you have to do more with components besides create them. Another aspect of
GUI programming is laying out components on the screen, that is, deciding where
they are drawn and how big they are. You have probably noticed that computing
coordinates can be a difficult problem, especially if you don’t assume a fixed size for
the drawing area. JAVA has a solution for this, as well.

Components are the visible objects that make up a GUI. Some components are
containers, which can hold other components. Containers in JAVA are objects that
belong to some subclass of java.awt.Container. The content pane of a JApplet or
JFrame is an example of a container. The standard class JPanel, which we have
mostly used as a drawing surface up till now, is another example of a container.

Because a JPanel object is a container, it can hold other components. Because a
JPanel is itself a component, you can add a JPanel to another JPanel. This makes
complex nesting of components possible. JPanels can be used to organize complicated
user interfaces, as shown in this illustration:

The components in a container must be “laid out,” which means setting their sizes
and positions. It’s possible to program the layout yourself, but ordinarily layout is
done by a layout manager. A layout manager is an object associated with a con-
tainer that implements some policy for laying out the components in that container.
Different types of layout manager implement different policies. In this section, we
will cover the three most common types of layout manager, and then we will look at
several programming examples that use components and layout.

Every container has an instance method, setLayout(), that takes a parameter
of type LayoutManager and that is used to specify the layout manager that will be
responsible for laying out any components that are added to the container. Com-
ponents are added to a container by calling an instance method named add() in the
container object. There are actually several versions of the add() method, with differ-
ent parameter lists. Different versions of add() are appropriate for different layout
managers, as we will see below.

143

6.7.1 Basic Layout Managers

JAVA has a variety of standard layout managers that can be used as parameters in the
setLayout() method. They are defined by classes in the package java.awt. Here, we
will look at just three of these layout manager classes: FlowLayout, BorderLayout,
and GridLayout.

A FlowLayout simply lines up components in a row across the container. The
size of each component is equal to that component’s “preferred size.” After laying
out as many items as will fit in a row across the container, the layout manager will
move on to the next row. The default layout for a JPanel is a FlowLayout; that is, a
JPanel uses a FlowLayout unless you specify a different layout manager by calling
the panel’s setLayout() method.

The components in a given row can be either left-aligned, right-aligned, or cen-
tered within that row, and there can be horizontal and vertical gaps between compo-
nents. If the default constructor, “new FlowLayout()”, is used, then the components
on each row will be centered and both the horizontal and the vertical gaps will be five
pixels. The constructor

public FlowLayout(int align, int hgap, int vgap)

can be used to specify alternative alignment and gaps. The possible values of align
are FlowLayout.LEFT, FlowLayout.RIGHT, and FlowLayout.CENTER.

Suppose that cntr is a container object that is using a FlowLayout as its layout
manager. Then, a component, comp, can be added to the container with the statement
cntr.add(comp);

The FlowLayout will line up all the components that have been added to the con-
tainer in this way. They will be lined up in the order in which they were added. For
example, this picture shows five buttons in a panel that uses a FlowLayout:

Note that since the five buttons will not fit in a single row across the panel, they
are arranged in two rows. In each row, the buttons are grouped together and are
centered in the row. The buttons were added to the panel using the statements:

panel.add(button1);
panel.add(button2);
panel.add(button3);
panel.add(button4);
panel.add(button5);

When a container uses a layout manager, the layout manager is ordinarily respon-
sible for computing the preferred size of the container (although a different preferred
size could be set by calling the container’s setPreferredSize method). A FlowLayout
prefers to put its components in a single row, so the preferred width is the total of the
preferred widths of all the components, plus the horizontal gaps between the compo-
nents. The preferred height is the maximum preferred height of all the components.

A BorderLayout layout manager is designed to display one large, central compo-
nent, with up to four smaller components arranged along the edges of the central com-
ponent. If a container, cntr, is using a BorderLayout, then a component, comp, should
be added to the container using a statement of the form

144

cntr.add(comp, borderLayoutPosition);
where borderLayoutPosition specifies what position the component should occupy
in the layout and is given as one of the constants
BorderLayout.CENTER, BorderLayout.NORTH, BorderLayout.SOUTH,
BorderLayout.EAST, or BorderLayout.WEST. The meaning of the five positions is
shown in this diagram:

Note that a border layout can contain fewer than five compompontnts, so that not
all five of the possible positions need to be filled.

A BorderLayout selects the sizes of its components as follows: The NORTH and
SOUTH components (if present) are shown at their preferred heights, but their width
is set equal to the full width of the container. The EAST and WEST components are
shown at their preferred widths, but their height is set to the height of the container,
minus the space occupied by the NORTH and SOUTH components. Finally, the CENTER
component takes up any remaining space; the preferred size of the CENTER component
is completely ignored. You should make sure that the components that you put into
a BorderLayout are suitable for the positions that they will occupy. A horizontal
slider or text field, for example, would work well in the NORTH or SOUTH position, but
wouldn’t make much sense in the EAST or WEST position.

The default constructor, new BorderLayout(), leaves no space between compo-
nents. If you would like to leave some space, you can specify horizontal and vertical
gaps in the constructor of the BorderLayout object. For example, if you say

panel.setLayout(new BorderLayout(5,7));

then the layout manager will insert horizontal gaps of 5 pixels between components
and vertical gaps of 7 pixels between components. The background color of the con-
tainer will show through in these gaps. The default layout for the original content
pane that comes with a JFrame or JApplet is a BorderLayout with no horizontal or
vertical gap.

Finally, we consider the GridLayout layout manager. A grid layout lays out com-
ponents in a grid of equal sized rectangles. This illustration shows how the compo-
nents would be arranged in a grid layout with 3 rows and 2 columns:

145

If a container uses a GridLayout, the appropriate add method for the container
takes a single parameter of type Component (for example: cntr.add(comp)). Compo-
nents are added to the grid in the order shown; that is, each row is filled from left to
right before going on the next row.

The constructor for a GridLayout takes the form “new GridLayout(R,C)”, where
R is the number of rows and C is the number of columns. If you want to leave hori-
zontal gaps of H pixels between columns and vertical gaps of V pixels between rows,
then you need to use “new GridLayout(R,C,H,V)” instead.

When you use a GridLayout, it’s probably good form to add just enough compo-
nents to fill the grid. However, this is not required. In fact, as long as you specify
a non-zero value for the number of rows, then the number of columns is essentially
ignored. The system will use just as many columns as are necessary to hold all the
components that you add to the container. If you want to depend on this behavior,
you should probably specify zero as the number of columns. You can also specify the
number of rows as zero. In that case, you must give a non-zero number of columns.
The system will use the specified number of columns, with just as many rows as
necessary to hold the components that are added to the container.

Horizontal grids, with a single row, and vertical grids, with a single column, are
very common. For example, suppose that button1, button2, and button3 are buttons
and that you’d like to display them in a horizontal row in a panel. If you use a
horizontal grid for the panel, then the buttons will completely fill that panel and will
all be the same size. The panel can be created as follows:

JPanel buttonBar = new JPanel();
buttonBar.setLayout(new GridLayout(1,3));

/ / (Note : The "3 " here i s p r e t t y much ignored , and
/ / you could a lso say "new GridLayout (1 , 0) " .
/ / To leave gaps between the buttons , you could use
/ / ‘ ‘ new GridLayout (1 , 0 , 5 , 5) ’ ’ .)

buttonBar.add(button1);
buttonBar.add(button2);
buttonBar.add(button3);

You might find this button bar to be more attractive than the one that uses the
default FlowLayout layout manager.

6.7.2 A Simple Calculator

As our next example, we look briefly at an example that uses nested subpanels to
build a more complex user interface. The program has two JTextFields where the
user can enter two numbers, four JButtons that the user can click to add, subtract,

146

multiply, or divide the two numbers, and a JLabel that displays the result of the
operation:

Like the previous example, this example uses a main panel with a GridLayout
that has four rows and one column. In this case, the layout is created with the
statement: “setLayout(new GridLayout(4,1,3,3));” which allows a 3-pixel gap be-
tween the rows where the gray background color of the panel is visible. The gray bor-
der around the edges of the panel is added with the statement
setBorder(BorderFactory.createEmptyBorder(5,5,5,5));.

The first row of the grid layout actually contains two components, a JLabel dis-
playing the text “x =” and a JTextField. A grid layout can only only have one com-
ponent in each position. In this case, that component is a JPanel, a subpanel that is
nested inside the main panel. This subpanel in turn contains the label and text field.
This can be programmed as follows:

xInput = new JTextField(" 0 ", 10); / / Create a t e x t f i e l d to hold 10 chars .
JPanel xPanel = new JPanel(); / / Create the subpanel .
xPanel.add(new JLabel(" x = ")); / / Add a l a b e l to the subpanel .
xPanel.add(xInput); / / Add the t e x t f i e l d to the subpanel
mainPanel.add(xPanel); / / Add the subpanel to the main panel .

The subpanel uses the default FlowLayout layout manager, so the label and text
field are simply placed next to each other in the subpanel at their preferred size, and
are centered in the subpanel.

Similarly, the third row of the grid layout is a subpanel that contains four buttons.
In this case, the subpanel uses a GridLayout with one row and four columns, so that
the buttons are all the same size and completely fill the subpanel.

One other point of interest in this example is the actionPerformed() method
that responds when the user clicks one of the buttons. This method must retrieve
the user’s numbers from the text field, perform the appropriate arithmetic operation
on them (depending on which button was clicked), and set the text of the label to
represent the result. However, the contents of the text fields can only be retrieved
as strings, and these strings must be converted into numbers. If the conversion fails,
the label is set to display an error message:

public void actionPerformed(ActionEvent evt) {

double x, y; / / The numbers from the inpu t boxes .

try {
String xStr = xInput.getText();
x = Double.parseDouble(xStr);

}
catch (NumberFormatException e) {

/ / The s t r i n g xSt r i s not a l e g a l number .
answer.setText(" I l l e g a l data fo r x . ");
xInput.requestFocus();
return;

}

try {
String yStr = yInput.getText();
y = Double.parseDouble(yStr);

}

147

catch (NumberFormatException e) {
/ / The s t r i n g xSt r i s not a l e g a l number .

answer.setText(" I l l e g a l data fo r y . ");
yInput.requestFocus();
return;

}

/∗ Perfrom the opera t ion based on the ac t i on command from the
but ton . The ac t i on command i s the t e x t d isp layed on the but ton .
Note t h a t d i v i s i o n by zero produces an e r r o r message . ∗ /

String op = evt.getActionCommand();
if (op.equals(" + "))

answer.setText(" x + y = " + (x+y));
else if (op.equals("−"))

answer.setText(" x − y = " + (x−y));
else if (op.equals(" ∗ "))

answer.setText(" x ∗ y = " + (x∗y));
else if (op.equals(" / ")) {

if (y == 0)
answer.setText("Can’ t divide by zero ! ");

else
answer.setText(" x / y = " + (x/y));

}
} / / end act ionPerformed ()

(The complete source code for this example can be found in SimpleCalc.java.)

6.7.3 A Little Card Game

For a final example, let’s look at something a little more interesting as a program. The
example is a simple card game in which you look at a playing card and try to predict
whether the next card will be higher or lower in value. (Aces have the lowest value
in this game.) You’ve seen a text-oriented version of the same game previously have
also seen Deck, Hand, and Card classes that are used in the game program. In this
GUI version of the game, you click on a button to make your prediction. If you predict
wrong, you lose. If you make three correct predictions, you win. After completing one
game, you can click the “New Game” button to start a new game. Try it! See what
happens if you click on one of the buttons at a time when it doesn’t make sense to do
so.

The complete source code for this example is in the file HighLowGUI.java.
The overall structure of the main panel in this example should be clear: It has

three buttons in a subpanel at the bottom of the main panel and a large drawing
surface that displays the cards and a message. The main panel uses a BorderLayout.
The drawing surface occupies the CENTER position of the border layout. The subpanel
that contains the buttons occupies the SOUTH position of the border layout, and the
other three positions of the layout are empty.

The drawing surface is defined by a nested class named CardPanel, which is a
subclass of JPanel. I have chosen to let the drawing surface object do most of the
work of the game: It listens for events from the three buttons and responds by taking
the appropriate actions. The main panel is defined by HighLowGUI itself, which is
another subclass of JPanel. The constructor of the HighLowGUI class creates all the
other components, sets up event handling, and lays out the components:

148

public HighLowGUI() { / / The cons t ruc to r .

setBackground(new Color(130,50,40));

setLayout(new BorderLayout(3,3)); / / BorderLayout w i th 3−p i x e l gaps .

CardPanel board = new CardPanel(); / / Where the cards are drawn .
add(board, BorderLayout.CENTER);

JPanel buttonPanel = new JPanel(); / / The subpanel t h a t holds the but tons .
buttonPanel.setBackground(new Color(220,200,180));
add(buttonPanel, BorderLayout.SOUTH);

JButton higher = new JButton(" Higher ");
higher.addActionListener(board); / / The CardPanel l i s t e n s f o r events .
buttonPanel.add(higher);

JButton lower = new JButton(" Lower ");
lower.addActionListener(board);
buttonPanel.add(lower);

JButton newGame = new JButton("New Game");
newGame.addActionListener(board);
buttonPanel.add(newGame);

setBorder(BorderFactory.createLineBorder(new Color(130,50,40), 3));

} / / end cons t ruc to r

The programming of the drawing surface class, CardPanel, is a nice example of
thinking in terms of a state machine. (See Subection6.5.4.) It is important to think
in terms of the states that the game can be in, how the state can change, and how the
response to events can depend on the state. The approach that produced the original,
text-oriented game in Subection5.4.3 is not appropriate here. Trying to think about
the game in terms of a process that goes step-by-step from beginning to end is more
likely to confuse you than to help you.

The state of the game includes the cards and the message. The cards are stored in
an object of type Hand. The message is a String. These values are stored in instance
variables. There is also another, less obvious aspect of the state: Sometimes a game
is in progress, and the user is supposed to make a prediction about the next card.
Sometimes we are between games, and the user is supposed to click the “New Game”
button. It’s a good idea to keep track of this basic difference in state. The CardPanel
class uses a boolean instance variable named gameInProgress for this purpose.

The state of the game can change whenever the user clicks on a button. CardPanel
implements the ActionListener interface and defines an actionPerformed() method
to respond to the user’s clicks. This method simply calls one of three other methods,
doHigher(), doLower(), or newGame(), depending on which button was pressed. It’s
in these three event-handling methods that the action of the game takes place.

We don’t want to let the user start a new game if a game is currently in progress.
That would be cheating. So, the response in the newGame() method is different de-
pending on whether the state variable gameInProgress is true or false. If a game is
in progress, the message instance variable should be set to show an error message.
If a game is not in progress, then all the state variables should be set to appropriate

149

values for the beginning of a new game. In any case, the board must be repainted so
that the user can see that the state has changed. The complete newGame() method is
as follows:

/∗ ∗
∗ Cal led by the CardPanel cons t ruc to r , and c a l l e d by act ionPerformed () i f
∗ the user c l i c k s the "New Game" but ton . S t a r t a new game .
∗ /

void doNewGame() {
if (gameInProgress) {

/ / I f the cu r ren t game i s not over , i t i s an e r r o r to t r y
/ / to s t a r t a new game .

message = "You s t i l l have to f i n i s h t h i s game! ";
repaint();
return;

}
deck = new Deck(); / / Create the deck and hand to use f o r t h i s game .
hand = new Hand();
deck.shuffle();
hand.addCard(deck.dealCard()); / / Deal the f i r s t card i n t o the hand .
message = " I s the next card higher or lower? ";
gameInProgress = true;
repaint();

} / / end doNewGame()

The doHigher() and doLower() methods are almost identical to each other (and
could probably have been combined into one method with a parameter, if I were more
clever). Let’s look at the doHigher() method. This is called when the user clicks the
“Higher” button. This only makes sense if a game is in progress, so the first thing
doHigher() should do is check the value of the state variable gameInProgress. If the
value is false, then doHigher() should just set up an error message. If a game is in
progress, a new card should be added to the hand and the user’s prediction should be
tested. The user might win or lose at this time. If so, the value of the state variable
gameInProgress must be set to false because the game is over. In any case, the
board is repainted to show the new state. Here is the doHigher() method:

/∗ ∗
∗ Cal led by actionPerformmed () when user c l i c k s " Higher " but ton .
∗ Check the user ’ s p r e d i c t i o n . Game ends i f user guessed
∗ wrong or i f the user has made three c o r r e c t p r e d i c t i o n s .
∗ /

void doHigher() {
if (gameInProgress == false) {

/ / I f the game has ended , i t was an e r r o r to c l i c k " Higher " ,
/ / So set up an e r r o r message and abor t processing .

message = " Cl ick \"New Game\" to s t a r t a new game! ";
repaint();
return;

}
hand.addCard(deck.dealCard()); / / Deal a card to the hand .
int cardCt = hand.getCardCount();
Card thisCard = hand.getCard(cardCt − 1); / / Card j u s t dea l t .
Card prevCard = hand.getCard(cardCt − 2); / / The prev ious card .

150

if (thisCard.getValue() < prevCard.getValue()) {
gameInProgress = false;
message = " Too bad! You lose . ";

}
else if (thisCard.getValue() == prevCard.getValue()) {

gameInProgress = false;
message = " Too bad! You lose on t i e s . ";

}
else if (cardCt == 4) {

gameInProgress = false;
message = "You win ! You made three correct guesses . ";

}
else {

message = "Got i t r i g h t ! T r y fo r " + cardCt + " . ";
}
repaint();

} / / end doHigher ()

The paintComponent() method of the CardPanel class uses the values in the state
variables to decide what to show. It displays the string stored in the message vari-
able. It draws each of the cards in the hand. There is one little tricky bit: If a game is
in progress, it draws an extra face-down card, which is not in the hand, to represent
the next card in the deck. Drawing the cards requires some care and computation. I
wrote a method, “void drawCard(Graphics g, Card card, int x, int y)”, which
draws a card with its upper left corner at the point (x,y). The paintComponent()
method decides where to draw each card and calls this method to do the drawing. You
can check out all the details in the source code, HighLowGUI.java.

One further note on the programming of this example: The source code defines
HighLowGUI as a subclass of JPanel. The class contains a main() method so that it
can be run as a stand-alone application; the main() method simply opens a window
that uses a panel of type JPanel as its content pane. In addition, I decided to write
an applet version of the program as a static nested class named Applet inside the
HighLowGUI class. Since this is a nested class, its full name is HighLowGUI.Applet
and the class file produced when the code is compiled is HighLowGUI\$Applet.class.
This class is used for the applet version of the program shown above. The <applet>
tag lists the class file for the applet as code=’’HighLowGUI\$Applet.class’’. This is
admittedly an unusual way to organize the program, and it is probably more natu-
ral to have the panel, applet, and stand-alone program defined in separate classes.
However, writing the program in this way does show the flexibility of JAVA classes.

Simple dialogs are created by static methods in the class JOptionPane. This class
includes many methods for making dialog boxes, but they are all variations on the
three basic types shown here: a “message” dialog, a “confirm” dialog, and an “input”
dialog. (The variations allow you to provide a title for the dialog box, to specify the
icon that appears in the dialog, and to add other components to the dialog box. I will
only cover the most basic forms here.)

A message dialog simply displays a message string to the user. The user (hope-
fully) reads the message and dismisses the dialog by clicking the “OK” button. A
message dialog can be shown by calling the static method:

void JOptionPane.showMessageDialog(Component parentComp, String message)

The message can be more than one line long. Lines in the message should be
separated by newline characters, \n. New lines will not be inserted automatically,

151

even if the message is very long.
An input dialog displays a question or request and lets the user type in a string

as a response. You can show an input dialog by calling:

String JOptionPane.showInputDialog(Component parentComp, String question)

Again, the question can include newline characters. The dialog box will contain
an input box, an “OK” button, and a “Cancel” button. If the user clicks “Cancel”, or
closes the dialog box in some other way, then the return value of the method is null.
If the user clicks “OK”, then the return value is the string that was entered by the
user. Note that the return value can be an empty string (which is not the same as a
null value), if the user clicks “OK” without typing anything in the input box. If you
want to use an input dialog to get a numerical value from the user, you will have to
convert the return value into a number.

Finally, a confirm dialog presents a question and three response buttons: “Yes”,
“No”, and “Cancel”. A confirm dialog can be shown by calling:

int JOptionPane.showConfirmDialog(Component parentComp, String question)

The return value tells you the user’s response. It is one of the following constants:

• JOptionPane.YES_OPTION–the user clicked the “Yes” button

• JOptionPane.NO_OPTION–the user clicked the “No” button

• JOptionPane.CANCEL_OPTION–the user clicked the “Cancel” button

• JOptionPane.CLOSE_OPTION–the dialog was closed in some other way.

