Introduction to Programming Using Java

Version 8.1.3, August 2021

(Minor update of Version 8.0, December 2018;
very minor update of Version 8.1, July 2019)

David J. Eck
Hobart and William Smith Colleges

This is a PDF version of a free on-line book that is available at
http://math.hws.edu/javanotes/. The PDF does not include
source code files, solutions to exercises, or answers to quizzes, but
it does have external links to these resources, shown in blue.
The PDF also has internal links, shown in red. These links can
be used in Acrobat Reader and some other PDF reader programs.

http://math.hws.edu/javanotes/

(©1996-2021, David J. Eck

David J. Eck (eck@hws.edu)

Department of Mathematics and Computer Science
Hobart and William Smith Colleges

Geneva, NY 14456

This book can be distributed in unmodified form for non-commercial purposes.

Modified versions can be made and distributed for non-commercial purposes
provided they are distributed under the same license as the original. More
specifically: This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/4.0/. Other uses require
permission from the author.

The web site for this book is: http://math.hws.edu/javanotes

ii

Contents

Preface

1

The Mental Landscape

1.1 Machine Language e
1.2 Asynchronous Events e
1.3 The Java Virtual Machine o oo
1.4 Building Blocks of Programs
1.5 Object-oriented Programming 0o
1.6 The Modern User Interface
1.7 The Internet and Beyond o Lo
Quiz on Chapter 1 e
Names and Things
2.1 The Basic Java Application
2.2 Variables and Types
2.2.1 Variables
2.2.2 Types . . .o e e
2.2.3 Literals e
2.2.4 Strings and String Literals oo
2.2.5 Variables in Programs L
2.3 Objects and Subroutines L o
2.3.1 Built-in Subroutines and Functions,
2.3.2 Classes and Objects
2.3.3 Operations on Strings Lo
2.3.4 Introduction to Enums L L Lo oo
2.3.5 Text Blocks: Multiline Strings
2.4 Text Input and Output L
2.4.1 Basic Output and Formatted Output
2.4.2 A First Text Input Example
2.4.3 Basic TextlO Input Functions,
2.4.4 Introduction to File I/O o
2.4.5 Other TextIO Features
2.4.6 Using Scanner for Input L 0oL
2.5 Details of Expressions Lo
2.5.1 Arithmetic Operators
2.5.2 Increment and Decrement L L oL
2.5.3 Relational Operators
2.5.4 Boolean Operators

xi

CONTENTS ii

2.5.5 Conditional Operator 52
2.5.6 Assignment Operators and Type Conversion 52
2.5.7 Precedence Rules oo 54

2.6 Programming Environmentso L0 Lo oo 55
2.6.1 Getting JDK and JavaFX oo 55
2.6.2 Command Line Environment L. 57
2.6.3 JavaFX on the Command Line 59
2.6.4 Eclipse IDE e 61
2.6.5 Using JavaFX in Eclipse oo o 65
2.6.6 Blued e 67
2.6.7 The Problem of Packages 68
2.6.8 About jshell L 69
Exercises for Chapter 2 L 70
Quiz on Chapter 2 e e 72
3 Control 73
3.1 Blocks, Loops, and Branches, 73
3.1.1 Blocks e e 73
3.1.2 The Basic While Loop 74
3.1.3 The Basic If Statement 77
3.1.4 Definite Assignment 79

3.2 Algorithm Development 80
3.2.1 Pseudocode and Stepwise Refinement 80
3.2.2 The 3N+1 Problem 83
3.2.3 Coding, Testing, Debugging 86

3.3 while and do..while L Lo 88
3.3.1 The while Statement L 88
3.3.2 The do..while Statement 90
3.3.3 break and continue o 92

3.4 The for Statement 94
341 For Loops o 94
3.4.2 Example: Counting Divisors. 97
3.4.3 Nested for Loops 99

3.5 Theif Statement 102
3.5.1 The Dangling else Problem 103
3.5.2 Multiway Branching 103
3.5.3 If Statement Exampleso 105
3.5.4 The Empty Statement 109

3.6 The switch Statemento L 110
3.6.1 The Basic switch Statement 0oL 110
3.6.2 Menus and switch Statementso 112
3.6.3 Enums in switch Statements o L. 114
3.6.4 Definite Assignment and switch Statements 114
3.6.5 A New switch Statement Syntax 115