By the way, it is possible to omit the Cancel button from a confirm dialog by calling
one of the other methods in the JOptionPane class. Just call:

title, JOptionPane.YES_NO_OPTION)

The final parameter is a constant which specifies that only a “Yes” button and a
“No” button should be used. The third parameter is a string that will be displayed as
the title of the dialog box window.

If you would like to see how dialogs are created and used in the sample applet,
you can find the source code in the file SimpleDialogDemo.java.

6.8 Images and Resources

WE HAVE SEEN HOW TO USE THE GRAPHICS class to draw on a GUI component that is
visible on the computer’s screen. Often, however, it is useful to be able to create a
drawing off-screen , in the computer’s memory. It is also important to be able to
work with images that are stored in files.

To a computer, an image is just a set of numbers. The numbers specify the color
of each pixel in the image. The numbers that represent the image on the computer’s
screen are stored in a part of memory called a frame buffer. Many times each second,
the computer’s video card reads the data in the frame buffer and colors each pixel
on the screen according to that data. Whenever the computer needs to make some
change to the screen, it writes some new numbers to the frame buffer, and the change
appears on the screen a fraction of a second later, the next time the screen is redrawn
by the video card.

152

Since it’s just a set of numbers, the data for an image doesn’t have to be stored in
a frame buffer. It can be stored elsewhere in the computer’s memory. It can be stored
in a file on the computer’s hard disk. Just like any other data file, an image file can
be downloaded over the Internet. Java includes standard classes and methods that
can be used to copy image data from one part of memory to another and to get data
from an image file and use it to display the image on the screen.

6.8.1 Images

The class java.awt.Image represents an image stored in the computer’s memory.
There are two fundamentally different types of Image. One kind represents an im-
age read from a source outside the program, such as from a file on the computer’s
hard disk or over a network connection. The second type is an image created by the
program. I refer to this second type as an off-screen canvas. An off-screen canvas is
region of the computer’s memory that can be used as a drawing surface. It is possible
to draw to an offscreen image using the same Graphics class that is used for drawing
on the screen.

An Image of either type can be copied onto the screen (or onto an off-screen can-
vas) using methods that are defined in the Graphics class. This is most commonly
done in the paintComponent() method of a JComponent. Suppose that g is the Graph-
ics object that is provided as a parameter to the paintComponent() method, and that
img is of type Image. Then the statement “g.drawImage(img, x, y, this);” will
draw the image img in a rectangular area in the component. The integer-valued pa-
rameters x and y give the position of the upper-left corner of the rectangle in which
the image is displayed, and the rectangle is just large enough to hold the image.
The fourth parameter, this, is the special variable that refers to the JComponent it-
self. This parameter is there for technical reasons having to do with the funny way
Java treats image files. For most applications, you don’t need to understand this,
but here is how it works: g.drawImage() does not actually draw the image in all
cases. It is possible that the complete image is not available when this method is
called; this can happen, for example, if the image has to be read from a file. In that
case, g.drawImage() merely initiates the drawing of the image and returns immedi-
ately. Pieces of the image are drawn later, asynchronously, as they become available.
The question is, how do they get drawn? That’s where the fourth parameter to the
drawImage method comes in. The fourth parameter is something called an Ima-
geObserver. When a piece of the image becomes available to be drawn, the system
will inform the ImageObserver, and that piece of the image will appear on the screen.
Any JComponent object can act as an ImageObserver. The drawImage method re-
turns a boolean value to indicate whether the image has actually been drawn or not
when the method returns. When drawing an image that you have created in the com-
puter’s memory, or one that you are sure has already been completely loaded, you can
set the ImageObserver parameter to null.

There are a few useful variations of the drawImage() method. For example, it is
possible to scale the image as it is drawn to a specified width and height. This is done
with the command

g.drawImage(img, x, y, width, height, imageObserver);

The parameters width and height give the size of the rectangle in which the image
is displayed. Another version makes it possible to draw just part of the image. In the
command:

153

g.drawImage(img, dest_x1, dest_y1, dest_x2, dest_y2,
source_x1, source_y1, source_x2, source_y2, imageObserver);

the integers source x1, source y1, source x2, and source y2 specify the top-left and
bottom-right corners of a rectangular region in the source image. The integers dest x1,
dest y1, dest x2, and dest y2 specify the corners of a region in the destination graph-
ics context. The specified rectangle in the image is drawn, with scaling if necessary,
to the specified rectangle in the graphics context. For an example in which this is
useful, consider a card game that needs to display 52 different cards. Dealing with
52 image files can be cumbersome and inefficient, especially for downloading over the
Internet. So, all the cards might be put into a single image:

(This image is from the Gnome desktop project, http://www.gnome.org, and is
shown here much smaller than its actual size.) Now, only one Image object is needed.
Drawing one card means drawing a rectangular region from the image. This tech-
nique is used in a variation of the sample program HighLowGUI.java. In the original
version, the cards are represented by textual descriptions such as “King of Hearts.”
In the new version, HighLowWithImages.java, the cards are shown as images. Here
is an applet version of the program:

In the program, the cards are drawn using the following method. The instance
variable cardImages is a variable of type Image that represents the image that is
shown above, containing 52 cards, plus two Jokers and a face-down card. Each card
is 79 by 123 pixels. These numbers are used, together with the suit and value of the
card, to compute the corners of the source rectangle for the drawImage() command:

154

/∗ ∗
∗ Draws a card i n a 79x123 p i x e l rec tang le w i th i t s
∗ upper l e f t corner a t a s p e c i f i e d po in t (x , y) . Drawing the card
∗ requ i res the image f i l e " cards . png " .
∗ @param g The graphics contex t used f o r drawing the card .
∗ @param card The card t h a t i s to be drawn . I f the value i s n u l l , then a
∗ face−down card i s drawn .
∗ @param x the x−coord o f the upper l e f t corner o f the card
∗ @param y the y−coord o f the upper l e f t corner o f the card
∗ /

public void drawCard(Graphics g, Card card, int x, int y) {
int cx; / / x−coord o f upper l e f t corner o f the card i n s i d e cardsImage
int cy; / / y−coord o f upper l e f t corner o f the card i n s i d e cardsImage
if (card == null) {

cy = 4∗123; / / coords f o r a face−down card .
cx = 2∗79;

}
else {

cx = (card.getValue()−1)∗79;
switch (card.getSuit()) {
case Card.CLUBS:

cy = 0;
break;

case Card.DIAMONDS:
cy = 123;
break;

case Card.HEARTS:
cy = 2∗123;
break;

default: / / spades
cy = 3∗123;
break;

}
}
g.drawImage(cardImages,x,y,x+79,y+123,cx,cy,cx+79,cy+123,this);

}

I will tell you later in this section how the image file, cards.png, can be loaded into
the program.

6.8.2 Image File I/O

The class javax.imageio.ImageIO makes it easy to save images from a program into
files and to read images from files into a program. This would be useful in a program
such as PaintWithOffScreenCanvas, so that the users would be able to save their
work and to open and edit existing images. (See Exercise12.1.)

There are many ways that the data for an image could be stored in a file. Many
standard formats have been created for doing this. Java supports at least three
standard image formats: PNG, JPEG, and GIF. (Individual implementations of Java
might support more.) The JPEG format is “lossy,” which means that the picture that
you get when you read a JPEG file is only an approximation of the picture that was
saved. Some information in the picture has been lost. Allowing some information
to be lost makes it possible to compress the image into a lot fewer bits than would
otherwise be necessary. Usually, the approximation is quite good. It works best for

155

photographic images and worst for simple line drawings. The PNG format, on the
other hand is “lossless,” meaning that the picture in the file is an exact duplicate of
the picture that was saved. A PNG file is compressed, but not in a way that loses
information. The compression works best for images made up mostly of large blocks
of uniform color; it works worst for photographic images. GIF is an older format that
is limited to just 256 colors in an image; it has mostly been superseded by PNG.

Suppose that image is a BufferedImage. The image can be saved to a file simply
by calling ImageIO.write(image, format, file) where format is a String that
specifies the image format of the file and file is a File that specifies the file that is to
be written. The format string should ordinarily be either “PNG” or “JPEG”, although
other formats might be supported.

ImageIO.write() is a static method in the ImageIO class. It returns a boolean
value that is false if the image format is not supported. That is, if the specified image
format is not supported, then the image is not saved, but no exception is thrown.
This means that you should always check the return value! For example:

boolean hasFormat = ImageIO.write(OSC,format,selectedFile);
if (! hasFormat)

throw new Exception(format + " format i s not available . ");

If the image format is recognized, it is still possible that that an IOExcption might
be thrown when the attempt is made to send the data to the file.

The ImageIO class also has a static read() method for reading an image from a file
into a program. The method ImageIO.read(inputFile) takes a variable of type
File as a parameter and returns a BufferedImage. The return value is null if the file
does not contain an image that is stored in a supported format. Again, no exception
is thrown in this case, so you should always be careful to check the return value. It is
also possible for an IOException to occur when the attempt is made to read the file.
There is another version of the read() method that takes an InputStream instead of
a file as its parameter, and a third version that takes a URL.

Earlier in this section, we encountered another method for reading an image
from a URL, the createImage() method from the Toolkit class. The difference is
that ImageIO.read() reads the image data completely and stores the result in a
BufferedImage. On the other hand, createImage() does not actually read the data;
it really just stores the image location and the data won’t be read until later, when
the image is used. This has the advantage that the createImage() method itself can
complete very quickly. ImageIO.read(), on the other hand, can take some time to
execute.

156

Chapter 7
A Solitaire Game -

Klondike

In this chapter will build a version of the Solitaire game. We’ll use the case study
investigate the object-oriented concepts of encapsulation, inheritance, and polymor-
phism. The game is inspired by Timothy Budd’s version in his book AN INTRODUC-
TION TO OBJECT-ORIENTED PROGRAMMING.

7.1 Klondike Solitaire

The most popular solitare game is called klondike. It can be described as follows:
The layout of the game is shown in the figure below. A single standard pack of 52

cards is used. (i.e. 4 suits (spades ♠, diamonds ♦, hearts ♥, clubs ♣) and 13 cards (13
ranks) in each suit.).

The tableau, or playing table, consists of 28 cards in 7 piles. The first pile has 1
card, the second 2, the third 3, and so on up to 7. The top card of each pile is initially
face up; all other cards are face down.

The suit piles (sometimes called foundations) are built up from aces to kings in
suits. They are constructed above the tableau as the cards become available. The
object of the game is to build all 52 cards into the suit piles.

The cards that are not part of the tableau are initially all in the deck. Cards in
the deck are face down, and are drawn one by one from the deck and placed, face up,
on the discard pile. From there, they can be moved onto either a tableau pile or a
foundation. Cards are drawn from the deck until the pile is empty; at this point, the
game is over if no further moves can be made.

Cards can be placed on a tableau pile only on a card of next-higher rank and
opposite color. They can be placed on a foundation only if they are the same suit and
next higher card or if the foundation is empty and the card is an ace. Spaces in the
tableau that arise during play can be filled only by kings.

The topmost card of each tableau pile and the topmost card of the discard pile are
always available for play. The only time more than one card is moved is when an
entire collection of face-up cards from a tableau (called a build) is moved to another
tableau pile. This can be done if the bottommost card of the build can be legally
played on the topmost card of the destination. Our initial game will not support the
transfer of a build. The topmost card of a tableau is always face up. If a card is moved

157

Figure 7.1: Layout of the Solitaire Game

from a tableau, leaving a face-down card on the top, the latter card can be turned face
up.

7.2 Card Games

In this section and the next we will explore games that employ playing cards, and use
them to build our simplified game of Klondike Solitaire.

To start off we will program two classes, a Card class and a Deck class. These two
classes will be useful in almost all card games. Create and new project (CardGames
is good name) and write these classes in a package called cardGames.

The Card class

The aim is to build an ABSTRACTION of a playing card. Objects of type Card represent
a single playing card. The class has the following responsibilites:

Know its suit, rank and whether it is black or red

Create a card specified by rank and suit

Know if it is face down or up

Display itself (face up or down)

Flip itself (change from face down to face up and vice versa)

Your tasks is to design the Card class and program it. It is also necessary to test
your class.

158

Using Images

In order to program the class, we need to use images of cards.
There are several ways to work with images. Heres a quick how-to describing one

way...

(a) Copy the images folder into the project folder. It should be copied into the top
level of the CardGames folder.

(b) Using an image is a three step process:

* Declare a variable of type Image e.g. Image backImage;

* Read an image into this variable: (This must be done within a try/catch
block and assumes the images are stored in the images folder in the project.)

try{
backImage = ImageIO.read(new File(" images/ b1fv . g i f "));

}
catch (IOException i){

System.err.println(" Image load er ro r ");
}

* Draw the image (Off course, you draw method will be different since you
have to worry about whether the card is face up and face down and the
image you draw depends on the particular card.):

public void draw(Graphics g, int x, int y) {
g.drawImage(backImage,x,y,null); }

(c) The naming convention of the image files is straight forward: ’xnn.gif’ is the
format were ’x’ is a letter of the suit (s=spades ♠, d=diamonds ♦, h=hearts ♥,
c=clubs ♣) and ’nn’ is a one or two digit number representing the card’s rank
(1=ACE, 2-10=cards 2 to 10, 11=JACK, 12=QUEEN, 13=KING). e.g. c12 is the
Queen of clubs; d1 is the Ace of Diamonds; h8=8 of hearts. There are two images
of the back of a card (b1fv.gif and b2fv.gif).

The testing of the Card class can be done by setting up a test harness. This could
simply be a main method in the Card class like this one. You will off course make
changes to this to do various tests.:

public static void main(String[] args) {

class Panel extends JPanel { / / a method l o c a l i nne r c lass
Card c;
Panel(){ c = new Card(1,13); }

public void PanelTest(){ / / method to t e s t Cards
repaint(); c.flip(); repaint();

}
public void paintComponent(Graphics g){

super.paintComponent(g);
c.draw(g,20,10);

}
} \\end of class Panel

159

JFrame frame = new JFrame();
frame.setSize(new Dimension(500,500));
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Panel p = new Panel();
frame.setContentPane(p);
frame.show();
p.PanelTest();

}\\end of main method

7.2.1 The CardNames Interface

The CardNames class is an interface defining names.

public interface CardNames {
public static final int heart = 0;
public static final int diamond = 1;
public static final int club = 2;
public static final int spade = 3;
public static final int ace = 1;
public static final int jack = 11;
public static final int queen = 12;
public static final int king = 13;
public static final int red = 0;
public static final int black = 1;

}

Its a convenience class that allows us to use these names in a consistent man-
ner. Thus, we can use the name CardNames.ace throughout the program consis-
tently (i. e. Different parts of the program will mean the same thing when they say
CardNames.ace).

7.2.2 The Deck class

This class is meant to represent a deck of 52 cards. (A Deck is composed of 52 Cards).
Its responsibilities are:

Create a deck of 52 cards

Know the cards in the deck

Shuffle a deck

Deal a card from the deck

Know how many cards are in the deck

Design, write and test the Deck class.

7.3 Implementation of Klondike

To program the game, we notice that we basically need to keep track of several piles
of cards. The piles have similar functionality, so inheritance is strongly suggested.
What we do is write all the common functionality in a base class called CardPile. We
then specialise this class to create the concrete classes for each pile.

A class diagram for this application is shown above:

160

Figure 7.2: Class diagram for the Solitaire app

7.3.1 The CardPile class (the base class)

package solitaire;

import java.awt.Graphics;
import java.util.LinkedList;
import java.util.List;

public abstract class CardPile {

protected List pile;
protected int x;
protected int y;

/∗ ∗ ∗ Make an Empty P i l e ∗ /
public CardPile(int x, int y) {

pile = new LinkedList();
this.x = x;
this.y = y;

}

public boolean empty(){
return pile.isEmpty();

}

161

public Card topCard() {
if (!empty())

return (Card)pile.get(pile.size()−1);
else

return null;
}

public Card pop() {
if (!empty())

return (Card)pile.remove(pile.size()−1);
else

return null;
}

public boolean includes(int tx, int ty) {
return x<=tx && tx <= x + Card.width

&& y <= ty && ty <= y + Card.height;
}

public void addCard(Card aCard){
pile.add(aCard);

}

public void draw (Graphics g){
if (empty()) {

g.drawRect(x,y,Card.width,Card.height);
}
else

topCard().draw(g,x,y);
}

public abstract boolean canTake(Card aCard);

public abstract void select ();
}

Notice that this class is abstract. It has three protected attributes (What does
protected mean?). The x and y are coordinates of this pile on some drawing surface
and the pile attribute is Collection of Cards. Most of the methods are self explanatory
;).

* The includes method is given a point (a coordinate) and returns true if this
point is contained within the space occupied by the cards in the pile. We intend
to use this method to tell us if the user has clicked on this particular pile of
cards. The idea is to get the coordinates of the point the user has clicked on and
then ask each pile if this coordinate falls within the space it occupies.

* The canTake abstract method should tell us whether a particular pile of cards
can accept a card. Different piles will have different criteria for accepting a
Card. For example, suit piles will accept a card if it is the same suit as all
others in the pile and if its rank is one more that its topCard. The table piles
will accept a card if its suit is opposite in color and its rank is one less than the
pile’s topCard.

* The select abstract method is the action this pile takes if it can accept a Card.
Usually, this means adding it to its pile and making the new Card the topCard.

162

7.3.2 The Solitaire class

The Solitaire class is the one that runs. It creates and maintains the different piles of
cards. Notice that most of its attributes are static and visible to other classes in the
package. Study it carefully and make sure you understand it fully (FULLY!) before
you continue.

package solitaire;

import javax.swing.∗;
import java.awt.∗;

public class Solitaire extends JPanel implements MouseListener {

static DeckPile deckPile;
static DiscardPile discardPile;
static TablePile tableau[];
static SuitPile suitPile[];
static CardPile allPiles[];

public Solitaire(){
setBackground(Color.green);
addMouseListener(this);
allPiles = new CardPile[13];
suitPile = new SuitPile[4];
tableau = new TablePile[7];

int deckPos = 600;
int suitPos = 15;
allPiles[0] = deckPile = new DeckPile(deckPos, 5);
allPiles[1] = discardPile =

new DiscardPile(deckPos − Card.width − 10, 5);
for (int i = 0; i < 4; i++)

allPiles[2+i] = suitPile[i] =
new SuitPile(suitPos + (Card.width + 10) ∗ i, 5);

for (int i = 0; i < 7; i++)
allPiles[6+i] = tableau[i] =

new TablePile(suitPos + (Card.width + 10) ∗ i,
Card.height + 20, i+1);

repaint();
}

public void paintComponent(Graphics g) {
super.paintComponent(g);
for (int i = 0; i < 13; i++)

allPiles[i].draw(g);
}

163

public static void main(String[] args) {
JFrame frame = new JFrame();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);
frame.setSize(800,600);
frame.setTitle(" S o l i t a i r e ");

Solitaire s = new Solitaire();
frame.add(s);
frame.validate();
s.repaint();

}

public void mouseClicked(MouseEvent e) {
int x = e.getX();
int y = e.getY();
for (int i = 0; i < 12; i++)

if (allPiles[i].includes(x, y)) {
allPiles[i].select();
repaint();

}
}

public void mousePressed(MouseEvent e) { }

public void mouseReleased(MouseEvent e) { }

public void mouseEntered(MouseEvent e) { }

public void mouseExited(MouseEvent e) { }
}

7.3.3 Completing the Implementation

Write the classes TablePile, SuitPile, DiscardPile, DeckPile. I suggest that
you create all the classes first and then work with them one at a time. They all
extend the CardPile class. You must take care to consider situations when the pile
is empty. The following will guide you in writing these classes:

* the DeckPile Class This class extends the CardPile class. It must create
a full deck of cards (stored in its super class’s pile attribute.) The cards
should be shuffled after creation (use Collections.shuffle(...)). You
never add cards to the DeckPile so its canTake method always returns false.
The select method removes a card from the deckPile and adds it to the
discardPile (In the Solitaire class).

* The DiscardPile Class This maintains a pile of cards that do not go into any
of the other piles. Override the addCard method to check first if the card is
faceUp and flip it if its not. Then add the card to the pile. You never add cards
to the DiscardPile so its canTake method always returns false. The select
method requires careful thought. Remember that this method runs when the
user selects this pile. Now, what happens when the user clicks on the topCard
in the discardPile? We must check if any SuitPile (4 of them) or any TablePile

164

(7 of them) (all in the Solitaire class) can take the card. If any of these piles can
take the card we add the Card to that pile. If not, we leave it on the discardPile.

* The SuitPile Class The select method is empty (Cards are never removed
from this pile). The canTake method should return true if the Card is the same
suit as all others in the pile and if its rank is one more that its topCard.

* The TablePile Class Write the constructor to initialize the table pile. The
constructor accepts three parameters, the x and y coordinates of the pile, and
an integer that tell it how many cards it contains. (remember that the first
tablePile contains 1 card, the second 2 Cards etc.). It takes Cards from the deck-
Pile. The table pile is displayed differently from the other piles (the cards over-
lap). We thus need to override the includes the method and the draw method.
The canTake method is also different. The table piles will accept a card if its
suit is opposite in color and its rank is one less than the pile’s topCard. The
select method is similar to the one in DiscardPile. We must check if any
SuitPile (4 of them) or any TablePile (7 of them) (all in the Solitaire class) can
take the card. If any of these piles can take the card we add the Card to that
pile otherwise we leave it in this tabePile.

165

166

Chapter 8
Generic Programming

Contents
8.1 Generic Programming in Java . 168

8.2 ArrayLists . 168

8.3 Parameterized Types . 170

8.4 The Java Collection Framework 172

8.5 Iterators and for-each Loops . 174

8.6 Equality and Comparison . 176

8.7 Generics and Wrapper Classes . 179

8.8 Lists . 179

A DATA STRUCTURE IS A COLLECTION OF DATA ITEMS, considered as a unit. For exam-
ple, a list is a data structure that consists simply of a sequence of items. Data struc-
tures play an important part in programming. Various standard data structures have
been developed including lists, sets, and trees. Most programming libraries provide
built-in data structures that may be used with very little effort from the programmer.
Java has the Collection Framework that provides standard data structures for use
by programmers.

Generic programming refers to writing code that will work for many types of data.
The source code presented there for working with dynamic arrays of integers works
only for data of type int. But the source code for dynamic arrays of double, String,
JButton, or any other type would be almost identical, except for the substitution of
one type name for another. It seems silly to write essentially the same code over
and over. Java goes some distance towards solving this problem by providing the
ArrayList class. An ArrayList is essentially a dynamic array of values of type
Object. Since every class is a subclass of Object, objects of any type can be stored
in an ArrayList. Java goes even further by providing “parameterized types.” The
ArrayList type can be parameterized, as in “ArrayList<String>”, to limit the val-
ues that can be stored in the list to objects of a specified type. Parameterized types
extend Java’s basic philosophy of type-safe programming to generic programming.

167

8.1 Generic Programming in Java

JAVA’S GENERIC PROGRAMMING FEATURES are represented by group of generic classes
and interfaces as a group are known as the Java Collection Framework. These
classes represents various data structure designed to hold Objects can be used with
objects of any type. Unfortunately the result is a category of errors that show up
only at run time, rather than at compile time. If a programmer assumes that all the
items in a data structure are strings and tries to process those items as strings, a
run-time error will occur if other types of data have inadvertently been added to the
data structure. In JAVA, the error will most likely occur when the program retrieves
an Object from the data structure and tries to type-cast it to type String. If the
object is not actually of type String, the illegal type-cast will throw an error of type
ClassCastException.

JAVA 5.0 introduced parameterized types, such as ArrayList<String>. This made
it possible to create generic data structures that can be type-checked at compile time
rather than at run time. With these data structures, type-casting is not necessary, so
ClassCastExceptions are avoided. The compiler will detect any attempt to add an
object of the wrong type to the data structure; it will report a syntax error and will
refuse to compile the program. In Java 5.0, all of the classes and interfaces in the
Collection Framework, and even some classes that are not part of that framework,
have been parameterized. In this chapter, I will use the parameterized types almost
exclusively, but you should remember that their use is not mandatory. It is still legal
to use a parameterized class as a non-parameterized type, such as a plain ArrayList.

With a Java parameterized class, there is only one compiled class file. For exam-
ple, there is only one compiled class file, ArrayList.class, for the parameterized class
ArrayList. The parameterized types ArrayList<String> and ArrayList<Integer>
both use the some compiled class file, as does the plain ArrayList type. The type
parameter—String or Integer—just tells the compiler to limit the type of object that
can be stored in the data structure. The type parameter has no effect at run time and
is not even known at run time. The type information is said to be “erased” at run
time. This type erasure introduces a certain amount of weirdness. For example, you
can’t test “if (list instanceof {ArrayList<String>)” because the instanceof
operator is evaluated at run time, and at run time only the plain ArrayList ex-
ists. Even worse, you can’t create an array that has base type ArrayList<String>
using the new operator, as in “new ArrayList<String>(N)”. This is because the
new operator is evaluated at run time, and at run time there is no such thing as
“ArrayList<String>”; only the non-parameterized type ArrayList exists at run time.

Fortunately, most programmers don’t have to deal with such problems, since they
turn up only in fairly advanced programming. Most people who use the Java Collec-
tion Framework will not encounter them, and they will get the benefits of type-safe
generic programming with little difficulty.

8.2 ArrayLists

IN THIS SECTION we discuss ArrayLists that are part of the Collection Framework.
Arrays in JAVA have two disadvantages: they have a fixed size and their type

must be must be specified when they are created.
The size of an array is fixed when it is created. In many cases, however, the

number of data items that are actually stored in the array varies with time. Consider

168

the following examples: An array that stores the lines of text in a word-processing
program. An array that holds the list of computers that are currently downloading
a page from a Web site. An array that contains the shapes that have been added to
the screen by the user of a drawing program. Clearly, we need some way to deal with
cases where the number of data items in an array is not fixed.

Specifying the type when arrays are created means that one can only put primi-
tives or objects of the specified into the array—for example, an array of int can only
hold integers. One way to work around this is to declare Object as the type of an ar-
ray. In this case one can place anything into the array because, in JAVA, every class is
a subclass of the class named Object. This means that every object can be assigned
to a variable of type Object. Any object can be put into an array of type Object[].

An ArrayList serves much the same pupose as arrays do. It allows you to store
objects of any type. The ArrayList class is in the package java.util, so if you want
to use it in a program, you should put the directive “import java.util.ArrayList;”
at the beginning of your source code file.

The ArrayList class always has a definite size, and it is illegal to refer to a po-
sition in the ArrayList that lies outside its size. In this, an ArrayList is more like
a regular array. However, the size of an ArrayList can be increased at will. The
ArrayList class defines many instance methods. I’ll describe some of the most use-
ful. Suppose that list is a variable of type ArrayList. Then we have:

• list.size()–This method returns the current size of the ArrayList. The only
valid positions in the list are numbers in the range 0 to list.size()−1. Note
that the size can be zero. A call to the default constructor new ArrayList()
creates an ArrayList of size zero.

• list.add(obj)–Adds an object onto the end of the list, increasing the size by 1.
The parameter, obj, can refer to an object of any type, or it can be null.

• list.get(N)–returns the value stored at position N in the ArrayList. N must be
an integer in the range 0 to list.size()−1. If N is outside this range, an error
of type IndexOutOfBoundsException occurs. Calling this method is similar to
referring to A[N] for an array, A, except you can’t use list.get(N) on the left
side of an assignment statement.

• list.set(N, obj)–Assigns the object, obj, to position N in the ArrayList, re-
placing the item previously stored at position N. The integer N must be in the
range from 0 to list.size()−1. A call to this method is equivalent to the com-
mand A[N] = obj for an array A.

• list.remove(obj)–If the specified object occurs somewhere in the ArrayList,
it is removed from the list. Any items in the list that come after the removed
item are moved down one position. The size of the ArrayList decreases by 1. If
obj occurs more than once in the list, only the first copy is removed.

• list.remove(N)–For an integer, N, this removes the N-th item in the ArrayList.
N must be in the range 0 to list.size()−1. Any items in the list that come
after the removed item are moved down one position. The size of the ArrayList
decreases by 1.

• list.indexOf(obj)–A method that searches for the object, obj, in the ArrayList.
If the object is found in the list, then the position number where it is found is
returned. If the object is not found, then −1 is returned.

169

For example, suppose that players in a game are represented by objects of type
Player. The players currently in the game could be stored in an ArrayList named
players. This variable would be declared as ArrayList players; and initialized
to refer to a new, empty ArrayList object with players = new ArrayList();. If
newPlayer is a variable that refers to a Player object, the new player would be added
to the ArrayList and to the game by saying players.add(newPlayer); and if player
number i leaves the game, it is only necessary to say players.remove(i);. Or, if
player is a variable that refers to the Player that is to be removed, you could say
players.remove(player);.

All this works very nicely. The only slight difficulty arises when you use the
method players.get(i) to get the value stored at position i in the ArrayList. The
return type of this method is Object. In this case the object that is returned by the
method is actually of type Player. In order to do anything useful with the returned
value, it’s usually necessary to type-cast it to type Player by saying:
Player plr = (Player)players.get(i);.

For example, if the Player class includes an instance method makeMove() that is
called to allow a player to make a move in the game, then the code for letting every
player make a move is

for (int i = 0; i < players.size(); i++) {
Player plr = (Player)players.get(i);
plr.makeMove();

}

The two lines inside the for loop can be combined to a single line:
((Player)players.get(i)).makeMove();.
This gets an item from the list, type-casts it, and then calls the makeMove() method
on the resulting Player. The parentheses around “(Player)players.get(i)” are re-
quired because of Java’s precedence rules. The parentheses force the type-cast to be
performed before the makeMove() method is called.

for−each loops work for ArrayLists just as they do for arrays. But note that
since the items in an ArrayList are only known to be Objects, the type of the loop
control variable must be Object. For example, the for loop used above to let each
Player make a move could be written as the for−each loop

for (Object plrObj : players) {
Player plr = (Player)plrObj;
plr.makeMove();

}

In the body of the loop, the value of the loop control variable, plrObj, is one of the
objects from the list, players. This object must be type-cast to type Player before it
can be used.

8.3 Parameterized Types

THE MAIN DIFFERENCE BETWEEN true generic programming and the ArrayList examples
in the previous subsection is the use of the type Object as the basic type for objects
that are stored in a list. This has at least two unfortunate consequences: First,
it makes it necessary to use type-casting in almost every case when an element is
retrieved from that list. Second, since any type of object can legally be added to the
list, there is no way for the compiler to detect an attempt to add the wrong type

170

of object to the list; the error will be detected only at run time when the object is
retrieved from the list and the attempt to type-cast the object fails. Compare this
to arrays. An array of type BaseType[] can only hold objects of type BaseType.
An attempt to store an object of the wrong type in the array will be detected by the
compiler, and there is no need to type-cast items that are retrieved from the array
back to type BaseType.

To address this problem, Java 5.0 introduced parameterized types. ArrayList
is an example: Instead of using the plain “ArrayList” type, it is possible to use
ArrayList<BaseType>, where BaseType is any object type, that is, the name of a
class or of an interface. (BaseType cannot be one of the primitive types.)

ArrayList<BaseType> can be used to create lists that can hold only objects of
type BaseType. For example, ArrayList<ColoredRect> rects;. declares a variable
named rects of type ArrayList<ColoredRect>, and
rects = new ArrayList<ColoredRect>();
sets rects to refer to a newly created list that can only hold objects belonging to the
class ColoredRect (or to a subclass). The funny-looking “ArrayList<ColoredRect>”
is being used here in the same way as an ordinary class name–don’t let the
“<ColoredRect>” confuse you; it’s just part of the name of the type. When a state-
ments such as rects.add(x); occurs in the program, the compiler can check whether
x is in fact of type ColoredRect. If not, the compiler will report a syntax error. When
an object is retrieved from the list, the compiler knows that the object must be of type
ColoredRect, so no type-cast is necessary. You can say simply:
ColoredRect rect = rects.get(i).

You can even refer directly to an instance variable in the object, such as
rects.get(i).color. This makes using ArrayList<ColoredRect> very similar to
using ColoredRect[] with the added advantage that the list can grow to any size.
Note that if a for-each loop is used to process the items in rects, the type of the loop
control variable can be ColoredRect, and no type-cast is necessary. For example,
when using ArrayList<ColoredRect> as the type for the list rects, the code for
drawing all the rectangles in the list could be rewritten as:

for (ColoredRect rect : rects) {
g.setColor(rect.color);
g.fillRect(rect.x, rect.y, rect.width, rect.height);
g.setColor(Color.BLACK);
g.drawRect(rect.x, rect.y, rect.width − 1, rect.height − 1);

}

You can use ArrayList<ColoredRect> anyplace where you could use a normal
type: to declare variables, as the type of a formal parameter in a method, or as the
return type of a method. ArrayList<ColoredRect> is not considered to be a separate
class from ArrayList. An object of type ArrayList<ColoredRect> actually belongs to
the class ArrayList, but the compiler restricts the type of objects that can be added
to the list.)

The only drawback to using parameterized types is that the base type cannot be
a primitive type. For example, there is no such thing as “ArrayList<int>”. However,
this is not such a big drawback as it might seem at first, because of the “wrapper
types” and “autoboxing”. A wrapper type such as Double or Integer can be used
as a base type for a parameterized type. An object of type ArrayList<Double> can
hold objects of type Double. Since each object of type Double holds a value of type
double, it’s almost like having a list of doubles. If numlist is declared to be of type

171

ArrayList<Double> and if x is of type double, then the value of x can be added to the
list by saying: numlist.add(new Double(x));.

Furthermore, because of autoboxing, the compiler will automatically do double-to-
Double and Double-to-double type conversions when necessary. This means that the
compiler will treat “numlist.add(x)” as begin equivalent to the statement
“numlist.add(new Double(x))”. So, behind the scenes, “numlist.add(x)” is ac-
tually adding an object to the list, but it looks a lot as if you are working with a list
of doubles.

The ArrayList class is just one of several standard classes that are used for
generic programming in Java. We will spend the next few sections looking at these
classes and how they are used, and we’ll see that there are also generic methods
and generic interfaces. All the classes and interfaces discussed in these sections
are defined in the package java.util, and you will need an import statement at
the beginning of your program to get access to them. (Before you start putting
“importăjava.util.∗” at the beginning of every program, you should know that
some things in java.util have names that are the same as things in other packages.
For example, both java.util.List and java.awt.List exist, so it is often better to
import the individual classes that you need.)

8.4 The Java Collection Framework

JAVA’S GENERIC DATA STRUCTURES can be divided into two categories: collections and
maps. A collection is more or less what it sound like: a collection of objects. An
ArrayList is an example of a collection. A map associates objects in one set with
objects in another set in the way that a dictionary associates definitions with words
or a phone book associates phone numbers with names. In Java, collections and maps
are represented by the parameterized interfaces Collection<T> and Map<T,S>. Here,
“T” and “S” stand for any type except for the primitive types.

We will discuss only collections in this course.
There are two types of collections: lists and sets. A list is a collection in which the

objects are arranged in a linear sequence. A list has a first item, a second item, and
so on. For any item in the list, except the last, there is an item that directly follows
it. The defining property of a set is that no object can occur more than once in a set;
the elements of a set are not necessarily thought of as being in any particular or-
der. The ideas of lists and sets are represented as parameterized interfaces List<T>
and Set<T>. These are sub−interfaces of \code{Collection<T>. That is, any
object that implements the interface List<T> or Set<T> automatically implements
Collection<T> as well. The interface Collection<T> specifies general operations
that can be applied to any collection at all. List<T> and Set<T> add additional oper-
ations that are appropriate for lists and sets respectively.

Of course, any actual object that is a collection, list, or set must belong to a
concrete class that implements the corresponding interface. For example, the class
ArrayList<T> implements the interface List<T> and therefore also implements
Collection<T>. This means that all the methods that are defined in the list and
collection interfaces can be used with, for example, an ArrayList<String> object.
We will look at various classes that implement the list and set interfaces in the next
section. But before we do that, we’ll look briefly at some of the general operations
that are available for all collections.

The interface Collection<T> specifies methods for performing some basic opera-

172

tions on any collection of objects. Since “collection” is a very general concept, oper-
ations that can be applied to all collections are also very general. They are generic
operations in the sense that they can be applied to various types of collections con-
taining various types of objects. Suppose that coll is an object that implements the
interface Collection<T> (for some specific non-primitive type T). Then the following
operations, which are specified in the interface Collection<T>, are defined for coll:

• coll.size()–returns an int that gives the number of objects in the collection.

• coll.isEmpty()–returns a boolean value which is true if the size of the collec-
tion is 0.

• coll.clear()–removes all objects from the collection.

• coll.add(tobject)–adds tobject to the collection. The parameter must be
of type T; if not, a syntax error occurs at compile time. This method returns
a boolean value which tells you whether the operation actually modified the
collection. For example, adding an object to a Set has no effect if that object was
already in the set.

• coll.contains(object)–returns a boolean value that is true if object is in the
collection. Note that object is not required to be of type T, since it makes sense
to check whether object is in the collection, no matter what type object has. (For
testing equality, null is considered to be equal to itself. The criterion for testing
non-null objects for equality can differ from one kind of collection to another.)

• coll.remove(object)–removes object from the collection, if it occurs in the
collection, and returns a boolean value that tells you whether the object was
found. Again, object is not required to be of type T.

• coll.containsAll(coll2)–returns a boolean value that is true if every object
in coll2 is also in the coll. The parameter can be any collection.

• coll.addAll(coll2)–adds all the objects in coll2 to coll. The parameter,
coll2, can be any collection of type Collection<T>. However, it can also be
more general. For example, if T is a class and S is a sub-class of T, then coll2
can be of type Collection<S>. This makes sense because any object of type S is
automatically of type T and so can legally be added to coll.

• coll.removeAll(coll2)–removes every object from coll that also occurs in
the collection coll2. coll2 can be any collection.

• coll.retainAll(coll2)–removes every object from coll that does not occur
in the collection coll2. It “retains” only the objects that do occur in coll2.
coll2 can be any collection.

• coll.toArray()–returns an array of type Object[] that contains all the items
in the collection. The return value can be type-cast to another array type, if
appropriate. Note that the return type is Object[], not T[]! However, you
can type-cast the return value to a more specific type. For example, if you know
that all the items in coll are of type String, then String[])coll.toArray()
gives you an array of Strings containing all the strings in the collection.

173

Since these methods are part of the Collection<T> interface, they must be de-
fined for every object that implements that interface. There is a problem with this,
however. For example, the size of some kinds of collection cannot be changed af-
ter they are created. Methods that add or remove objects don’t make sense for
these collections. While it is still legal to call the methods, an exception will be
thrown when the call is evaluated at run time. The type of the exception thrown is
UnsupportedOperationException. Furthermore, since Collection<T> is only an in-
terface, not a concrete class, the actual implementation of the method is left to the
classes that implement the interface. This means that the semantics of the methods,
as described above, are not guaranteed to be valid for all collection objects; they are
valid, however, for classes in the Java Collection Framework.

There is also the question of efficiency. Even when an operation is defined for sev-
eral types of collections, it might not be equally efficient in all cases. Even a method
as simple as size() can vary greatly in efficiency. For some collections, computing
the size() might involve counting the items in the collection. The number of steps
in this process is equal to the number of items. Other collections might have instance
variables to keep track of the size, so evaluating size() just means returning the
value of a variable. In this case, the computation takes only one step, no matter how
many items there are. When working with collections, it’s good to have some idea of
how efficient operations are and to choose a collection for which the operations that
you need can be implemented most efficiently. We’ll see specific examples of this in
the next two sections.

8.5 Iterators and for-each Loops

THE INTERFACE Collection<T> defines a few basic generic algorithms, but suppose
you want to write your own generic algorithms. Suppose, for example, you want to do
something as simple as printing out every item in a collection. To do this in a generic
way, you need some way of going through an arbitrary collection, accessing each item
in turn. We have seen how to do this for specific data structures: For an array, you
can use a for loop to iterate through all the array indices. For a linked list, you can
use a while loop in which you advance a pointer along the list.

Collections can be represented in any of these forms and many others besides.
With such a variety of traversal mechanisms, how can we even hope to come up with
a single generic method that will work for collections that are stored in wildly differ-
ent forms? This problem is solved by iterators. An iterator is an object that can be
used to traverse a collection. Different types of collections have iterators that are im-
plemented in different ways, but all iterators are used in the same way. An algorithm
that uses an iterator to traverse a collection is generic, because the same technique
can be applied to any type of collection. Iterators can seem rather strange to someone
who is encountering generic programming for the first time, but you should under-
stand that they solve a difficult problem in an elegant way.

The interface Collection<T> defines a method that can be used to obtain an it-
erator for any collection. If coll is a collection, then coll.iterator() returns an
iterator that can be used to traverse the collection. You should think of the iter-
ator as a kind of generalized pointer that starts at the beginning of the collection
and can move along the collection from one item to the next. Iterators are defined
by a parameterized interface named Iterator<T>. If coll implements the interface
Collection<T> for some specific type T, then coll.iterator() returns an iterator

174

of type Iterator<T> , with the same type T as its type parameter. The interface
Iterator<T> defines just three methods. If iter refers to an object that implements
Iterator<T>, then we have:

• iter.next()–returns the next item, and advances the iterator. The return
value is of type T. This method lets you look at one of the items in the col-
lection. Note that there is no way to look at an item without advancing the
iterator past that item. If this method is called when no items remain, it will
throw a NoSuchElementException.