3.7 Exceptions and try..catch oo 116
3.7.1 Exceptions 116

3.7.2 try.catch 117

CONTENTS iii

3.7.3 Exceptions in TextIO o 119

3.8 Introduction to Arrayso 121
3.8.1 Creating and Using Arrays 121
3.8.2 Arrays and For Loops L o 123
3.8.3 Random Access 124
3.8.4 Partially Full Arrays 126

3.8.5 Two-dimensional Arrays 127

3.9 GUI Programming 129
3.9.1 Drawing Shapes e 129
3.9.2 Drawing in a Program Lo oo 133

3.9.3 Animation. e 134
Exercises for Chapter 3 L 137
Quiz on Chapter 3 e 141
4 Subroutines 143
4.1 Black Boxes 143
4.2 Static Subroutines and Variables 0oL 145
4.2.1 Subroutine Definitionso oL o 146
4.2.2 Calling Subroutines 147
4.2.3 Subroutines in Programs oo 148
4.2.4 Member Variables 151

4.3 Parameters e e e e e 154
4.3.1 Using Parameters. 154
4.3.2 Formal and Actual Parameters 155
4.3.3 Overloading L 156
4.3.4 Subroutine Examples. 157
4.3.5 Array Parameters 159
4.3.6 Command-line Arguments Lo 160
4.3.7 Throwing Exceptions L L L 161
4.3.8 Global and Local Variables 162

4.4 Return Values oL 163
4.4.1 The return statement o 163
4.4.2 Function Examples o 164
4.4.3 3N+1Revisited e 167

4.5 Lambda Expressions e 168
4.5.1 First-class Functions o o 169
4.5.2 Functional Interfaces 170
4.5.3 Lambda Expressions 0 o 170
4.5.4 Method References 173

4.6 APIs, Packages, Modules, and Javadoc 173
4.6.1 Toolboxes e e e e 174
4.6.2 Java’s Standard Packages 175
4.6.3 Using Classes from Packages 176
4.6.4 About Modules 178
4.6.5 Javadoc e 179
4.6.6 Static Import 181

4.7 More on Program Design L 182

CONTENTS iv

4.7.1 Preconditions and Postconditions L. 182
4.7.2 A Design Example 183
4.7.3 The Program L 188

4.8 The Truth About Declarations 190
4.8.1 [Inmitialization in Declarations 190
4.8.2 Declaring Variables with var o 0oL 191
4.8.3 Named Constants i 192
4.8.4 Naming and Scope Rules 195
Exercises for Chapter 4 L 198
Quiz on Chapter 4 e 201
5 Objects and Classes 203
5.1 Objects and Instance Methods 203
5.1.1 Objects, Classes, and Instances 204
5.1.2 Fundamentals of Objects 206
5.1.3 Getters and Setters. 211
5.1.4 Arrays and Objects 212

5.2 Constructors and Object Initialization 213
5.2.1 Initializing Instance Variables 213
5.2.2 Constructors e e 214
5.2.3 Garbage Collection 220

5.3 Programming with Objects L 221
5.3.1 Some Built-in Classes e 221
5.3.2 The class “Object” 223
5.3.3 Writing and Using a Class 224
5.3.4 Object-oriented Analysis and Design 226

5.4 Programming Example: Card, Hand, Deck 227
5.4.1 Designing the classes 228
542 The Card Class o i i e e e e e 230
5.4.3 Example: A Simple Card Game 234

5.5 Imheritance and Polymorphism 0oL 237
5.5.1 Extending Existing Classes 237
5.5.2 Inheritance and Class Hierarchy 239
5.5.3 Example: Vehicles 240
5.5.4 Polymorphism 243
5.5.5 Abstract Classes e 245

5.6 thisand super. L L 248
5.6.1 The Special Variable this 248
5.6.2 The Special Variable super 250
5.6.3 super and this As Constructors, 251

5.7 Interfaces oL 252
5.7.1 Defining and Implementing Interfaces 253
5.7.2 Default Methods 254
5.7.3 Interfaces as Types 256

5.8 Nested Classes o o i i i e 256
5.8.1 Static Nested Classes o 257

5.8.2 Inner Classes o o o i e 258

CONTENTS .