• iter.hasNext()–returns a boolean value telling you whether there are more
items to be processed. In general, you should test this before calling iter.next().

• iter.remove()–if you call this after calling iter.next(), it will remove the
item that you just saw from the collection. Note that this method has no pa-
rameter . It removes the item that was most recently returned by iter.next().
This might produce an UnsupportedOperationException, if the collection does
not support removal of items.

Using iterators, we can write code for printing all the items in any collection.
Suppose, for example, that coll is of type Collection<String>. In that case, the
value returned by coll.iterator() is of type Iterator<String>, and we can say:

Iterator<String> iter; / / Declare the i t e r a t e r v a r i a b l e .
iter = coll.iterator(); / / Get an i t e r a t o r f o r the c o l l e c t i o n .
while (iter.hasNext()) {

String item = iter.next(); / / Get the next i tem .
System.out.println(item);

}

The same general form will work for other types of processing. For example, the
following code will remove all null values from any collection of type
Collection<JButton> (as long as that collection supports removal of values):

Iterator<JButton> iter = coll.iterator():
while (iter.hasNext()) {

JButton item = iter.next();
if (item == null)

iter.remove();
}

(Note, by the way, that when Collection<T>, Iterator<T>, or any other param-
eterized type is used in actual code, they are always used with actual types such
as String or JButton in place of the “formal type parameter” T. An iterator of type
Iterator<String> is used to iterate through a collection of Strings; an iterator of
type Iterator<JButton> is used to iterate through a collection of JButtons; and so
on.)

An iterator is often used to apply the same operation to all the elements in a
collection. In many cases, it’s possible to avoid the use of iterators for this purpose
by using a for−each loop. A for−each loop can also be used to iterate through any
collection. For a collection coll of type Collection<T>, a for−each loop takes the
form:

for (T x : coll) { / / " f o r each ob jec t x , o f type T , i n c o l l "
/ / process x

}

175

Here, x is the loop control variable. Each object in coll will be assigned to x in
turn, and the body of the loop will be executed for each object. Since objects in
coll are of type T, x is declared to be of type T. For example, if namelist is of type
Collection<String>, we can print out all the names in the collection with:

for (String name : namelist) {
System.out.println(name);

}

This for-each loop could, of course, be written as a while loop using an iterator, but
the for-each loop is much easier to follow.

8.6 Equality and Comparison

THERE ARE SEVERAL METHODS in the collection interface that test objects for equality.
For example, the methods coll.contains(object) and coll.remove(object) look
for an item in the collection that is equal to object. However, equality is not such
a simple matter. The obvious technique for testing equality–using the == operator–
does not usually give a reasonable answer when applied to objects. The == operator
tests whether two objects are identical in the sense that they share the same location
in memory. Usually, however, we want to consider two objects to be equal if they
represent the same value, which is a very different thing. Two values of type String
should be considered equal if they contain the same sequence of characters. The
question of whether those characters are stored in the same location in memory is
irrelevant. Two values of type Date should be considered equal if they represent the
same time.

The Object class defines the boolean-valued method equals(Object) for testing
whether one object is equal to another. This method is used by many, but not by
all, collection classes for deciding whether two objects are to be considered the same.
In the Object class, obj1.equals(obj2) is defined to be the same as obj1 == obj2.
However, for most sub-classes of Object, this definition is not reasonable, and it
should be overridden. The String class, for example, overrides equals() so that for
a String str, str.equals(obj) if obj is also a String and obj contains the same
sequence of characters as str.

If you write your own class, you might want to define an equals() method in that
class to get the correct behavior when objects are tested for equality. For example, a
Card class that will work correctly when used in collections could be defined as shown
below. Without the equals() method in this class, methods such as contains() and
remove() in the interface Collection<Card> will not work as expected.

176

public class Card { / / Class to represent p lay ing cards .

int suit; / / Number from 0 to 3 t h a t codes f o r the s u i t −−
/ / spades , diamonds , c lubs or hear ts .

int value; / / Number from 1 to 13 t h a t represents the value .

public boolean equals(Object obj) {
try {

Card other = (Card)obj; / / Type−cast ob j to a Card .
if (suit == other.suit && value == other.value) {

/ / The other card has the same s u i t and value as
/ / t h i s card , so they should be considered equal .

return true;
}
else

return false;
}
catch (Exception e) {

/ / This w i l l catch the Nu l lPo in te rExcep t ion t h a t occurs i f ob j
/ / i s n u l l and the ClassCastExcept ion t h a t occurs i f ob j i s
/ / not o f type Card . In these cases , ob j i s not equal to
/ / t h i s Card , so r e t u r n f a l s e .

return false;
}

}

.

. / / o ther methods and cons t ruc to rs

.
}

A similar concern arises when items in a collection are sorted. Sorting refers to ar-
ranging a sequence of items in ascending order, according to some criterion. The prob-
lem is that there is no natural notion of ascending order for arbitrary objects. Before
objects can be sorted, some method must be defined for comparing them. Objects that
are meant to be compared should implement the interface java.lang.Comparable.
In fact, Comparable is defined as a parameterized interface, Comparable<T>, which
represents the ability to be compared to an object of type T. The interface Comparable<T>
defines one method: public int compareTo(T obj).

The value returned by obj1.compareTo(obj2) should be negative if and only if
obj1 comes before obj2, when the objects are arranged in ascending order. It should
be positive if and only if obj1 comes after obj2. A return value of zero means that the
objects are considered to be the same for the purposes of this comparison. This does
not necessarily mean that the objects are equal in the sense that obj1.equals(obj2)
is true. For example, if the objects are of type Address, representing mailing ad-
dresses, it might be useful to sort the objects by zip code. Two Addresses are consid-
ered the same for the purposes of the sort if they have the same zip code–but clearly
that would not mean that they are the same address.

The String class implements the interface Comparable<String> and define compareTo
in a reasonable way (and in this case, the return value of compareTo is zero if and
only if the two strings that are being compared are equal). If you define your own
class and want to be able to sort objects belonging to that class, you should do the
same. For example:

177

/∗ ∗
∗ Represents a f u l l name c o n s i s t i n g o f a f i r s t name and a l a s t name .
∗ /

public class FullName implements Comparable<FullName> {

private String firstName, lastName; / / Non−n u l l f i r s t and l a s t names .

public FullName(String first, String last) { / / Const ruc tor .
if (first == null || last == null)

throw new IllegalArgumentException("Names must be non−n u l l . ");
firstName = first;
lastName = last;

}

public boolean equals(Object obj) {
try {

FullName other = (FullName)obj; / / Type−cast ob j to type FullName
return firstName.equals(other.firstName)

&& lastName.equals(other.lastName);
}
catch (Exception e) {

return false; / / i f ob j i s n u l l or i s not o f type FirstName
}

}

public int compareTo(FullName other) {
if (lastName.compareTo(other.lastName) < 0) {

/ / I f lastName comes before the l a s t name of
/ / the other ob jec t , then t h i s FullName comes
/ / before the other FullName . Return a negat ive
/ / value to i n d i c a t e t h i s .

return −1;
}
if (lastName.compareTo(other.lastName) > 0) {

/ / I f lastName comes a f t e r the l a s t name of
/ / the other ob jec t , then t h i s FullName comes
/ / a f t e r the other FullName . Return a p o s i t i v e
/ / value to i n d i c a t e t h i s .

return 1;
}
else {

/ / Last names are the same , so base the comparison on
/ / the f i r s t names , using compareTo from c lass S t r i n g .

return firstName.compareTo(other.firstName);
}

}

.

. / / o ther methods

.
}

(Its odd to declare the class as “classFullName implements Comparable<FullName>”,
with “FullName” repeated as a type parameter in the name of the interface. How-
ever, it does make sense. It means that we are going to compare objects that belong
to the class FullName to other objects of the same type. Even though this is the only

178

reasonable thing to do, that fact is not obvious to the Java compiler – and the type
parameter in Comparable<FullName> is there for the compiler.)

There is another way to allow for comparison of objects in Java, and that is
to provide a separate object that is capable of making the comparison. The ob-
ject must implement the interface Comparator<T>, where T is the type of the ob-
jects that are to be compared. The interface Comparator<T> defines the method:
public int compare(T obj1, T obj2).

This method compares two objects of type T and returns a value that is negative,
or positive, or zero, depending on whether obj1 comes before obj2, or comes after
obj2, or is considered to be the same as obj2 for the purposes of this comparison.
Comparators are useful for comparing objects that do not implement the Comparable
interface and for defining several different orderings on the same collection of objects.

In the next two sections, we’ll see how Comparable and Comparator are used in
the context of collections and maps.

8.7 Generics and Wrapper Classes

AS NOTED ABOVE, JAVA’S GENERIC PROGRAMMING does not apply to the primitive types,
since generic data structures can only hold objects, while values of primitive type
are not objects. However, the “wrapper classes” make it possible to get around this
restriction to a great extent.

Recall that each primitive type has an associated wrapper class: class Integer for
type int, class Boolean for type boolean, class Character for type char, and so on.

An object of type Integer contains a value of type int. The object serves as a
“wrapper” for the primitive type value, which allows it to be used in contexts where
objects are required, such as in generic data structures. For example, a list of Inte-
gers can be stored in a variable of type ArrayList<Integer>, and interfaces such as
Collection<Integer> and Set<Integer> are defined. Furthermore, class Integer
defines equals(), compareTo(), and toString() methods that do what you would
expect (that is, that compare and write out the corresponding primitive type values
in the usual way). Similar remarks apply for all the wrapper classes.

Recall also that Java does automatic conversions between a primitive type and
the corresponding wrapper type. (These conversions, are called autoboxing and un-
boxing) This means that once you have created a generic data structure to hold ob-
jects belonging to one of the wrapper classes, you can use the data structure pretty
much as if it actually contained primitive type values. For example, if numbers
is a variable of type Collection<Integer>, it is legal to call numbers.add(17) or
numbers.remove(42). You can’t literally add the primitive type value 17 to num-
bers, but Java will automatically convert the 17 to the corresponding wrapper object,
new Integer(17), and the wrapper object will be added to the collection. (The cre-
ation of the object does add some time and memory overhead to the operation, and
you should keep that in mind in situations where efficiency is important. An array of
int is more efficient than an ArrayList<Integer>)

8.8 Lists

IN THE PREVIOUS SECTION, we looked at the general properties of collection classes in
Java. In this section, we look at a few specific collection classes (lists in particular)

179

and how to use them. A list consists of a sequence of items arranged in a linear order.
A list has a definite order, but is not necessarily sorted into ascending order.

ArrayList and LinkedList

There are two obvious ways to represent a list: as a dynamic array and as a linked
list. Both of these options are available in generic form as the collection classes
java.util.ArrayList and java.util.LinkedList. These classes are part of the
Java Collection Framework. Each implements the interface List<T>, and therefor
the interface Collection<T>. An object of type ArrayList<T> represents an ordered
sequence of objects of type T, stored in an array that will grow in size whenever
necessary as new items are added. An object of type LinkedList<T> also represents
an ordered sequence of objects of type T, but the objects are stored in nodes that are
linked together with pointers.

Both list classes support the basic list operations that are defined in the interface
List<T>, and an abstract data type is defined by its operations, not by its represen-
tation. So why two classes? Why not a single List class with a single representation?
The problem is that there is no single representation of lists for which all list oper-
ations are efficient. For some operations, linked lists are more efficient than arrays.
For others, arrays are more efficient. In a particular application of lists, it’s likely that
only a few operations will be used frequently. You want to choose the representation
for which the frequently used operations will be as efficient as possible.

Broadly speaking, the LinkedList class is more efficient in applications where
items will often be added or removed at the beginning of the list or in the middle of
the list. In an array, these operations require moving a large number of items up or
down one position in the array, to make a space for a new item or to fill in the hole
left by the removal of an item.

On the other hand, the ArrayList class is more efficient when random access to
items is required. Random access means accessing the k-th item in the list, for any
integer k. Random access is used when you get or change the value stored at a
specified position in the list. This is trivial for an array. But for a linked list it means
starting at the beginning of the list and moving from node to node along the list for k
steps.

Operations that can be done efficiently for both types of lists include sorting and
adding an item at the end of the list.

All lists implement the methods from interface Collection<T> that were dis-
cussed in previously. These methods include size(), isEmpty(), remove(Object),
add(T), and clear(). The add(T) method adds the object at the end of the list. The
remove(Object) method involves first finding the object, which is not very efficient
for any list since it involves going through the items in the list from beginning to end
until the object is found. The interface List<T> adds some methods for accessing list
items according to their numerical positions in the list. Suppose that list is an object
of type List<T>. Then we have the methods:

• list.get(index)–returns the object of type T that is at position index in the
list, where index is an integer. Items are numbered 0, 1, 2, ..., list.size()−1.
The parameter must be in this range, or an IndexOutOfBoundsException is
thrown.

• list.set(index,obj)–stores the object obj at position number index in the
list, replacing the object that was there previously. The object obj must be of

180

type T. This does not change the number of elements in the list or move any of
the other elements.

• list.add(index,obj)–inserts an object obj into the list at position number
index, where obj must be of type T. The number of items in the list increases
by one, and items that come after position index move up one position to make
room for the new item. The value of index must be in the range 0 to list.size(),
inclusive. If index is equal to list.size(), then obj is added at the end of the
list.

• list.remove(index)–removes the object at position number index, and returns
that object as the return value of the method. Items after this position move up
one space in the list to fill the hole, and the size of the list decreases by one. The
value of index must be in the range 0 to list.size()−1.

• list.indexOf(obj)–returns an int that gives the position of obj in the list, if
it occurs. If it does not occur, the return value is −1. The object obj can be of
any type, not just of type T. If obj occurs more than once in the list, the index of
the first occurrence is returned.

These methods are defined both in class ArrayList<T> and in class LinkedList<T>,
although some of them–get and set–are only efficient for ArrayLists. The class
LinkedList<T> adds a few additional methods, which are not defined for an ArrayList.
If linkedlist is an object of type LinkedList<T>, then we have

• linkedlist.getFirst()–returns the object of type T that is the first item in
the list. The list is not modified. If the list is empty when the method is called,
an exception of type NoSuchElementException is thrown (the same is true for
the next three methods as well).

• linkedlist.getLast()–returns the object of type T that is the last item in the
list. The list is not modified.

• linkedlist.removeFirst()–removes the first item from the list, and returns
that object of type T as its return value.

• linkedlist.removeLast()–removes the last item from the list, and returns that
object of type T as its return value.

• linkedlist.addFirst(obj)–adds the obj, which must be of type T, to the be-
ginning of the list.

• linkedlist.addLast(obj)–adds the object obj, which must be of type T, to
the end of the list. (This is exactly the same as linkedlist.add(obj) and is
apparently defined just to keep the naming consistent.)

If list is an object of type List<T>, then the method list.iterator(), defined
in the interface Collection<T>, returns an Iterator that can be used to traverse
the list from beginning to end. However, for Lists, there is a special type of Iterator,
called a ListIterator, which offers additional capabilities. ListIterator<T> is an
interface that extends the interface Iterator<T>. The method list.listIterator()
returns an object of type ListIterator<T>.

A ListIterator has the usual Iterator methods, hasNext(), next(), and
remove(), but it also has methods hasPrevious(), previous(), and add(obj) that

181

make it possible to move backwards in the list and to add an item at the current po-
sition of the iterator. To understand how these work, its best to think of an iterator
as pointing to a position between two list elements, or at the beginning or end of
the list. In this diagram, the items in a list are represented by squares, and arrows
indicate the possible positions of an iterator:

If iter is of type ListIterator<T>, then iter.next() moves the iterator one
space to the right along the list and returns the item that the iterator passes as it
moves. The method iter.previous() moves the iterator one space to the left along
the list and returns the item that it passes. The method iter.remove() removes an
item from the list; the item that is removed is the item that the iterator passed most
recently in a call to either iter.next() or iter.previous(). There is also a method
iter.add(obj) that adds the specified object to the list at the current position of the
iterator (where obj must be of type T). This can be between two existing items or at
the beginning of the list or at the end of the list.

As an example of using a ListIterator, suppose that we want to maintain a list
of items that is always sorted into increasing order. When adding an item to the list,
we can use a ListIterator to find the position in the list where the item should be
added. Once the position has been found, we use the same list iterator to place the
item in that position. The idea is to start at the beginning of the list and to move
the iterator forward past all the items that are smaller than the item that is being
inserted. At that point, the iterator’s add() method can be used to insert the item.
To be more definite, suppose that stringList is a variable of type List<String>.
Assume that that the strings that are already in the list are stored in ascending order
and that newItem is a string that we would like to insert into the list. The following
code will place newItem in the list in its correct position, so that the modified list is
still in ascending order:
ListIterator<String> iter = stringList.listIterator();
/ / Move the i t e r a t o r so t h a t i t po in t s to the p o s i t i o n where
/ / newItem should be inse r t ed i n t o the l i s t . I f newItem i s
/ / b igger than a l l the i tems i n the l i s t , then the whi le loop
/ / w i l l end when i t e r . hasNext () becomes fa lse , t h a t is , when
/ / the i t e r a t o r has reached the end of the l i s t .
while (iter.hasNext()) {

String item = iter.next();
if (newItem.compareTo(item) <= 0) {

/ / newItem should come BEFORE item i n the l i s t .
/ / Move the i t e r a t o r back one space so t h a t
/ / i t po in t s to the c o r r e c t i n s e r t i o n po in t ,
/ / and end the loop .

iter.previous();
break;

}
}
iter.add(newItem);

182

Here, stringList may be of type ArrayList<String> or of type LinkedList<String>.
The algorithm that is used to insert newItem into the list will be about equally ef-
ficient for both types of lists, and it will even work for other classes that imple-
ment the interface List<String>. You would probably find it easier to design an
insertion algorithm that uses array-like indexing with the methods get(index) and
add(index,obj). However, that algorithm would be inefficient for LinkedLists be-
cause random access is so inefficient for linked lists. (By the way, the insertion algo-
rithm works when the list is empty. It might be useful for you to think about why
this is true.)

Sorting

Sorting a list is a fairly common operation, and there should really be a sorting
method in the List interface. There is not, presumably because it only makes sense
to sort lists of certain types of objects, but methods for sorting lists are available
as static methods in the class java.util.Collections. This class contains a vari-
ety of static utility methods for working with collections. The methods are generic;
that is, they will work for collections of objects of various types. Suppose that list
is of type List<T>. The command Collections.sort(list); can be used to sort
the list into ascending order. The items in the list should implement the interface
Comparable<T>. The method Collections.sort() will work, for example, for lists
of String and for lists of any of the wrapper classes such as Integer and Double.
There is also a sorting method that takes a Comparator as its second argument:
Collections.sort(list,comparator);.

In this method, the comparator will be used to compare the items in the list. As
mentioned in the previous section, a Comparator is an object that defines a compare()
method that can be used to compare two objects.

The sorting method that is used by Collections.sort() is the so-called “merge
sort” algorithm.

The Collections class has at least two other useful methods for modifying lists.
Collections.shuffle(list) will rearrange the elements of the list into a random
order. Collections.reverse(list) will reverse the order of the elements, so that
the last element is moved to the beginning of the list, the next-to-last element to the
second position, and so on.

Since an efficient sorting method is provided for Lists, there is no need to write
one yourself. You might be wondering whether there is an equally convenient method
for standard arrays. The answer is yes. Array-sorting methods are available as static
methods in the class java.util.Arrays. The statement Arrays.sort(A); will sort
an array, A, provided either that the base type of A is one of the primitive types
(except boolean) or that A is an array of Objects that implement the Comparable
interface. You can also sort part of an array. This is important since arrays are often
only “partially filled.” The command: Arrays.sort(A,fromIndex,toIndex); sorts
the elements A[fromIndex], A[fromIndex+1], ..., A[toIndex−1] into ascending
order. You can use Arrays.sort(A,0,N−1) to sort a partially filled array which has
elements in the first N positions.

Java does not support generic programming for primitive types. In order to imple-
ment the command Arrays.sort(A), the Arrays class contains eight methods: one
method for arrays of Objects and one method for each of the primitive types byte,
short, int, long, float, double, and char.

183

184

Chapter 9
Correctness and

Robustness

Contents
9.1 Introduction . 186

9.1.1 Horror Stories . 186
9.1.2 Java to the Rescue . 187
9.1.3 Problems Remain in Java . 189

9.2 Writing Correct Programs . 190
9.2.1 Provably Correct Programs . 190
9.2.2 Robust Handling of Input . 193

9.3 Exceptions and try..catch . 194
9.3.1 Exceptions and Exception Classes 194
9.3.2 The try Statement . 196
9.3.3 Throwing Exceptions . 199
9.3.4 Mandatory Exception Handling 200
9.3.5 Programming with Exceptions 201

9.4 Assertions . 203

A PROGRAM IS CORRECT if it accomplishes the task that it was designed to per-
form. It is robust if it can handle illegal inputs and other unexpected situations in
a reasonable way. For example, consider a program that is designed to read some
numbers from the user and then print the same numbers in sorted order. The pro-
gram is correct if it works for any set of input numbers. It is robust if it can also deal
with non-numeric input by, for example, printing an error message and ignoring the
bad input. A non-robust program might crash or give nonsensical output in the same
circumstance.

Every program should be correct. (A sorting program that doesn’t sort correctly
is pretty useless.) It’s not the case that every program needs to be completely robust.
It depends on who will use it and how it will be used. For example, a small utility
program that you write for your own use doesn’t have to be particularly robust.

The question of correctness is actually more subtle than it might appear. A pro-
grammer works from a specification of what the program is supposed to do. The
programmer’s work is correct if the program meets its specification. But does that

185

mean that the program itself is correct? What if the specification is incorrect or in-
complete? A correct program should be a correct implementation of a complete and
correct specification. The question is whether the specification correctly expresses
the intention and desires of the people for whom the program is being written. This
is a question that lies largely outside the domain of computer science.

9.1 Introduction

9.1.1 Horror Stories

MOST COMPUTER USERS HAVE PERSONAL EXPERIENCE with programs that don’t work or
that crash. In many cases, such problems are just annoyances, but even on a personal
computer there can be more serious consequences, such as lost work or lost money.
When computers are given more important tasks, the consequences of failure can be
proportionately more serious.

Just a few years ago, the failure of two multi-million space missions to Mars was
prominent in the news. Both failures were probably due to software problems, but
in both cases the problem was not with an incorrect program as such. In September
1999, the Mars Climate Orbiter burned up in the Martian atmosphere because data
that was expressed in English units of measurement (such as feet and pounds) was
entered into a computer program that was designed to use metric units (such as cen-
timeters and grams). A few months later, the Mars Polar Lander probably crashed
because its software turned off its landing engines too soon. The program was sup-
posed to detect the bump when the spacecraft landed and turn off the engines then.
It has been determined that deployment of the landing gear might have jarred the
spacecraft enough to activate the program, causing it to turn off the engines when
the spacecraft was still in the air. The unpowered spacecraft would then have fallen
to the Martian surface. A more robust system would have checked the altitude before
turning off the engines!

There are many equally dramatic stories of problems caused by incorrect or poorly
written software. Let’s look at a few incidents recounted in the book Computer Ethics
by Tom Forester and Perry Morrison. (This book covers various ethical issues in
computing. It, or something like it, is essential reading for any student of computer
science.)

In 1985 and 1986, one person was killed and several were injured by excess ra-
diation, while undergoing radiation treatments by a mis-programmed computerized
radiation machine. In another case, over a ten-year period ending in 1992, almost
1,000 cancer patients received radiation dosages that were 30% less than prescribed
because of a programming error.

In 1985, a computer at the Bank of New York started destroying records of on-
going security transactions because of an error in a program. It took less than 24
hours to fix the program, but by that time, the bank was out $5,000,000 in overnight
interest payments on funds that it had to borrow to cover the problem.

The programming of the inertial guidance system of the F-16 fighter plane would
have turned the plane upside-down when it crossed the equator, if the problem had
not been discovered in simulation. The Mariner 18 space probe was lost because of
an error in one line of a program. The Gemini V space capsule missed its scheduled
landing target by a hundred miles, because a programmer forgot to take into account
the rotation of the Earth.

186

In 1990, AT&T’s long-distance telephone service was disrupted throughout the
United States when a newly loaded computer program proved to contain a bug.

These are just a few examples. Software problems are all too common. As pro-
grammers, we need to understand why that is true and what can be done about it.

9.1.2 Java to the Rescue

Part of the problem, according to the inventors of Java, can be traced to programming
languages themselves. Java was designed to provide some protection against certain
types of errors. How can a language feature help prevent errors? Let’s look at a few
examples.

Early programming languages did not require variables to be declared. In such
languages, when a variable name is used in a program, the variable is created au-
tomatically. You might consider this more convenient than having to declare every
variable explicitly. But there is an unfortunate consequence: An inadvertent spelling
error might introduce an extra variable that you had no intention of creating. This
type of error was responsible, according to one famous story, for yet another lost
spacecraft. In the FORTRAN programming language, the command “DO 20 I = 1,5”
is the first statement of a counting loop. Now, spaces are insignificant in FORTRAN,
so this is equivalent to “DO20I=1,5”. On the other hand, the command “DO20I=1.5”,
with a period instead of a comma, is an assignment statement that assigns the value
1.5 to the variable DO20I. Supposedly, the inadvertent substitution of a period for a
comma in a statement of this type caused a rocket to blow up on take-off. Because
FORTRAN doesn’t require variables to be declared, the compiler would be happy to
accept the statement “DO20I=1.5.” It would just create a new variable named DO20I.
If FORTRAN required variables to be declared, the compiler would have complained
that the variable DO20I was undeclared.

While most programming languages today do require variables to be declared,
there are other features in common programming languages that can cause problems.
Java has eliminated some of these features. Some people complain that this makes
Java less efficient and less powerful. While there is some justice in this criticism, the
increase in security and robustness is probably worth the cost in most circumstances.
The best defense against some types of errors is to design a programming language in
which the errors are impossible. In other cases, where the error can’t be completely
eliminated, the language can be designed so that when the error does occur, it will
automatically be detected. This will at least prevent the error from causing further
harm, and it will alert the programmer that there is a bug that needs fixing. Let’s
look at a few cases where the designers of Java have taken these approaches.

An array is created with a certain number of locations, numbered from zero up to
some specified maximum index. It is an error to try to use an array location that is
outside of the specified range. In Java, any attempt to do so is detected automatically
by the system. In some other languages, such as C and C++, it’s up to the programmer
to make sure that the index is within the legal range. Suppose that an array, A, has
three locations, A[0], A[1], and A[2]. Then A[3], A[4], and so on refer to memory
locations beyond the end of the array. In Java, an attempt to store data in A[3] will
be detected. The program will be terminated (unless the error is “caught”. In C or
C++, the computer will just go ahead and store the data in memory that is not part of
the array. Since there is no telling what that memory location is being used for, the
result will be unpredictable. The consequences could be much more serious than a
terminated program. (See, for example, the discussion of buffer overflow errors later

187

in this section.)
Pointers are a notorious source of programming errors. In Java, a variable of ob-

ject type holds either a pointer to an object or the special value null. Any attempt
to use a null value as if it were a pointer to an actual object will be detected by the
system. In some other languages, again, it’s up to the programmer to avoid such
null pointer errors. In my old Macintosh computer, a null pointer was actually im-
plemented as if it were a pointer to memory location zero. A program could use a
null pointer to change values stored in memory near location zero. Unfortunately,
the Macintosh stored important system data in those locations. Changing that data
could cause the whole system to crash, a consequence more severe than a single failed
program.

Another type of pointer error occurs when a pointer value is pointing to an object
of the wrong type or to a segment of memory that does not even hold a valid object at
all. These types of errors are impossible in Java, which does not allow programmers
to manipulate pointers directly. In other languages, it is possible to set a pointer to
point, essentially, to any location in memory. If this is done incorrectly, then using
the pointer can have unpredictable results.

Another type of error that cannot occur in Java is a memory leak. In Java, once
there are no longer any pointers that refer to an object, that object is “garbage col-
lected” so that the memory that it occupied can be reused. In other languages, it
is the programmer’s responsibility to return unused memory to the system. If the
programmer fails to do this, unused memory can build up, leaving less memory for
programs and data. There is a story that many common programs for older Windows
computers had so many memory leaks that the computer would run out of memory
after a few days of use and would have to be restarted.

Many programs have been found to suffer from buffer overflow errors. Buffer
overflow errors often make the news because they are responsible for many network
security problems. When one computer receives data from another computer over
a network, that data is stored in a buffer. The buffer is just a segment of memory
that has been allocated by a program to hold data that it expects to receive. A buffer
overflow occurs when more data is received than will fit in the buffer. The question is,
what happens then? If the error is detected by the program or by the networking soft-
ware, then the only thing that has happened is a failed network data transmission.
The real problem occurs when the software does not properly detect buffer overflows.
In that case, the software continues to store data in memory even after the buffer is
filled, and the extra data goes into some part of memory that was not allocated by the
program as part of the buffer. That memory might be in use for some other purpose.
It might contain important data. It might even contain part of the program itself.
This is where the real security issues come in. Suppose that a buffer overflow causes
part of a program to be replaced with extra data received over a network. When the
computer goes to execute the part of the program that was replaced, it’s actually ex-
ecuting data that was received from another computer. That data could be anything.
It could be a program that crashes the computer or takes it over. A malicious pro-
grammer who finds a convenient buffer overflow error in networking software can try
to exploit that error to trick other computers into executing his programs.

For software written completely in Java, buffer overflow errors are impossible.
The language simply does not provide any way to store data into memory that has
not been properly allocated. To do that, you would need a pointer that points to
unallocated memory or you would have to refer to an array location that lies outside

188

the range allocated for the array. As explained above, neither of these is possible
in Java. (However, there could conceivably still be errors in Java’s standard classes,
since some of the methods in these classes are actually written in the C programming
language rather than in Java.)

It’s clear that language design can help prevent errors or detect them when they
occur. Doing so involves restricting what a programmer is allowed to do. Or it re-
quires tests, such as checking whether a pointer is null, that take some extra process-
ing time. Some programmers feel that the sacrifice of power and efficiency is too high
a price to pay for the extra security. In some applications, this is true. However, there
are many situations where safety and security are primary considerations. Java is
designed for such situations.

9.1.3 Problems Remain in Java

There is one area where the designers of Java chose not to detect errors automati-
cally: numerical computations. In Java, a value of type int is represented as a 32-bit
binary number. With 32 bits, it’s possible to represent a little over four billion dif-
ferent values. The values of type int range from −2147483648 to 2147483647. What
happens when the result of a computation lies outside this range? For example, what
is 2147483647 + 1? And what is 2000000000 ∗ 2? The mathematically correct result
in each case cannot be represented as a value of type int. These are examples of
integer overflow. In most cases, integer overflow should be considered an error. How-
ever, Java does not automatically detect such errors. For example, it will compute
the value of 2147483647 + 1 to be the negative number, −2147483648. (What happens
is that any extra bits beyond the 32-nd bit in the correct answer are discarded. Val-
ues greater than 2147483647 will “wrap around” to negative values. Mathematically
speaking, the result is always “correct modulo 232”.)

For example, consider the 3N +1 program. Starting from a positive integer N, the
program computes a certain sequence of integers:

while (N != 1) {
if (N % 2 == 0) / / I f N i s even . . .

N = N / 2;
else

N = 3 ∗ N + 1;
System.out.println(N);

}

But there is a problem here: If N is too large, then the value of 3 ∗ N + 1 will not
be mathematically correct because of integer overflow. The problem arises whenever
3 ∗ N + 1 > 2147483647, that is when N > 2147483646/3. For a completely correct
program, we should check for this possibility before computing 3 ∗N + 1:

while (N != 1) {
if (N % 2 == 0) / / I f N i s even . . .

N = N / 2;
else {

if (N > 2147483646/3) {
System.out.println(" Sorry , value of N has become too large ! ");
break;

}
N = 3 ∗ N + 1;

}
System.out.println(N); }

189

The problem here is not that the original algorithm for computing 3N + 1 se-
quences was wrong. The problem is that it just can’t be correctly implemented using
32-bit integers. Many programs ignore this type of problem. But integer overflow
errors have been responsible for their share of serious computer failures, and a com-
pletely robust program should take the possibility of integer overflow into account.
(The infamous “Y2K” bug was, in fact, just this sort of error.)

For numbers of type double, there are even more problems. There are still over-
flow errors, which occur when the result of a computation is outside the range of val-
ues that can be represented as a value of type double. This range extends up to about
1.7× 10308. Numbers beyond this range do not “wrap around” to negative values. In-
stead, they are represented by special values that have no real numerical equivalent.
The special values Double.POSITIVE_INFINITY and Double.NEGATIVE_INFINITY rep-
resent numbers outside the range of legal values. For example, 20×10308 is computed
to be Double.POSITIVE_INFINITY. Another special value of type double, Double.NaN,
represents an illegal or undefined result. (“NaN” stands for “Not a Number”.) For ex-
ample, the result of dividing by zero or taking the square root of a negative number
is Double.NaN. You can test whether a number x is this special non-a-number value
by calling the boolean-valued method Double.isNaN(x).

For real numbers, there is the added complication that most real numbers can
only be represented approximately on a computer. A real number can have an infi-
nite number of digits after the decimal point. A value of type double is only accu-
rate to about 15 digits. The real number 1/3, for example, is the repeating decimal
0.333333333333..., and there is no way to represent it exactly using a finite number of
digits. Computations with real numbers generally involve a loss of accuracy. In fact,
if care is not exercised, the result of a large number of such computations might be
completely wrong! There is a whole field of computer science, known as numerical
analysis, which is devoted to studying algorithms that manipulate real numbers.

So you see that not all possible errors are avoided or detected automatically in
Java. Furthermore, even when an error is detected automatically, the system’s de-
fault response is to report the error and terminate the program. This is hardly robust
behavior! So, a Java programmer still needs to learn techniques for avoiding and
dealing with errors. These are the main topics of the rest of this chapter.

9.2 Writing Correct Programs

CORRECT PROGRAMS DON’T JUST HAPPEN. It takes planning and attention to detail to
avoid errors in programs. There are some techniques that programmers can use to
increase the likelihood that their programs are correct.

9.2.1 Provably Correct Programs

In some cases, it is possible to prove that a program is correct. That is, it is possible
to demonstrate mathematically that the sequence of computations represented by the
program will always produce the correct result. Rigorous proof is difficult enough that
in practice it can only be applied to fairly small programs. Furthermore, it depends
on the fact that the “correct result” has been specified correctly and completely. As
I’ve already pointed out, a program that correctly meets its specification is not useful
if its specification was wrong. Nevertheless, even in everyday programming, we can
apply the ideas and techniques that are used in proving that programs are correct.

190

The fundamental ideas are process and state. A state consists of all the informa-
tion relevant to the execution of a program at a given moment during its execution.
The state includes, for example, the values of all the variables in the program, the
output that has been produced, any input that is waiting to be read, and a record of
the position in the program where the computer is working. A process is the sequence
of states that the computer goes through as it executes the program. From this point
of view, the meaning of a statement in a program can be expressed in terms of the
effect that the execution of that statement has on the computer’s state. As a simple
example, the meaning of the assignment statement “x = 7;” is that after this state-
ment is executed, the value of the variable x will be 7. We can be absolutely sure of
this fact, so it is something upon which we can build part of a mathematical proof.

In fact, it is often possible to look at a program and deduce that some fact must
be true at a given point during the execution of a program. For example, consider the
do loop:

do {
Scanner keyboard = new Scanner(System.in);
System.out.prinln(" Enter a pos i t i ve integer : ");
N = keyboard.nextInt();

} while (N <= 0);

After this loop ends, we can be absolutely sure that the value of the variable N
is greater than zero. The loop cannot end until this condition is satisfied. This fact
is part of the meaning of the while loop. More generally, if a while loop uses the test
“while (condition)”, then after the loop ends, we can be sure that the condition is
false. We can then use this fact to draw further deductions about what happens as
the execution of the program continues. (With a loop, by the way, we also have to
worry about the question of whether the loop will ever end. This is something that
has to be verified separately.)

A fact that can be proven to be true after a given program segment has been
executed is called a postcondition of that program segment. Postconditions are known
facts upon which we can build further deductions about the behavior of the program.
A postcondition of a program as a whole is simply a fact that can be proven to be true
after the program has finished executing. A program can be proven to be correct by
showing that the postconditions of the program meet the program’s specification.

Consider the following program segment, where all the variables are of type dou-
ble:

disc = B∗B − 4∗A∗C;
x = (−B + Math.sqrt(disc)) / (2∗A);

The quadratic formula (from high-school mathematics) assures us that the value
assigned to x is a solution of the equation Ax2+Bx+C = 0, provided that the value of
disc is greater than or equal to zero and the value of A is not zero. If we can assume
or guarantee that B ∗ B − 4 ∗ A ∗ C > = 0 and that A! = 0, then the fact that x is
a solution of the equation becomes a postcondition of the program segment. We say
that the condition, B ∗B− 4 ∗A ∗C > = 0 is a precondition of the program segment.
The condition that A ! = 0 is another precondition. A precondition is defined to be
condition that must be true at a given point in the execution of a program in order
for the program to continue correctly. A precondition is something that you want to
be true. It’s something that you have to check or force to be true, if you want your
program to be correct.

191

We’ve encountered preconditions and postconditions once before. That section
introduced preconditions and postconditions as a way of specifying the contract of a
method. As the terms are being used here, a precondition of a method is just a precon-
dition of the code that makes up the definition of the method, and the postcondition
of a method is a postcondition of the same code. In this section, we have generalized
these terms to make them more useful in talking about program correctness.

Let’s see how this works by considering a longer program segment:
do {

Scanner keyboard = new Scanner(System.in);
System.out.println(" Enter A, B , and C. B∗B−4∗A∗C must be >= 0. ");
System.out.print("A = ");
A = keyboard.nextDouble();
System.out.print(" B = ");
B = keyboard.nextDouble();
System.out.print("C = ");
C = keyboard.nextDouble();
if (A == 0 || B∗B − 4∗A∗C < 0)

System.out.println(" Your input i s i l l e g a l . T r y again . ");
} while (A == 0 || B∗B − 4∗A∗C < 0);

disc = B∗B − 4∗A∗C;
x = (−B + Math.sqrt(disc)) / (2∗A);

After the loop ends, we can be sure that B ∗B − 4 ∗A ∗C >= 0 and that A ! = 0.
The preconditions for the last two lines are fulfilled, so the postcondition that x is a
solution of the equation A ∗ x2 + B ∗ x + C = 0 is also valid. This program segment
correctly and provably computes a solution to the equation. (Actually, because of
problems with representing numbers on computers, this is not 100% true. The algo-
rithm is correct, but the program is not a perfect implementation of the algorithm.

Here is another variation, in which the precondition is checked by an if statement.
In the first part of the if statement, where a solution is computed and printed, we
know that the preconditions are fulfilled. In the other parts, we know that one of the
preconditions fails to hold. In any case, the program is correct.
Scanner keyboard = new Scanner(System.in);
System.out.println(" Enter your values fo r A, B , and C. ");
System.out.print("A = ");
A = keyboard.nextDouble();
System.out.print(" B = ");
B = keyboard.nextDouble();
System.out.print("C = ");
C = keyboard.nextDouble();

if (A != 0 && B∗B − 4∗A∗C >= 0) {
disc = B∗B − 4∗A∗C;
x = (−B + Math.sqrt(disc)) / (2∗A);
System.out.println("A so lu t ion of A∗X∗X + B∗X + C = 0 i s " + x);

}
else if (A == 0) {

System.out.println(" The value of A cannot be zero . ");
}
else {

System.out.println(" Since B∗B − 4∗A∗C i s l e s s than zero , the ");
System.out.println(" equation A∗X∗X + B∗X + C = 0 has no so lu t ion . ");

}

192

Whenever you write a program, it’s a good idea to watch out for preconditions and
think about how your program handles them. Often, a precondition can offer a clue
about how to write the program.

For example, every array reference, such as A[i], has a precondition: The index
must be within the range of legal indices for the array. For A[i], the precondition is
that 0 <= i < A.length. The computer will check this condition when it evaluates
A[i], and if the condition is not satisfied, the program will be terminated. In order to
avoid this, you need to make sure that the index has a legal value. (There is actually
another precondition, namely that A is not null, but let’s leave that aside for the
moment.) Consider the following code, which searches for the number x in the array
A and sets the value of i to be the index of the array element that contains x:

i = 0;
while (A[i] != x) {

i++;
}

As this program segment stands, it has a precondition, namely that x is actually
in the array. If this precondition is satisfied, then the loop will end when A[i] == x.
That is, the value of i when the loop ends will be the position of x in the array.
However, if x is not in the array, then the value of i will just keep increasing until it
is equal to A.length. At that time, the reference to A[i] is illegal and the program will
be terminated. To avoid this, we can add a test to make sure that the precondition
for referring to A[i] is satisfied:

i = 0;
while (i < A.length && A[i] != x) {

i++;
}

Now, the loop will definitely end. After it ends, i will satisfy either i == A.length
or A[i] == x. An if statement can be used after the loop to test which of these con-
ditions caused the loop to end:

i = 0;
while (i < A.length && A[i] != x) {

i++;
}

if (i == A.length)
System.out.println(" x i s not in the array ");

else
System.out.println(" x i s in pos i t ion " + i);

9.2.2 Robust Handling of Input

One place where correctness and robustness are important–and especially difficult–
is in the processing of input data, whether that data is typed in by the user, read from
a file, or received over a network.