5.8.3 Anonymous Inner Classes 259
5.8.4 Local Classes and Lambda Expressions 260
Exercises for Chapter 5 L 262
Quiz on Chapter b 266
6 Introduction to GUI Programming 269
6.1 A Basic JavaFX Application. oo 269
6.1.1 JavaFX Applications 270
6.1.2 Stage, Scene, and SceneGraph L. 272
6.1.3 Nodes and Layout 273
6.1.4 Events and Event Handlers 274

6.2 Some Basic Classes 275
6.2.1 Color and Paint 275
6.2.2 Fonts e e e 276
6.2.3 Image L 277
6.2.4 Canvas and GraphicsContext 278
6.25 ABitof CSS 283

6.3 Basic Events e 285
6.3.1 Event Handling 286
6.3.2 Mouse Events e 287
6.3.3 Dragging e 289
6.3.4 Key Events 292
6.3.5 AnimationTimer 294
6.3.6 State Machineso 295
6.3.7 Observable Values 298

6.4 Basic Controls L 299
6.4.1 ImageView L 300
6.4.2 Label and Button o 300
6.4.3 CheckBox and RadioButton 302
6.4.4 TextField and TextArea 304
6.4.5 Slider 306

6.5 Basic Layout e 307
6.5.1 Do Your Own Layout 309
6.5.2 BorderPane e 311
6.5.3 HBoxand VBox e 312
6.5.4 GridPane and TilePane 316

6.6 Complete Programs L 318
6.6.1 A Little Card Game e 318
6.6.2 Menus and Menubarso 321
6.6.3 Scene and Stage 325
6.6.4 Creating Jar Files 326
Exercises for Chapter 6 328

Quiz on Chapter 6 e 334

CONTENTS

7 Arrays and ArrayLists
7.1 Array Details
7.1.1 For-each Loops L
7.1.2 Variable Arity Methods L
7.1.3 Array Literals Lo
7.1.4 Introducing Records
7.2 Array Processing
7.2.1 Some Processing Examples oL
7.2.2 Some Standard Array Methods L.
7.2.3 RandomStrings Revisited
7.2.4 Dynamic Arrays e
7.3 ArrayList oL
7.3.1 ArrayList and Parameterized Types
7.3.2 Wrapper Classes o o it i e e
7.3.3 Programming With ArrayList
7.4 Searching and Sorting L
7.4.1 Searching e
7.4.2 Association Lists
7.4.3 Insertion Sort
7.4.4 Selection Sort
7.4.5 Unsorting L e e
7.5 Two-dimensional Arrays
7.5.1 The Truth About 2D Arrays,
7.5.2 Conway’s Game Of Life
7.5.3 Checkers. e
Exercises for Chapter 7 L
Quiz on Chapter 7 e
8 Correctness, Robustness, Efficiency
8.1 Introduction to Correctness and Robustness
8.1.1 Horror Stories. o o i e e e
8.1.2 Javatothe Rescueo
8.1.3 Problems Remain in Java o oL
8.2 Writing Correct Programs
8.2.1 Provably Correct Programs
8.2.2 Preconditions and Postconditionso o000
8.2.3 Inmvariants Lo L
8.2.4 Robust Handling of Input L.
8.3 Exceptions and try..catcho oo
8.3.1 Exceptions and Exception Classes
8.3.2 The try Statement
8.3.3 Throwing Exceptions
8.3.4 Mandatory Exception Handling
8.3.5 Programming with Exceptions
8.4 Assertions and Annotations
8.4.1 Assertions

8.4.2 Annotations s

vi

335
335
336
337
339
341
341
341
344
346
349
351
351
353
355
358
359
361
363
365
367
367
368
371
374
382
386

CONTENTS

8.5 Analysis of Algorithms
Exercises for Chapter 8 L
Quiz on Chapter 8 e

Linked Data Structures and Recursion

9.1 Recursion e e

9.2

9.3

9.4

9.5

9.1.1
9.1.2
9.1.3
9.14

Recursive Binary Search o 0o
Towers of Hanoi
A Recursive Sorting Algorithm
Blob Counting

Linked Data Structures e

9.2.1
9.2.2
9.2.3
9.24
9.2.5

Recursive Linkingo L oo
Linked Lists o o o o
Basic Linked List Processing
Inserting into a Linked List
Deleting from a Linked List oL

Stacks, Queues, and ADTs.

9.3.1
9.3.2
9.3.3

Stacks
Queues e
Postfix Expressionso

Binary Trees e

9.4.1
9.4.2
9.4.3

Tree Traversal
Binary Sort Trees L
Expression Trees e

A Simple Recursive Descent Parser

9.5.1
9.5.2
9.5.3

Backus-Naur Form L o
Recursive Descent Parsing L.
Building an Expression Tree

Exercises for Chapter 9 L
Quiz on Chapter 9 e

10 Generic Programming and Collection Classes
10.1 Generic Programming Lo e

10.1.1
10.1.2
10.1.3
10.1.4
10.1.5
10.1.6
10.1.7

Generic Programming in Smalltalk 00,
Generic Programming in C++ o oL
Generic Programming in Java L0000
The Java Collection Framework
Iterators and for-each Loops.
Equality and Comparison Lo
Generics and Wrapper Classes oo

10.2 Lists and Sets e

10.2.1
10.2.2
10.2.3
10.2.4

ArrayList and LinkedList o oL,
Sorting e
TreeSet and HashSet o o
Priority Queueso
The Map Interface
Views, SubSets, and SubMaps

vii

422
428
432

433
433
434
436
439
441
445
445
447
448
451
453
454
455
458
463
466
467
469
473
476
477
478
482
485
488

CONTENTS viii

11

10.3.3 Hash Tables and Hash Codes 515
10.4 Programming with the JCF o o 517
10.4.1 Symbol Tables 517
10.4.2 Sets Inside a Map e 519
10.4.3 Using a Comparator it 522
10.4.4 Word Counting e 522
10.5 Writing Generic Classes and Methods 525
10.5.1 Simple Generic Classes v i vt e 525
10.5.2 Simple Generic Methods o oo 527
10.5.3 Wildcard Types o o e 529
10.5.4 Bounded Types e 533
10.6 Introduction the Stream API 536
10.6.1 Generic Functional Interfaceso oL 537
10.6.2 Making Streams 538
10.6.3 Operations on Streamso o 539
10.6.4 An Experiment 542
Exercises for Chapter 10 544
Quiz on Chapter 10 e 549
I/O Streams, Files, and Networking 551
11.1 I/O Streams, Readers, and Writers oL 551
11.1.1 Character and Byte Streams L. 552
11.1.2 PrintWriter e 554
11.1.3 Data Streams L e 555
11.1.4 Reading Text e 556
11.1.5 The Scanner Class i 557
11.1.6 Serialized Object I/O 559
11.2 Files o 560
11.2.1 Reading and Writing Files oL 560
11.2.2 Files and Directories 564
11.2.3 File Dialog Boxes L 566
11.3 Programming With Files 569
11.3.1 Copying a File 569
11.3.2 Persistent Data 572
11.3.3 Storing Objects in Files oL 574
11.4 Networking o . o L o e e 579
11.4.1 URLs and URLConnections 580
11.4.2 TCP/IP and Client/Server 582
11.4.3 Sockets in Java L e 583
11.4.4 A Trivial Client/Server 585
11.4.5 A Simple Network Chat 589
11.5 A Brief Introduction to XML 593
11.5.1 Basic XML Syntax e 594
11.5.2 Working With the DOM 595
Exercises for Chapter 11 601

Quiz on Chapter 11 604

CONTENTS ix

12 Threads and Multiprocessing 605
12.1 Introduction to Threads 605
12.1.1 Creating and Running Threads 606
12.1.2 Operations on Threads 611
12.1.3 Mutual Exclusion with “synchronized” 613
12.1.4 Volatile Variables 617
12.1.5 Atomic Variables L L 618

12.2 Programming with Threads 619
12.2.1 Threads, Timers, and JavaFX 619
12.2.2 Recursion in a Thread L. 621
12.2.3 Threads for Background Computation 623
12.2.4 Threads for Multiprocessing L 625

12.3 Threads and Parallel Processing 627
12.3.1 Problem Decomposition L oo 627
12.3.2 Thread Pools and Task Queues 628
12.3.3 Producer/Consumer and Blocking Queues 631
12.3.4 The ExecutorService Approach 635
12.3.5 Wait and Notify 637

12.4 Threads and Networking 642
12.4.1 The Blocking I/O Problem 642
12.4.2 An Asynchronous Network Chat Program 643
12.4.3 A Threaded Network Server, 647
12.4.4 Using a Thread Pool L. 649
12.4.5 Distributed Computing o o 651