Sometimes, it’s useful to be able to look ahead at what’s coming up in the input
without actually reading it. For example, a program might need to know whether the
next item in the input is a number or a word. For this purpose, the Scanner class has
various hasNext methods. These includes hasNextBoolean(); hasNextInteger();
hasNextLine() and hasNextDouble(). For example the hasNextInteger() method

193

returns true if the input’s next token is an integer. Thus, you can check if the expected
input is available before actually reading it.

9.3 Exceptions and try..catch

GETTING A PROGRAM TO WORK under ideal circumstances is usually a lot easier than
making the program robust. A robust program can survive unusual or “exceptional”
circumstances without crashing. One approach to writing robust programs is to an-
ticipate the problems that might arise and to include tests in the program for each
possible problem. For example, a program will crash if it tries to use an array ele-
ment A[i], when i is not within the declared range of indices for the array A. A robust
program must anticipate the possibility of a bad index and guard against it. One way
to do this is to write the program in a way that ensures that the index is in the legal
range. Another way is to test whether the index value is legal before using it in the
array. This could be done with an if statement:

if (i < 0 || i >= A.length) {
... / / Do something to handle the out−of−range index , i

}
else {

... / / Process the ar ray element , A [i]
}

There are some problems with this approach. It is difficult and sometimes impos-
sible to anticipate all the possible things that might go wrong. It’s not always clear
what to do when an error is detected. Furthermore, trying to anticipate all the pos-
sible problems can turn what would otherwise be a straightforward program into a
messy tangle of if statements.

9.3.1 Exceptions and Exception Classes

We have already seen that Java (like its cousin, C++) provides a neater, more struc-
tured alternative method for dealing with errors that can occur while a program is
running. The method is referred to as exception handling. The word “exception” is
meant to be more general than “error.” It includes any circumstance that arises as
the program is executed which is meant to be treated as an exception to the normal
flow of control of the program. An exception might be an error, or it might just be a
special case that you would rather not have clutter up your elegant algorithm.

When an exception occurs during the execution of a program, we say that the ex-
ception is thrown. When this happens, the normal flow of the program is thrown off-
track, and the program is in danger of crashing. However, the crash can be avoided if
the exception is caught and handled in some way. An exception can be thrown in one
part of a program and caught in a different part. An exception that is not caught will
generally cause the program to crash.

By the way, since Java programs are executed by a Java interpreter, having a pro-
gram crash simply means that it terminates abnormally and prematurely. It doesn’t
mean that the Java interpreter will crash. In effect, the interpreter catches any
exceptions that are not caught by the program. The interpreter responds by termi-
nating the program. In many other programming languages, a crashed program will
sometimes crash the entire system and freeze the computer until it is restarted. With

194

Java, such system crashes should be impossible – which means that when they hap-
pen, you have the satisfaction of blaming the system rather than your own program.

When an exception occurs, the thing that is actually “thrown” is an object. This
object can carry information (in its instance variables) from the point where the ex-
ception occurs to the point where it is caught and handled. This information always
includes the method call stack, which is a list of the methods that were being executed
when the exception was thrown. (Since one method can call another, several methods
can be active at the same time.) Typically, an exception object also includes an error
message describing what happened to cause the exception, and it can contain other
data as well. All exception objects must belong to a subclass of the standard class
java.lang.Throwable. In general, each different type of exception is represented by
its own subclass of Throwable, and these subclasses are arranged in a fairly com-
plex class hierarchy that shows the relationship among various types of exceptions.
Throwable has two direct subclasses, Error and Exception. These two subclasses in
turn have many other predefined subclasses. In addition, a programmer can create
new exception classes to represent new types of exceptions.

Most of the subclasses of the class Error represent serious errors within the Java
virtual machine that should ordinarily cause program termination because there is
no reasonable way to handle them. In general, you should not try to catch and handle
such errors. An example is a ClassFormatError, which occurs when the Java virtual
machine finds some kind of illegal data in a file that is supposed to contain a compiled
Java class. If that class was being loaded as part of the program, then there is really
no way for the program to proceed.

On the other hand, subclasses of the class Exception represent exceptions that
are meant to be caught. In many cases, these are exceptions that might naturally be
called “errors,” but they are errors in the program or in input data that a programmer
can anticipate and possibly respond to in some reasonable way. (However, you should
avoid the temptation of saying, “Well, I’ll just put a thing here to catch all the errors
that might occur, so my program won’t crash.” If you don’t have a reasonable way to
respond to the error, it’s best just to let the program crash, because trying to go on
will probably only lead to worse things down the road – in the worst case, a program
that gives an incorrect answer without giving you any indication that the answer
might be wrong!)

The class Exception has its own subclass, RuntimeException. This class groups
together many common exceptions, including all those that have been covered in pre-
vious sections. For example, IllegalArgumentException and NullPointerException
are subclasses of RuntimeException. A RuntimeException generally indicates a bug
in the program, which the programmer should fix. RuntimeExceptions and Errors
share the property that a program can simply ignore the possibility that they might
occur. (“Ignoring” here means that you are content to let your program crash if the
exception occurs.) For example, a program does this every time it uses an array refer-
ence like A[i] without making arrangements to catch a possible
ArrayIndexOutOfBoundsException. For all other exception classes besides Error,
RuntimeException, and their subclasses, exception-handling is “mandatory” in a
sense that I’ll discuss below.

The following diagram is a class hierarchy showing the class Throwable and just a
few of its subclasses. Classes that require mandatory exception-handling are shown
in red:

195

The class Throwable includes several instance methods that can be used with any
exception object. If e is of type Throwable (or one of its subclasses), then
e.getMessage() is a method that returns a String that describes the exception. The
method e.toString(), which is used by the system whenever it needs a string rep-
resentation of the object, returns a String that contains the name of the class to
which the exception belongs as well as the same string that would be returned by
e.getMessage(). And e.printStackTrace() writes a stack trace to standard output
that tells which methods were active when the exception occurred. A stack trace can
be very useful when you are trying to determine the cause of the problem. (Note that
if an exception is not caught by the program, then the system automatically prints
the stack trace to standard output.)

9.3.2 The try Statement

To catch exceptions in a Java program, you need a try statement. The try statements
that we have used so far had a syntax similar to the following example:

try {
double determinant = M[0][0]∗M[1][1] − M[0][1]∗M[1][0];
System.out.println(" The determinant of M i s " + determinant);

}
catch (ArrayIndexOutOfBoundsException e) {

System.out.println("M i s the wrong s i z e to have a determinant . ");
e.printStackTrace();

}

Here, the computer tries to execute the block of statements following the word
“try”. If no exception occurs during the execution of this block, then the “catch” part of
the statement is simply ignored. However, if an exception of type
ArrayIndexOutOfBoundsException occurs, then the computer jumps immediately to
the catch clause of the try statement. This block of statements is said to be an ex-
ception handler for ArrayIndexOutOfBoundsException. By handling the exception
in this way, you prevent it from crashing the program. Before the body of the catch
clause is executed, the object that represents the exception is assigned to the variable
e, which is used in this example to print a stack trace.

196

However, the full syntax of the try statement allows more than one catch clause.
This makes it possible to catch several different types of exceptions with one try state-
ment. In the example above, in addition to the possibility of an
ArrayIndexOutOfBoundsException, there is a possible NullPointerException which
will occur if the value of M is null. We can handle both exceptions by adding a second
catch clause to the try statement:

try {
double determinant = M[0][0]∗M[1][1] − M[0][1]∗M[1][0];
System.out.println(" The determinant of M i s " + determinant);

}
catch (ArrayIndexOutOfBoundsException e) {

System.out.println("M i s the wrong s i z e to have a determinant . ");
}
catch (NullPointerException e) {

System.out.print(" Programming er ro r ! M doesn ’ t e x i s t . " +);
}

Here, the computer tries to execute the statements in the try clause. If no error oc-
curs, both of the catch clauses are skipped. If an ArrayIndexOutOfBoundsException
occurs, the computer executes the body of the first catch clause and skips the sec-
ond one. If a NullPointerException occurs, it jumps to the second catch clause and
executes that.

Note that both ArrayIndexOutOfBoundsException and NullPointerException
are subclasses of RuntimeException. It’s possible to catch all RuntimeExceptions
with a single catch clause. For example:

try {
double determinant = M[0][0]∗M[1][1] − M[0][1]∗M[1][0];
System.out.println(" The determinant of M i s " + determinant);

}
catch (RuntimeException err) {

System.out.println(" Sorry , an er ro r has occurred . ");
System.out.println(" The er ro r was : " + err);

}

The catch clause in this try statement will catch any exception belonging to class
RuntimeException or to any of its subclasses. This shows why exception classes are
organized into a class hierarchy. It allows you the option of casting your net narrowly
to catch only a specific type of exception. Or you can cast your net widely to catch
a wide class of exceptions. Because of subclassing, when there are multiple catch
clauses in a try statement, it is possible that a given exception might match several of
those catch clauses. For example, an exception of type NullPointerException would
match catch clauses for NullPointerException, RuntimeException, Exception, or
Throwable. In this case, only the first catch clause that matches the exception is
executed.

The example I’ve given here is not particularly realistic. You are not very likely
to use exception-handling to guard against null pointers and bad array indices. This
is a case where careful programming is better than exception handling: Just be sure
that your program assigns a reasonable, non-null value to the array M. You would
certainly resent it if the designers of Java forced you to set up a try..catch state-
ment every time you wanted to use an array! This is why handling of potential
RuntimeExceptions is not mandatory. There are just too many things that might
go wrong! (This also shows that exception-handling does not solve the problem of

197

program robustness. It just gives you a tool that will in many cases let you approach
the problem in a more organized way.)

I have still not completely specified the syntax of the try statement. There is one
additional element: the possibility of a finally clause at the end of a try statement.
The complete syntax of the try statement can be described as:

try {
statements

}
optional−catch−clauses
optional−finally−clause

Note that the catch clauses are also listed as optional. The try statement can include
zero or more catch clauses and, optionally, a finally clause. The try statement must
include one or the other. That is, a try statement can have either a finally clause,
or one or more catch clauses, or both. The syntax for a catch clause is

catch (exception−class−name variable−name) {
statements

}

and the syntax for a finally clause is

finally {
statements

}

The semantics of the finally clause is that the block of statements in the finally
clause is guaranteed to be executed as the last step in the execution of the try state-
ment, whether or not any exception occurs and whether or not any exception that
does occur is caught and handled. The finally clause is meant for doing essential
cleanup that under no circumstances should be omitted. One example of this type of
cleanup is closing a network connection. Although you don’t yet know enough about
networking to look at the actual programming in this case, we can consider some
pseudocode:

try {
open a network connection

}
catch (IOException e) {

report the error
return / / Don ’ t cont inue i f connect ion can ’ t be opened !

}

/ / At t h i s po in t , we KNOW t h a t the connect ion i s open .

try {
communicate over the connection

}
catch (IOException e) {

handle the error
}
finally {

close the connection
}

The finally clause in the second try statement ensures that the network con-
nection will definitely be closed, whether or not an error occurs during the commu-

198

nication. The first try statement is there to make sure that we don’t even try to
communicate over the network unless we have successfully opened a connection. The
pseudocode in this example follows a general pattern that can be used to robustly
obtain a resource, use the resource, and then release the resource.

9.3.3 Throwing Exceptions

There are times when it makes sense for a program to deliberately throw an excep-
tion. This is the case when the program discovers some sort of exceptional or error
condition, but there is no reasonable way to handle the error at the point where the
problem is discovered. The program can throw an exception in the hope that some
other part of the program will catch and handle the exception. This can be done with
a throw statement. In this section, we cover the throw statement more fully. The
syntax of the throw statement is: throw exception−object ;

The exception-object must be an object belonging to one of the subclasses of
Throwable. Usually, it will in fact belong to one of the subclasses of Exception. In
most cases, it will be a newly constructed object created with the new operator. For
example: throw new ArithmeticException("Division by zero");

The parameter in the constructor becomes the error message in the exception ob-
ject; if e refers to the object, the error message can be retrieved by calling
e.getMessage(). (You might find this example a bit odd, because you might ex-
pect the system itself to throw an ArithmeticException when an attempt is made
to divide by zero. So why should a programmer bother to throw the exception? Re-
calls that if the numbers that are being divided are of type int, then division by zero
will indeed throw an ArithmeticException. However, no arithmetic operations with
floating-point numbers will ever produce an exception. Instead, the special value
Double.NaN is used to represent the result of an illegal operation. In some situations,
you might prefer to throw an ArithmeticException when a real number is divided
by zero.)

An exception can be thrown either by the system or by a throw statement. The
exception is processed in exactly the same way in either case. Suppose that the ex-
ception is thrown inside a try statement. If that try statement has a catch clause that
handles that type of exception, then the computer jumps to the catch clause and exe-
cutes it. The exception has been handled. After handling the exception, the computer
executes the finally clause of the try statement, if there is one. It then continues nor-
mally with the rest of the program, which follows the try statement. If the exception
is not immediately caught and handled, the processing of the exception will continue.

When an exception is thrown during the execution of a method and the exception
is not handled in the same method, then that method is terminated (after the execu-
tion of any pending finally clauses). Then the method that called that method gets a
chance to handle the exception. That is, if the method was called inside a try state-
ment that has an appropriate catch clause, then that catch clause will be executed
and the program will continue on normally from there. Again, if the second method
does not handle the exception, then it also is terminated and the method that called
it (if any) gets the next shot at the exception. The exception will crash the program
only if it passes up through the entire chain of method calls without being handled.

A method that might generate an exception can announce this fact by adding a
clause “throws exception-class-name” to the header of the method. For example:

/∗ ∗
∗ Returns the l a r g e r o f the two roo ts o f the quadra t i c equat ion

199

∗ A∗x∗x + B∗x + C = 0 , provided i t has any roo ts . I f A == 0 or
∗ i f the d i sc r im inan t , B∗B − 4∗A∗C, i s negat ive , then an except ion
∗ of type I l lega lArgumentExcept ion i s thrown .
∗ /

static public double root(double A, double B, double C)
throws IllegalArgumentException {

if (A == 0) {
throw new IllegalArgumentException("A can’ t be zero . ");

}
else {

double disc = B∗B − 4∗A∗C;
if (disc < 0)

throw new IllegalArgumentException(" Discr iminant < zero . ");
return (−B + Math.sqrt(disc)) / (2∗A);

}
}

As discussed in the previous section, the computation in this method has the pre-
conditions that A! = 0 and B ∗B − 4 ∗A ∗ C >= 0. The method throws an exception
of type IllegalArgumentException when either of these preconditions is violated.
When an illegal condition is found in a method, throwing an exception is often a rea-
sonable response. If the program that called the method knows some good way to
handle the error, it can catch the exception. If not, the program will crash – and the
programmer will know that the program needs to be fixed.

A throws clause in a method heading can declare several different types of excep-
tions, separated by commas. For example:
void processArray(int[] A) throws NullPointerException,

ArrayIndexOutOfBoundsException { ...

9.3.4 Mandatory Exception Handling

In the preceding example, declaring that the method root() can throw an
IllegalArgumentException is just a courtesy to potential readers of this method.
This is because handling of IllegalArgumentExceptions is not “mandatory”. A
method can throw an IllegalArgumentException without announcing the possibil-
ity. And a program that calls that method is free either to catch or to ignore the
exception, just as a programmer can choose either to catch or to ignore an exception
of type NullPointerException.

For those exception classes that require mandatory handling, the situation is dif-
ferent. If a method can throw such an exception, that fact must be announced in a
throws clause in the method definition. Failing to do so is a syntax error that will be
reported by the compiler.

On the other hand, suppose that some statement in the body of a method can
generate an exception of a type that requires mandatory handling. The statement
could be a throw statement, which throws the exception directly, or it could be a call
to a method that can throw the exception. In either case, the exception must be
handled. This can be done in one of two ways: The first way is to place the statement
in a try statement that has a catch clause that handles the exception; in this case,
the exception is handled within the method, so that any caller of the method will
never see the exception. The second way is to declare that the method can throw the
exception. This is done by adding a “throws” clause to the method heading, which
alerts any callers to the possibility that an exception might be generated when the

200

method is executed. The caller will, in turn, be forced either to handle the exception
in a try statement or to declare the exception in a throws clause in its own header.

Exception-handling is mandatory for any exception class that is not a subclass
of either Error or RuntimeException. Exceptions that require mandatory handling
generally represent conditions that are outside the control of the programmer. For ex-
ample, they might represent bad input or an illegal action taken by the user. There is
no way to avoid such errors, so a robust program has to be prepared to handle them.
The design of Java makes it impossible for programmers to ignore the possibility of
such errors.

Among the exceptions that require mandatory handling are several that can occur
when using Java’s input/output methods. This means that you can’t even use these
methods unless you understand something about exception-handling.

9.3.5 Programming with Exceptions

Exceptions can be used to help write robust programs. They provide an organized
and structured approach to robustness. Without exceptions, a program can become
cluttered with if statements that test for various possible error conditions. With
exceptions, it becomes possible to write a clean implementation of an algorithm that
will handle all the normal cases. The exceptional cases can be handled elsewhere, in
a catch clause of a try statement.

When a program encounters an exceptional condition and has no way of han-
dling it immediately, the program can throw an exception. In some cases, it makes
sense to throw an exception belonging to one of Java’s predefined classes, such as
IllegalArgumentException or IOException. However, if there is no standard class
that adequately represents the exceptional condition, the programmer can define a
new exception class. The new class must extend the standard class Throwable or one
of its subclasses. In general, if the programmer does not want to require manda-
tory exception handling, the new class will extend RuntimeException (or one of its
subclasses). To create a new exception class that does require mandatory handling,
the programmer can extend one of the other subclasses of Exception or can extend
Exception itself.

Here, for example, is a class that extends Exception, and therefore requires
mandatory exception handling when it is used:

public class ParseError extends Exception {
public ParseError(String message) {

/ / Create a ParseError ob jec t con ta in ing
/ / the given message as i t s e r r o r message .

super(message);
}

}

The class contains only a constructor that makes it possible to create a ParseError
object containing a given error message. (The statement “super(message)” calls a
constructor in the superclass, Exception.) The class inherits the getMessage() and
printStackTrace() methods from its superclass, off course. If e refers to an object of
type ParseError, then the method call e.getMessage() will retrieve the error mes-
sage that was specified in the constructor. But the main point of the ParseError class
is simply to exist. When an object of type ParseError is thrown, it indicates that a
certain type of error has occurred. (Parsing, by the way, refers to figuring out the

201

syntax of a string. A ParseError would indicate, presumably, that some string that
is being processed by the program does not have the expected form.)

A throw statement can be used in a program to throw an error of type ParseError.
The constructor for the ParseError object must specify an error message. For exam-
ple:

throw new ParseError(" Encountered an i l l e g a l negative number . ");

or

throw new ParseError(" The word ’ " + word
+ " ’ i s not a val id f i l e name. ");

If the throw statement does not occur in a try statement that catches the error,
then the method that contains the throw statement must declare that it can throw a
ParseError by adding the clause “throws ParseError” to the method heading. For
example,

void getUserData() throws ParseError {
. . .

}

This would not be required if ParseError were defined as a subclass of
RuntimeException instead of Exception, since in that case exception handling for
ParseErrors would not be mandatory.

A method that wants to handle ParseErrors can use a try statement with a catch
clause that catches ParseErrors. For example:

try {
getUserData();
processUserData();

}
catch (ParseError pe) {

. . . / / Handle the e r r o r
}

Note that since ParseError is a subclass of Exception, a catch clause of the form
“catch (Exception e)” would also catch ParseErrors, along with any other object of
type Exception.

Sometimes, it’s useful to store extra data in an exception object. For example,

class ShipDestroyed extends RuntimeException {
Ship ship; / / Which sh ip was destroyed .
int where_x, where_y; / / Locat ion where sh ip was destroyed .
ShipDestroyed(String message, Ship s, int x, int y) {

/ / Const ruc tor creates a ShipDestroyed ob jec t
/ / ca r r y i ng an e r r o r message plus the in fo rma t i on
/ / t h a t the sh ip s was destroyed at l o c a t i o n (x , y)
/ / on the screen .

super(message);
ship = s;
where_x = x;
where_y = y;

}
}

Here, a ShipDestroyed object contains an error message and some information
about a ship that was destroyed. This could be used, for example, in a statement:

202

if (userShip.isHit())
throw new ShipDestroyed("You ’ve been h i t ! ", userShip, xPos, yPos);

Note that the condition represented by a ShipDestroyed object might not even be
considered an error. It could be just an expected interruption to the normal flow of a
game. Exceptions can sometimes be used to handle such interruptions neatly.

The ability to throw exceptions is particularly useful in writing general-purpose
methods and classes that are meant to be used in more than one program. In this
case, the person writing the method or class often has no reasonable way of handling
the error, since that person has no way of knowing exactly how the method or class
will be used. In such circumstances, a novice programmer is often tempted to print an
error message and forge ahead, but this is almost never satisfactory since it can lead
to unpredictable results down the line. Printing an error message and terminating
the program is almost as bad, since it gives the program no chance to handle the
error.

The program that calls the method or uses the class needs to know that the error
has occurred. In languages that do not support exceptions, the only alternative is
to return some special value or to set the value of some variable to indicate that an
error has occurred. For example, a method may return the value −1 if the user’s
input is illegal. However, this only does any good if the main program bothers to test
the return value. It is very easy to be lazy about checking for special return values
every time a method is called. And in this case, using −1 as a signal that an error
has occurred makes it impossible to allow negative return values. Exceptions are a
cleaner way for a method to react when it encounters an error.

9.4 Assertions

WE END THIS CHAPTER WITH A SHORT SECTION ON ASSERTIONS, another feature of the
Java programming language that can be used to aid in the development of correct
and robust programs.

Recall that a precondition is a condition that must be true at a certain point in
a program, for the execution of the program to continue correctly from that point.
In the case where there is a chance that the precondition might not be satisfied –
for example, if it depends on input from the user – then it’s a good idea to insert
an if statement to test it. But then the question arises, What should be done if the
precondition does not hold? One option is to throw an exception. This will terminate
the program, unless the exception is caught and handled elsewhere in the program.

In many cases, of course, instead of using an if statement to test whether a precon-
dition holds, a programmer tries to write the program in a way that will guarantee
that the precondition holds. In that case, the test should not be necessary, and the if
statement can be avoided. The problem is that programmers are not perfect. In spite
of the programmer’s intention, the program might contain a bug that screws up the
precondition. So maybe it’s a good idea to check the precondition – at least during
the debugging phase of program development.

Similarly, a postcondition is a condition that is true at a certain point in the pro-
gram as a consequence of the code that has been executed before that point. Assum-
ing that the code is correctly written, a postcondition is guaranteed to be true, but
here again testing whether a desired postcondition is actually true is a way of check-
ing for a bug that might have screwed up the postcondition. This is somthing that
might be desirable during debugging.

203

The programming languages C and C++ have always had a facility for adding
what are called assertions to a program. These assertions take the form
“assert(condition)”, where condition is a boolean-valued expression. This condition
expresses a precondition or postcondition that should hold at that point in the pro-
gram. When the computer encounters an assertion during the execution of the pro-
gram, it evaluates the condition. If the condition is false, the program is terminated.
Otherwise, the program continues normally. This allows the programmer’s belief
that the condition is true to be tested; if if it not true, that indicates that the part
of the program that preceded the assertion contained a bug. One nice thing about
assertions in C and C++ is that they can be “turned off” at compile time. That is, if
the program is compiled in one way, then the assertions are included in the compiled
code. If the program is compiled in another way, the assertions are not included.
During debugging, the first type of compilation is used. The release version of the
program is compiled with assertions turned off. The release version will be more
efficient, because the computer won’t have to evaluate all the assertions.

Although early versions of Java did not have assertions, an assertion facility sim-
ilar to the one in C/C++ has been available in Java since version 1.4. As with the
C/C++ version, Java assertions can be turned on during debugging and turned off
during normal execution. In Java, however, assertions are turned on and off at run
time rather than at compile time. An assertion in the Java source code is always
included in the compiled class file. When the program is run in the normal way,
these assertions are ignored; since the condition in the assertion is not evaluated in
this case, there is little or no performance penalty for having the assertions in the
program. When the program is being debugged, it can be run with assertions en-
abled, as discussed below, and then the assertions can be a great help in locating and
identifying bugs.

An assertion statement in Java takes one of the following two forms:
assert condition ; or assert condition : error−message ; where condition is
a boolean-valued expression and error-message is a string or an expression of type
String. The word “assert” is a reserved word in Java, which cannot be used as an
identifier. An assertion statement can be used anyplace in Java where a statement is
legal.

If a program is run with assertions disabled, an assertion statement is equiva-
lent to an empty statement and has no effect. When assertions are enabled and an
assertion statement is encountered in the program, the condition in the assertion is
evaluated. If the value is true, the program proceeds normally. If the value of the
condition is false, then an exception of type java.lang.AssertionError is thrown,
and the program will crash (unless the error is caught by a try statement). If the
assert statement includes an error-message, then the error message string becomes
the message in the AssertionError.

So, the statement “assert condition : error-message;” is similar to

if (condition == false)
throw new AssertionError(error−message);

except that the if statement is executed whenever the program is run, and the assert
statement is executed only when the program is run with assertions enabled.

The question is, when to use assertions instead of exceptions? The general rule
is to use assertions to test conditions that should definitely be true, if the program
is written correctly. Assertions are useful for testing a program to see whether or
not it is correct and for finding the errors in an incorrect program. After testing

204

and debugging, when the program is used in the normal way, the assertions in the
program will be ignored. However, if a problem turns up later, the assertions are still
there in the program to be used to help locate the error. If someone writes to you to
say that your program doesn’t work when he does such-and-such, you can run the
program with assertions enabled, do such-and-such, and hope that the assertions in
the program will help you locate the point in the program where it goes wrong.

Consider, for example, the root() method that calculates a root of a quadratic
equation. If you believe that your program will always call this method with legal
arguments, then it would make sense to write the method using assertions instead of
exceptions:

/∗ ∗
∗ Returns the l a r g e r o f the two roo ts o f the quadra t i c equat ion
∗ A∗x∗x + B∗x + C = 0 , provided i t has any roo ts .
∗ Precond i t i on : A != 0 and B∗B − 4∗A∗C >= 0.
∗ /

static public double root(double A, double B, double C) {
assert A != 0 : " Leading coeff ic ient of quadratic equation cannot be zero . ";
double disc = B∗B − 4∗A∗C;
assert disc >= 0 : " Discr iminant of quadratic equation cannot be negative . ";
return (−B + Math.sqrt(disc)) / (2∗A);

}

The assertions are not checked when the program is run in the normal way. If you
are correct in your belief that the method is never called with illegal arguments, then
checking the conditions in the assertions would be unnecessary. If your belief is not
correct, the problem should turn up during testing or debugging, when the program
is run with the assertions enabled.

If the root() method is part of a software library that you expect other people to
use, then the situation is less clear. Sun’s Java documentation advises that assertions
should not be used for checking the contract of public methods: If the caller of a
method violates the contract by passing illegal parameters, then an exception should
be thrown. This will enforce the contract whether or not assertions are enabled.
(However, while it’s true that Java programmers expect the contract of a method to
be enforced with exceptions, there are reasonable arguments for using assertions
instead, in some cases.)

On the other hand, it never hurts to use an assertion to check a postcondition of
a method. A postcondition is something that is supposed to be true after the method
has executed, and it can be tested with an assert statement at the end of the method.
If the postcodition is false, there is a bug in the method itself, and that is something
that needs to be found during the development of the method.

To have any effect, assertions must be enabled when the program is run. How to
do this depends on what programming environment you are using. In the usual com-
mand line environment, assertions are enabled by adding the −enableassertions
option to the java command that is used to run the program. For example, if the class
that contains the main program is RootFinder, then the command
java −enableassertions RootFinder
will run the program with assertions enabled. The −enableassertions option can be
abbreviated to −ea, so the command can alternatively be written as
java −ea RootFinder.

In fact, it is possible to enable assertions in just part of a program. An option of
the form “-ea:class-name” enables only the assertions in the specified class. Note that

205

there are no spaces between the -ea, the “:”, and the name of the class. To enable all
the assertions in a package and in its sub-packages, you can use an option of the form
“-ea:package-name...”. To enable assertions in the “default package” (that is, classes
that are not specified to belong to a package, like almost all the classes in this book),
use “-ea:...”. For example, to run a Java program named “MegaPaint” with assertions
enabled for every class in the packages named “paintutils” and “drawing”, you would
use the command:

java −ea:paintutils... −ea:drawing... MegaPaint

If you are using the Eclipse integrated development environment, you can specify
the -ea option by creating a run configuration. Right-click the name of the main
program class in the Package Explorer pane, and select “Run As” from the pop-up
menu and then “Run...” from the submenu. This will open a dialog box where you
can manage run configurations. The name of the project and of the main class will be
already be filled in. Click the “Arguments” tab, and enter -ea in the box under “VM
Arguments”. The contents of this box are added to the java command that is used to
run the program. You can enter other options in this box, including more complicated
enableassertions options such as -ea:paintutils.... When you click the “Run” button,
the options will be applied. Furthermore, they will be applied whenever you run
the program, unless you change the run configuration or add a new configuration.
Note that it is possible to make two run configurations for the same class, one with
assertions enabled and one with assertions disabled.

206

Chapter 10
Input and Output

Contents
10.1 Streams, Readers, and Writers . 207

10.1.1 Character and Byte Streams 207
10.1.2 PrintWriter . 209
10.1.3 Data Streams . 210
10.1.4 Reading Text . 211
10.1.5 The Scanner Class . 212

10.2 Files . 213
10.2.1 Reading and Writing Files . 214
10.2.2 Files and Directories . 217

10.3 Programming With Files . 219
10.3.1 Copying a File . 219

10.1 Streams, Readers, and Writers

Without the ability to interact with the rest of the world, a program would be useless.
The interaction of a program with the rest of the world is referred to as input/output
or I/O. Historically, one of the hardest parts of programming language design has
been coming up with good facilities for doing input and output. A computer can be
connected to many different types of input and output devices. If a programming
language had to deal with each type of device as a special case, the complexity would
be overwhelming. One of the major achievements in the history of programming has
been to come up with good abstractions for representing I/O devices. In Java, the
main I/O abstractions are called streams. Other I/O abstractions, such as “files” and
“channels” also exist, but in this section we will look only at streams. Every stream
represents either a source of input or a destination to which output can be sent.

10.1.1 Character and Byte Streams

When dealing with input/output, you have to keep in mind that there are two broad
categories of data: machine-formatted data and human-readable data. Machine-
formatted data is represented in binary form, the same way that data is represented

207

inside the computer, that is, as strings of zeros and ones. Human-readable data is in
the form of characters. When you read a number such as 3.141592654, you are read-
ing a sequence of characters and interpreting them as a number. The same number
would be represented in the computer as a bit-string that you would find unrecogniz-
able.

To deal with the two broad categories of data representation, Java has two broad
categories of streams: byte streams for machine-formatted data and character streams
for human-readable data. There are many predefined classes that represent streams
of each type.

An object that outputs data to a byte stream belongs to one of the subclasses of
the abstract class OutputStream. Objects that read data from a byte stream belong
to subclasses of InputStream. If you write numbers to an OutputStream, you won’t
be able to read the resulting data yourself. But the data can be read back into the
computer with an InputStream. The writing and reading of the data will be very
efficient, since there is no translation involved: the bits that are used to represent
the data inside the computer are simply copied to and from the streams.

For reading and writing human-readable character data, the main classes are the
abstract classes Reader and Writer. All character stream classes are subclasses of
one of these. If a number is to be written to a Writer stream, the computer must
translate it into a human-readable sequence of characters that represents that num-
ber. Reading a number from a Reader stream into a numeric variable also involves
a translation, from a character sequence into the appropriate bit string. (Even if the
data you are working with consists of characters in the first place, such as words from
a text editor, there might still be some translation. Characters are stored in the com-
puter as 16−bit Unicode values. For people who use Western alphabets, character
data is generally stored in files in ASCII code, which uses only 8 bits per character.
The Reader and Writer classes take care of this translation, and can also handle
non-western alphabets in countries that use them.)

Byte streams can be useful for direct machine-to-machine communication, and
they can sometimes be useful for storing data in files, especially when large amounts
of data need to be stored efficiently, such as in large databases. However, binary data
is fragile in the sense that its meaning is not self-evident. When faced with a long
series of zeros and ones, you have to know what information it is meant to represent
and how that information is encoded before you will be able to interpret it. Of course,
the same is true to some extent for character data, which is itself coded into binary
form. But the binary encoding of character data has been standardized and is well
understood, and data expressed in character form can be made meaningful to human
readers. The current trend seems to be towards increased use of character data,
represented in a way that will make its meaning as self-evident as possible.

I should note that the original version of Java did not have character streams,
and that for ASCII-encoded character data, byte streams are largely interchangeable
with character streams. In fact, the standard input and output streams, System.in
and System.out, are byte streams rather than character streams. However, you
should use Readers and Writers rather than InputStreams and OutputStreams when
working with character data.

The standard stream classes discussed in this section are defined in the package
java.io, along with several supporting classes. You must import the classes from
this package if you want to use them in your program. That means either importing
individual classes or putting the directive “import java.io.*;” at the beginning of your

208

source file. Streams are necessary for working with files and for doing communication
over a network. They can be also used for communication between two concurrently
running threads, and there are stream classes for reading and writing data stored in
the computer’s memory.

The beauty of the stream abstraction is that it is as easy to write data to a file or
to send data over a network as it is to print information on the screen.

The basic I/O classes Reader, Writer, InputStream, and OutputStream provide
only very primitive I/O operations. For example, the InputStream class declares the
instance method public int read() throws IOException for reading one byte of
data, as a number in the range 0 to 255, from an input stream. If the end of the input
stream is encountered, the read() method will return the value −1 instead. If some
error occurs during the input attempt, an exception of type IOException is thrown.
Since IOException is an exception class that requires mandatory exception-handling,
this means that you can’t use the read() method except inside a try statement or in
a method that is itself declared with a “throws IOException” clause.

The InputStream class also defines methods for reading several bytes of data
in one step into an array of bytes. However, InputStream provides no convenient
methods for reading other types of data, such as int or double, from a stream. This
is not a problem because you’ll never use an object of type InputStream itself. In-
stead, you’ll use subclasses of InputStream that add more convenient input methods
to InputStream’s rather primitive capabilities. Similarly, the OutputStream class de-
fines a primitive output method for writing one byte of data to an output stream. The
method is defined as:public void write(int b) throws IOException The param-
eter is of type int rather than byte, but the parameter value is type-cast to type byte
before it is written; this effectively discards all but the eight low order bytes of b.
Again, in practice, you will almost always use higher-level output operations defined
in some subclass of OutputStream.

The Reader and Writer classes provide identical low-level read and write meth-
ods. As in the byte stream classes, the parameter of the write(c) method in Writer
and the return value of the read() method in Reader are of type int, but in these
character-oriented classes, the I/O operations read and write characters rather than
bytes. The return value of read() is−1 if the end of the input stream has been reached.
Otherwise, the return value must be type-cast to type char to obtain the character
that was read. In practice, you will ordinarily use higher level I/O operations pro-
vided by sub-classes of Reader and Writer, as discussed below.

10.1.2 PrintWriter

One of the neat things about Java’s I/O package is that it lets you add capabilities to
a stream by “wrapping” it in another stream object that provides those capabilities.
The wrapper object is also a stream, so you can read from or write to it–but you can
do so using fancier operations than those available for basic streams.

For example, PrintWriter is a subclass of Writer that provides convenient meth-
ods for outputting human-readable character representations of all of Java’s basic
data types. If you have an object belonging to the Writer class, or any of its sub-
classes, and you would like to use PrintWriter methods to output data to that
Writer, all you have to do is wrap the Writer in a PrintWriter object. You do this by
constructing a new PrintWriter object, using the Writer as input to the constructor.
For example, if charSink is of type Writer, then you could say

209

PrintWriter printableCharSink = new PrintWriter(charSink);

When you output data to printableCharSink, using the high-level output meth-
ods in PrintWriter, that data will go to exactly the same place as data written di-
rectly to charSink. You’ve just provided a better interface to the same output stream.
For example, this allows you to use PrintWriter methods to send data to a file or over
a network connection.

For the record, if out is a variable of type PrintWriter, then the following methods
are defined:

• out.print(x)–prints the value of x, represented in the form of a string of char-
acters, to the output stream; x can be an expression of any type, including both
primitive types and object types. An object is converted to string form using its
toString() method. A null value is represented by the string “null”.

• out.println()–outputs an end-of-line to the output stream.

• out.println(x)–outputs the value of x, followed by an end-of-line; this is equiv-
alent to out.print(x) followed by out.println().

• out.printf(formatString, x1, x2, ...)–does formated output of x1, x2, . . .
to the output stream. The first parameter is a string that specifies the format of
the output. There can be any number of additional parameters, of any type, but
the types of the parameters must match the formatting directives in the format
string.

Note that none of these methods will ever throw an IOException. Instead, the
PrintWriter class includes the method public boolean checkError() which will
return true if any error has been encountered while writing to the stream. The
PrintWriter class catches any IOExceptions internally, and sets the value of an
internal error flag if one occurs. The checkError() method can be used to check
the error flag. This allows you to use PrintWriter methods without worrying about
catching exceptions. On the other hand, to write a fully robust program, you should
call checkError() to test for possible errors whenever you used a PrintWriter.

10.1.3 Data Streams

When you use a PrintWriter to output data to a stream, the data is converted into
the sequence of characters that represents the data in human-readable form. Sup-
pose you want to output the data in byte-oriented, machine-formatted form? The
java.io package includes a byte-stream class, DataOutputStream that can be used
for writing data values to streams in internal, binary-number format.
DataOutputStream bears the same relationship to OutputStream that PrintWriter
bears to Writer. That is, whereas OutputStream only has methods for outputting
bytes, DataOutputStream has methods writeDouble(double x) for outputting val-
ues of type double, writeInt(int x) for outputting values of type int, and so on.
Furthermore, you can wrap any OutputStream in a DataOutputStream so that you
can use the higher level output methods on it. For example, if byteSink is of type
classname, you could say

DataOutputStream dataSink = new DataOutputStream(byteSink);

to wrap byteSink in a DataOutputStream, dataSink.

210

For input of machine-readable data, such as that created by writing to a
DataOutputStream, java.io provides the class DataInputStream. You can wrap
any InputStream in aDataInputStream object to provide it with the ability to read
data of various types from the byte-stream. The methods in theDataInputStream
for reading binary data are called readDouble(), readInt(), and so on. Data writ-
ten by a DataOutputStream is guaranteed to be in a format that can be read by a
DataInputStream. This is true even if the data stream is created on one type of
computer and read on another type of computer. The cross-platform compatibility of
binary data is a major aspect of Java’s platform independence.

In some circumstances, you might need to read character data from an
InputStream or write character data to an OutputStream. This is not a problem,
since characters, like all data, are represented as binary numbers. However, for
character data, it is convenient to use Reader and Writer instead of InputStream
and OutputStream. To make this possible, you can wrap a byte stream in a charac-
ter stream. If byteSource is a variable of type InputStream and byteSink is of type
OutputStream, then the statements

Reader charSource = new InputStreamReader(byteSource);
Writer charSink = new OutputStreamWriter(byteSink);

create character streams that can be used to read character data from and write char-
acter data to the byte streams. In particular, the standard input stream System.in,
which is of type InputStream for historical reasons, can be wrapped in a Reader to
make it easier to read character data from standard input:

Reader charIn = new InputStreamReader(System.in);

As another application, the input and output streams that are associated with
a network connection are byte streams rather than character streams, but the byte
streams can be wrapped in character streams to make it easy to send and receive
character data over the network.

10.1.4 Reading Text

Still, the fact remains that much I/O is done in the form of human-readable charac-
ters. In view of this, it is surprising that Java does not provide a standard character
input class that can read character data in a manner that is reasonably symmet-
rical with the character output capabilities of PrintWriter. There is one basic case
that is easily handled by a standard class. The BufferedReader class has a method
public String readLine() throws IOException that reads one line of text from
its input source. If the end of the stream has been reached, the return value is null.
When a line of text is read, the end-of-line marker is read from the input stream,
but it is not part of the string that is returned. Different input streams use different
characters as end-of-line markers, but the readLine method can deal with all the
common cases.

Line-by-line processing is very common. Any Reader can be wrapped in a
BufferedReader to make it easy to read full lines of text. If reader is of type Reader,
then a BufferedReader wrapper can be created for reader with
BufferedReader in = new BufferedReader(reader);.

This can be combined with the InputStreamReader class that was mentioned
above to read lines of text from an InputStream. For example, we can apply this
to System.in:

211

BufferedReader in; / / BufferedReader f o r reading from standard i npu t .
in = new BufferedReader(new InputStreamReader(System.in));
try {

String line = in.readLine();
while (line != null && line.length() > 0) {

processOneLineOfInput(line);
line = in.readLine();

}
}
catch (IOException e) {
}

This code segment reads and processes lines from standard input until either an
empty line or an end-of-stream is encountered. (An end-of-stream is possible even for
interactive input. For example, on at least some computers, typing a Control-D gen-
erates an end-of-stream on the standard input stream.) The try..catch statement is
necessary because the readLine method can throw an exception of type IOException,
which requires mandatory exception handling; an alternative to try..catch would be to
declare that the method that contains the code “throws IOException”. Also, remem-
ber that BufferedReader, InputStreamReader, and IOException must be imported
from the package java.io.