12.5 Network Programming Example 656
12.5.1 The Netgame Framework 656
12.5.2 A Simple Chat Room 660
12.5.3 A Networked TicTacToe Game 663
12.5.4 A Networked Poker Game 665
Exercises for Chapter 12 e 667
Quiz on Chapter 12 e 671
13 GUI Programming Continued 673
13.1 Properties and Bindings L 673
13.1.1 Observable Values e 674
13.1.2 Bindable Properties o 675
13.1.3 Bidirectional Bindings 0o o 677

13.2 Fancier Graphics e 679
13.2.1 Fancier Strokes L 680
13.2.2 Fancier Paints Lo 681
13.2.3 Transforms L 684
13.2.4 Stacked Canvasses L 687
13.2.5 Pixel Manipulation 688
13.2.6 ITmage I/O o 690

13.3 Complex Components and MVC 693
13.3.1 A Simple Custom Component, 693

13.3.2 The MVC Pattern o s 695

CONTENTS

13.3.3 ListView and ComboBox,
13.3.4 TableView o e
13.4 Mostly Windows and Dialogs L.
13.4.1 Dialog Boxes e
13.4.2 WebView and WebEngine
13.4.3 Managing Multiple Windows
13.5 Finishing Touches
13.5.1 The Mandelbrot Set
13.5.2 Design of the Program oL
13.5.3 Events, Listeners, and Bindings,
13.5.4 A Few More GUI Details
13.5.5 Internationalization
13.5.6 Preferences e
Exercises for Chapter 13 e
Quiz on Chapter 13

Appendix: Source Files

Glossary

696
700
705
705
708
709
712
713
715
718
719
721
723
725
727

729

739

Preface

INTRODUCTION TO PROGRAMMING USING JAVA is a free introductory computer programming
textbook that uses Java as the language of instruction. It is suitable for use in an introductory
programming course and for people who are trying to learn programming on their own. There
are no prerequisites beyond a general familiarity with the ideas of computers and programs.
There is more than enough material for a full year of college-level programming. Chapters 1
through 7 can be used as a textbook in a one-semester college-level course or in a year-long
high school course. The remaining chapters can be covered in a second course.

The Eighth Edition of the book uses Java 8, with brief coverage of features that were added
to the language in Java 9 and later. JavaFX is used for GUI programming. All sample programs
and all exercise solutions have been compiled with Java 11 and with Java 16, as well as with
Java 8.

The home web site for this book, which is always the latest version, is
http://math.hws.edu/javanotes/. The page at that address contains links for downloading
a copy of the web site and for downloading PDF versions of the book. The web site—and the
web site download—includes source code for the sample programs that are discussed in the
text, answers to end-of-chapter quizzes and a discussion and solution for each end-of-chapter
exercise. Readers are encouraged to download the source code for the examples and to read
and run the programs as they read the book. Readers are also strongly encouraged to read the
exercise solutions if they want to get the most out of this book.

In style, this is a textbook rather than a tutorial. That is, it concentrates on explaining
concepts rather than giving step-by-step how-to-do-it guides. I have tried to use a conversa-
tional writing style that might be closer to classroom lecture than to a typical textbook. This
is certainly not a Java reference book, and it is not a comprehensive survey of all the features
of Java. It is not written as a quick introduction to Java for people who already know another
programming language. Instead, it is directed mainly towards people who are learning program-
ming for the first time, and it is as much about general programming concepts as it is about
Java in particular. I believe that Introduction to Programming using Java is fully competitive
with the conventionally published, printed programming textbooks that are available on the
market. (Well, all right, I'll confess that I think it’s better.)

There are several approaches to teaching Java. One approach uses graphical user interface
programming from the very beginning. And some people believe that object oriented pro-
gramming should be emphasized from the very beginning. These are not the approach that I
take. The approach that I favor starts with the more basic building blocks of programming and
builds from there. After an introductory chapter, I cover procedural programming in Chapters
2, 3, and 4. Object-oriented programming is introduced in Chapter 5. Chapter 6 covers the
closely related topic of event-oriented programming and graphical user interfaces. Arrays are
introduced in Chapter 3 with a full treatment in Chapter 7. Chapter 8 is a short chapter that
marks a turning point in the book, moving beyond the fundamental ideas of programming to

xi

http://math.hws.edu/javanotes/

PREFACE xii

cover more advanced topics. Chapter 8 is about writing robust, correct, and efficient programs.
Chapters 9 and 10 cover recursion and data structures, including generic programming and
the Java Collection Framework. Chapter 11 is about files and networking. Chapter 12 cov-
ers threads and parallel processing. Finally, Chapter 13 returns to the topic of graphical user
interface programming to cover some of JavaFX’s more advanced capabilities.