10.1.5 The Scanner Class

Since its introduction, Java has been notable for its lack of built-in support for basic
input, and for its reliance on fairly advanced techniques for the support that it does
offer. (This is my opinion, at least.) The Scanner class was introduced in Java 5.0
to make it easier to read basic data types from a character input source. It does not
(again, in my opinion) solve the problem completely, but it is a big improvement. The
Scanner class is in the package java.util.

Input methods are defined as instance methods in the Scanner class, so to use the
class, you need to create a Scanner object. The constructor specifies the source of the
characters that the Scanner will read. The scanner acts as a wrapper for the input
source. The source can be a Reader, an InputStream, a String, or a File. (If a String
is used as the input source, the Scanner will simply read the characters in the string
from beginning to end, in the same way that it would process the same sequence of
characters from a stream. The File class will be covered in the next section.) For
example, you can use a Scanner to read from standard input by saying:
Scanner standardInputScanner = new Scanner(System.in);

and if charSource is of type Reader, you can create a Scanner for reading from char-
Source with:
Scanner scanner = new Scanner(charSource);

When processing input, a scanner usually works with tokens. A token is a mean-
ingful string of characters that cannot, for the purposes at hand, be further broken
down into smaller meaningful pieces. A token can, for example, be an individual
word or a string of characters that represents a value of type double. In the case of
a scanner, tokens must be separated by “delimiters.” By default, the delimiters are
whitespace characters such as spaces and end-of-line markers. In normal processing,
whitespace characters serve simply to separate tokens and are discarded by the scan-
ner. A scanner has instance methods for reading tokens of various types. Suppose
that scanner is an object of type Scanner. Then we have:

212

• scanner.next()–reads the next token from the input source and returns it as
a String.

• scanner.nextInt(), scanner.nextDouble(), and so on–reads the next token
from the input source and tries to convert it to a value of type int, double, and
so on. There are methods for reading values of any of the primitive types.

• scanner.nextLine()–reads an entire line from the input source, up to the next
end-of-line and returns the line as a value of type String. The end-of-line
marker is read but is not part of the return value. Note that this method is
not based on tokens. An entire line is read and returned, including any whites-
pace characters in the line.

All of these methods can generate exceptions. If an attempt is made to read past
the end of input, an exception of type NoSuchElementException is thrown. Methods
such as scanner.getInt() will throw an exception of type InputMismatchException
if the next token in the input does not represent a value of the requested type. The
exceptions that can be generated do not require mandatory exception handling.

The Scanner class has very nice look-ahead capabilities. You can query a scanner
to determine whether more tokens are available and whether the next token is of a
given type. If scanner is of type Scanner:

• scanner.hasNext()–returns a boolean value that is true if there is at least one
more token in the input source.

• scanner.hasNextInt(), scanner.hasNextDouble(), and so on–returns a
boolean value that is true if there is at least one more token in the input source
and that token represents a value of the requested type.

• scanner.hasNextLine()–returns a boolean value that is true if there is at least
one more line in the input source.

Although the insistence on defining tokens only in terms of delimiters limits the
usability of scanners to some extent, they are easy to use and are suitable for many
applications.

10.2 Files

The data and programs in a computer’s main memory survive only as long as the
power is on. For more permanent storage, computers use files, which are collections
of data stored on a hard disk, on a USB memory stick, on a CD-ROM, or on some
other type of storage device. Files are organized into directories (sometimes called
folders). A directory can hold other directories, as well as files. Both directories and
files have names that are used to identify them.

Programs can read data from existing files. They can create new files and can
write data to files. In Java, such input and output can be done using streams.
Human-readable character data is read from a file using an object belonging to the
class FileReader, which is a subclass of Reader. Similarly, data is written to a
file in human-readable format through an object of type FileWriter, a subclass of
Writer. For files that store data in machine format, the appropriate I/O classes
are FileInputStream and FileOutputStream. In this section, I will only discuss
character-oriented file I/O using the FileReader and FileWriter classes. However,

213

FileInputStream and FileOutputStream are used in an exactly parallel fashion. All
these classes are defined in the java.io package.

It’s worth noting right at the start that applets which are downloaded over a net-
work connection are not allowed to access files (unless you have made a very foolish
change to your web browser’s configuration). This is a security consideration. You can
download and run an applet just by visiting a Web page with your browser. If down-
loaded applets had access to the files on your computer, it would be easy to write an
applet that would destroy all the data on a computer that downloads it. To prevent
such possibilities, there are a number of things that downloaded applets are not al-
lowed to do. Accessing files is one of those forbidden things. Standalone programs
written in Java, however, have the same access to your files as any other program.
When you write a standalone Java application, you can use all the file operations
described in this section.

10.2.1 Reading and Writing Files

The FileReader class has a constructor which takes the name of a file as a parameter
and creates an input stream that can be used for reading from that file. This construc-
tor will throw an exception of type FileNotFoundException if the file doesn’t exist.
It requires mandatory exception handling, so you have to call the constructor in a
try..catch statement (or inside a method that is declared to throw the exception).
For example, suppose you have a file named “data.txt”, and you want your program
to read data from that file. You could do the following to create an input stream for
the file:

FileReader data; / / (Declare the v a r i a b l e before the
/ / t r y statement , or e lse the v a r i a b l e
/ / i s l o c a l to the t r y b lock and you won ’ t
/ / be able to use i t l a t e r i n the program .)

try {
data = new FileReader(" data . t x t "); / / c reate the stream

}
catch (FileNotFoundException e) {

... / / do something to handle the e r r o r −− maybe , end the program
}

The FileNotFoundException class is a subclass of IOException, so it would be
acceptable to catch IOExceptions in the above try...catch statement. More gener-
ally, just about any error that can occur during input/output operations can be caught
by a catch clause that handles IOException.

Once you have successfully created a FileReader, you can start reading data from
it. But since FileReaders have only the primitive input methods inherited from the
basic Reader class, you will probably want to wrap your FileReader in a Scanner, or
in some other wrapper class.

Working with output files is no more difficult than this. You simply create an
object belonging to the class FileWriter. You will probably want to wrap this output
stream in an object of type PrintWriter. For example, suppose you want to write
data to a file named “result.dat”. Since the constructor for FileWriter can throw an
exception of type IOException, you should use a try..catch statement:

214

PrintWriter result;

try {
result = new PrintWriter(new FileWriter(" r e s u l t . dat "));

}
catch (IOException e) {

... / / handle the except ion
}

If no file named result.dat exists, a new file will be created. If the file already exists,
then the current contents of the file will be erased and replaced with the data that
your program writes to the file. This will be done without any warning. To avoid
overwriting a file that already exists, you can check whether a file of the same name
already exists before trying to create the stream, as discussed later in this section.
An IOException might occur in the PrintWriter constructor if, for example, you are
trying to create a file on a disk that is “write-protected,” meaning that it cannot be
modified.

After you are finished using a file, it’s a good idea to close the file, to tell the oper-
ating system that you are finished using it. You can close a file by calling the close()
method of the associated stream. Once a file has been closed, it is no longer possible
to read data from it or write data to it, unless you open it again as a new stream.
(Note that for most stream classes, the close() method can throw an IOException,
which must be handled; PrintWriter overrides this method so that it cannot throw
such exceptions.) If you forget to close a file, the file will ordinarily be closed automat-
ically when the program terminates or when the file object is garbage collected, but
in the case of an output file, some of the data that has been written to the file might
be lost. This can occur because data that is written to a file can be buffered; that
is, the data is not sent immediately to the file but is retained in main memory (in a
“buffer”) until a larger chunk of data is ready to be written. This is done for efficiency.
The close() method of an output stream will cause all the data in the buffer to be
sent to the file. Every output stream also has a flush() method that can be called to
force any data in the buffer to be written to the file without closing the file.

As a complete example, here is a program that will read numbers from a file
named data.dat, and will then write out the same numbers in reverse order to an-
other file named result.dat. It is assumed that data.dat contains only one number
on each line. Exception-handling is used to check for problems along the way. Al-
though the application is not a particularly useful one, this program demonstrates
the basics of working with files. (By the way, at the end of this program, you’ll find
our first example of a finally clause in a try statement. When the computer executes
a try statement, the commands in its finally clause are guaranteed to be executed, no
matter what.)

215

import java.io.∗;
import java.util.ArrayList;
/∗ ∗
∗ Reads numbers from a f i l e named data . dat and w r i t e s them to a f i l e
∗ named r e s u l t . dat i n reverse order . The inpu t f i l e should conta in
∗ exac t l y one r e a l number per l i n e .
∗ /

public class ReverseFile {

public static void main(String[] args) {
TextReader data; / / Character i npu t stream f o r reading data .
PrintWriter result; / / Character output stream f o r w r i t i n g data .
ArrayList<Double> numbers; / / An A r r a y L i s t f o r ho ld ing the data .
numbers = new ArrayList<Double>();

try { / / Create the i npu t stream .
data = new TextReader(new FileReader(" data . dat "));

}
catch (FileNotFoundException e) {

System.out.println("Can’ t f ind f i l e data . dat ! ");
return; / / End the program by r e t u r n i n g from main () .

}

try { / / Create the output stream .
result = new PrintWriter(new FileWriter(" r e s u l t . dat "));

}
catch (IOException e) {

System.out.println("Can’ t open f i l e r e s u l t . dat ! ");
System.out.println(" E r r o r : " + e);
data.close(); / / Close the i npu t f i l e .
return; / / End the program .

}
try {

/ / Read numbers from the inpu t f i l e , adding them to the A r r a y L i s t .
while (data.eof() == false) { / / Read u n t i l end−of− f i l e .

double inputNumber = data.getlnDouble();
numbers.add(inputNumber);

}
/ / Output the numbers i n reverse order .

for (int i = numbers.size()−1; i >= 0; i−−)
result.println(numbers.get(i));

System.out.println("Done! ");
}
catch (IOException e) {

/ / Some problem reading the data from the inpu t f i l e .
System.out.println(" Input E r r o r : " + e.getMessage());

}
finally {

/ / F in i sh by c los ing the f i l e s , whatever e lse may have happened .
data.close();
result.close();

}
} / / end of main ()

} / / end of c lass

216

10.2.2 Files and Directories

The subject of file names is actually more complicated than I’ve let on so far. To fully
specify a file, you have to give both the name of the file and the name of the directory
where that file is located. A simple file name like “data.dat” or “result.dat” is taken
to refer to a file in a directory that is called the current directory (also known as the
“default directory” or “working directory”). The current directory is not a permanent
thing. It can be changed by the user or by a program. Files not in the current direc-
tory must be referred to by a path name, which includes both the name of the file and
information about the directory where it can be found.

To complicate matters even further, there are two types of path names, absolute
path names and relative path names. An absolute path name uniquely identifies one
file among all the files available to the computer. It contains full information about
which directory the file is in and what the file’s name is. A relative path name tells
the computer how to locate the file starting from the current directory.

It’s reasonably safe to say, though, that if you stick to using simple file names only,
and if the files are stored in the same directory with the program that will use them,
then you will be OK.

It is possible for a Java program to find out the absolute path names for two
important directories, the current directory and the user’s home directory. The names
of these directories are system properties, and they can be read using the method
calls:

• System.getProperty(‘‘user.dir’’)–returns the absolute path name of the cur-
rent directory as a String.

• System.getProperty(‘‘user.home’’)–returns the absolute path name of the
user’s home directory as a String.

To avoid some of the problems caused by differences in path names between plat-
forms, Java has the class java.io.File. An object belonging to this class represents
a file. More precisely, an object of type File represents a file name rather than a file
as such. The file to which the name refers might or might not exist. Directories are
treated in the same way as files, so a File object can represent a directory just as
easily as it can represent a file.

A File object has a constructor, new File(String), that creates a File object
from a path name. The name can be a simple name, a relative path, or an absolute
path. For example, new File(“data.dat”) creates a File object that refers to a file
named data.dat, in the current directory. Another constructor has two parameters:
new File(File, String). The first is a File object that refers to the directory that
contains the file. The second can be the name of the file or a relative path from the
directory to the file.

File objects contain several useful instance methods. Assuming that file is a
variable of type File, here are some of the methods that are available:

• file.exists()–This boolean-valued method returns true if the file named by
the File object already exists. You can use this method if you want to avoid
overwriting the contents of an existing file when you create a new FileWriter.

• file.isDirectory()–This boolean-valued method returns true if the File ob-
ject refers to a directory. It returns false if it refers to a regular file or if no file
with the given name exists.

217

• file.delete()–Deletes the file, if it exists. Returns a boolean value to indicate
whether the file was successfully deleted.

• file.list()–If the File object refers to a directory, this method returns an
array of type String[] containing the names of the files in that directory. Oth-
erwise, it returns null.

Here, for example, is a program that will list the names of all the files in a di-
rectory specified by the user. Just for fun, I have used a Scanner to read the user’s
input:

import java.io.File;
import java.util.Scanner;

/∗ ∗
∗ This program l i s t s the f i l e s i n a d i r e c t o r y s p e c i f i e d by
∗ the user . The user i s asked to type i n a d i r e c t o r y name .
∗ I f the name entered by the user i s not a d i r e c t o r y , a
∗ message i s p r i n t e d and the program ends .
∗ /

public class DirectoryList {

public static void main(String[] args) {

String directoryName; / / D i r e c t o r y name entered by the user .
File directory; / / F i l e ob jec t r e f e r r i n g to the d i r e c t o r y .
String[] files; / / Array o f f i l e names i n the d i r e c t o r y .
Scanner scanner; / / For reading a l i n e o f i npu t from the user .

scanner = new Scanner(System.in); / / scanner reads from standard i npu t .

System.out.print(" Enter a di rectory name: ");
directoryName = scanner.nextLine().trim();
directory = new File(directoryName);

if (directory.isDirectory() == false) {
if (directory.exists() == false)

System.out.println(" There i s no such directory ! ");
else

System.out.println(" That f i l e i s not a di rectory . ");
}
else {

files = directory.list();
System.out.println(" F i l e s in di rectory \" " + directory + " \ " : ");
for (int i = 0; i < files.length; i++)

System.out.println(" " + files[i]);
}

} / / end main ()

} / / end c lass D i r e c t o r y L i s t

All the classes that are used for reading data from files and writing data to files
have constructors that take a File object as a parameter. For example, if file is a

218

variable of type File, and you want to read character data from that file, you can
create a FileReader to do so by saying new FileReader(file). If you want to use a
TextReader to read from the file, you could say:

TextReader data;

try {
data = new TextReader(new FileReader(file));

}
catch (FileNotFoundException e) {

... / / handle the except ion
}

10.3 Programming With Files

IN THIS SECTION, we look at several programming examples that work with files, using
the techniques that were introduced previously.

10.3.1 Copying a File

As a first example, we look at a simple command-line program that can make a copy
of a file. Copying a file is a pretty common operation, and every operating system
already has a command for doing it. However, it is still instructive to look at a Java
program that does the same thing. Many file operations are similar to copying a file,
except that the data from the input file is processed in some way before it is written
to the output file. All such operations can be done by programs with the same general
form.

Since the program should be able to copy any file, we can’t assume that the
data in the file is in human-readable form. So, we have to use InputStream and
OutputStream to operate on the file rather than Reader and Writer. The program
simply copies all the data from the InputStream to the OutputStream, one byte at
a time. If source is the variable that refers to the InputStream, then the method
source.read() can be used to read one byte. This method returns the value−1 when all
the bytes in the input file have been read. Similarly, if copy refers to the OutputStream,
then copy.write(b) writes one byte to the output file. So, the heart of the program is a
simple while loop. As usual, the I/O operations can throw exceptions, so this must be
done in a TRY..CATCH statement:

while(true) {
int data = source.read();
if (data < 0)

break;
copy.write(data);

}

The file-copy command in an operating system such as UNIX uses command
line arguments to specify the names of the files. For example, the user might say
“copy original.dat backup.dat” to copy an existing file, original.dat, to a file
named backup.dat. Command-line arguments can also be used in Java programs.
The command line arguments are stored in the array of strings, args, which is a
parameter to the main() method. The program can retrieve the command-line argu-
ments from this array. For example, if the program is named CopyFile and if the user

219

runs the program with the command “java CopyFile work.dat oldwork.dat”, then
in the program, args[0] will be the string “work.dat” and args[1] will be the string
“oldwork.dat”. The value of args.length tells the program how many command-line
arguments were specified by the user.

My CopyFile program gets the names of the files from the command-line argu-
ments. It prints an error message and exits if the file names are not specified. To
add a little interest, there are two ways to use the program. The command line can
simply specify the two file names. In that case, if the output file already exists, the
program will print an error message and end. This is to make sure that the user
won’t accidently overwrite an important file. However, if the command line has three
arguments, then the first argument must be “-f” while the second and third argu-
ments are file names. The -f is a command-line option, which is meant to modify
the behavior of the program. The program interprets the -f to mean that it’s OK to
overwrite an existing program. (The “f” stands for “force,” since it forces the file to be
copied in spite of what would otherwise have been considered an error.) You can see
in the source code how the command line arguments are interpreted by the program:

import java.io.∗;
/∗ ∗ Makes a copy of a f i l e . The o r i g i n a l f i l e and the name of the
∗ copy must be given as command− l i n e arguments . In add i t i on , the
∗ f i r s t command− l i n e argument can be "− f " ; i f present , the program
∗ w i l l ove rwr i t e an e x i s t i n g f i l e ; i f not , the program w i l l r e p o r t
∗ an e r r o r and end i f the output f i l e a l ready e x i s t s . The number
∗ of bytes t h a t are copied i s repor ted . ∗ /

public class CopyFile {
public static void main(String[] args) {

String sourceName; / / Name of the source f i l e , s p e c i f i e d on the command l i n e .
String copyName; / / Name of the copy s p e c i f i e d on the command l i n e .
InputStream source; / / Stream f o r reading from the source f i l e .
OutputStream copy; / / Stream f o r w r i t i n g the copy .
boolean force; / / This i s set to t r ue i f the "− f " op t ion

/ / i s s p e c i f i e d on the command l i n e .
int byteCount; / / Number o f bytes copied from the source f i l e .

/∗ Get f i l e names from the command l i n e and check f o r the
presence of the − f op t ion . I f the command l i n e i s not one
of the two poss ib le l e g a l forms , p r i n t an e r r o r message and
end t h i s program . ∗ /

if (args.length == 3 && args[0].equalsIgnoreCase("−f ")) {
sourceName = args[1];
copyName = args[2];
force = true;

}
else if (args.length == 2) {

sourceName = args[0];
copyName = args[1];
force = false;

}
else {

System.out.println("Usage : java CopyFile <source−f i l e > <copy−name> ");
System.out.println(" or java CopyFile −f <source−f i l e > <copy−name> ");
return;

}

220

/∗ Create the i npu t stream . I f an e r r o r occurs , end the program . ∗ /
try {

source = new FileInputStream(sourceName);
}
catch (FileNotFoundException e) {

System.out.println("Can’ t f ind f i l e \" " + sourceName + " \ " . ");
return;

}
/∗ I f the output f i l e a l ready e x i s t s and the − f op t ion was not

spec i f i ed , p r i n t an e r r o r message and end the program . ∗ /
File file = new File(copyName);
if (file.exists() && force == false) {

System.out.println(
" Output f i l e e x i s t s . Use the −f option to replace i t . ");

return;
}
/∗ Create the output stream . I f an e r r o r occurs , end the program . ∗ /

try {
copy = new FileOutputStream(copyName);

}
catch (IOException e) {

System.out.println("Can’ t open output f i l e \" " + copyName + " \ " . ");
return;

}

/∗ Copy one byte a t a t ime from the inpu t stream to the output
stream , ending when the read () method re tu rns −1 (which i s
the s i g n a l t h a t the end of the stream has been reached) . I f any
e r r o r occurs , p r i n t an e r r o r message . Also p r i n t a message i f
the f i l e has been copied suc cess fu l l y . ∗ /

byteCount = 0;
try {

while (true) {
int data = source.read();
if (data < 0)

break;
copy.write(data);
byteCount++;

}
source.close();
copy.close();
System.out.println(" Success fu l ly copied " + byteCount + " bytes . ");

}
catch (Exception e) {

System.out.println(" E r r o r occurred while copying . "
+ byteCount + " bytes copied . ");

System.out.println(" E r r o r : " + e);
}

} / / end main ()
} / / end c lass CopyFi le

221