S S 3

The biggest change from the seventh edition of this textbook is a switch from Swing to
JavaFX for GUI programming. With just a few exceptions in code that the user is not meant
to read, all example code and exercises use JavaFX. (Unfortunately, even as I was working
on the new edition, the future of JavaFX became unclear because, as of Java 11, JavaFX
is no longer included as part of the basic Java download. However, it is still available to
be downloaded and installed separately. People who are interested in using Swing instead of
JavaFX might consider using Chapter 6 and Chapter 13 from Version 7 in place of the same
chapters from Version 8.) The eighth edition also incorporates two features that were introduced
in Java 8: lambda expressions and the stream API. Lambda expressions are covered fairly early,
as part of the material on subroutines in Chapter 4. They are used extensively with JavaFX in
Chapter 6 and Chapter 13, as well as with the stream API, which is introduced in Section 10.6.
Aside from these major changes, there are small improvements throughout, such as a short
discussion of loop invariants and class invariants in Section 8.2, increased coverage of Java’s
higher level concurrency support in Chapter 12, and the consistent use of factory methods like
Integer.valueOf (n) in preference to constructors.

Version 8.1 was a fairly small update to Version 8.0, and Versions 8.1.1 through 8.1.3 made
only very minor changes. The main motivation for the update from 8.0 to 8.1 was to make it
clearer how to use the book with Java 11 and later, but I also took the opportunity to briefly
discuss a few features that were introduced after Java 8. The major change to the language
itself was the introduction of modules in Java 9; these were already mentioned in Version 8.0,
but that discussion has been updated. (However, this book does not explain how to create
modules.) Aside from that, there have been few language changes that impact this textbook,
but Version 8.1 does introduce the use of var for declaring variables (Subsection 4.8.2), several
new methods related to the stream API, and the revisions made to the switch statement in
Java 14 (Subsection 3.6.5). Version 8.1.2 added brief mentions of two additional new features in
Java 15 and 16: text blocks (Subsection 2.3.5) and records (Subsection 7.1.4). It also updated
the information about programming environments in Section 2.6. Version 8.1.3 is primarily a
further update of the information in Section 2.6.

kK ok

The first version of the book was written in 1996, and there have been several editions since
then. All editions are archived (at least until my retirement in December 2022) at the following
Web addresses:

e First edition: http://math.hws.edu/eck/cs124/javanotesl/ (Covers Java 1.0.)

e Second edition: http://math.hws.edu/eck/cs124/javanotes2/ (Covers Java 1.1.)

e Third edition: http://math.hws.edu/eck/cs124/javanotes3/ (Covers Java 1.1.)

e Fourth edition: http://math.hws.edu/eck/cs124/javanotes4/ (Covers Java 1.4.)

e Fifth edition: http://math.hws.edu/eck/cs124/javanotesb/ (Covers Java 5.0.)

e Sixth edition: http://math.hws.edu/eck/cs124/javanotes6/ (Covers Java 5.0, with a bit
of 6.0.)

http://math.hws.edu/eck/cs124/javanotes1/
http://math.hws.edu/eck/cs124/javanotes2/
http://math.hws.edu/eck/cs124/javanotes3/
http://math.hws.edu/eck/cs124/javanotes4/
http://math.hws.edu/eck/cs124/javanotes5/
http://math.hws.edu/eck/cs124/javanotes6/

PREFACE xiii

e Seventh edition: http://math.hws.edu/eck/cs124/javanotes7/ (Covers Java 7.)

e Eighth edition: http://math.hws.edu/eck/cs124/javanotes8/ (Covers Java 8, plus a bit of
11 and 17.)

Introduction to Programming using Java is free, but it is not in the pub-
lic domain. Version 8 is published under the terms of the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/4.0/. For example, you can:

e Post an unmodified copy of the on-line version on your own Web site (including the parts
that list the author and state the license under which it is distributed!).

e Give away unmodified copies of this book or sell them at cost of production, as long as
they meet the requirements of the license.

e Use the book as a textbook for a course that you are teaching (even though the students
are paying to take that course).

e Make modified copies of the complete book or parts of it and post them on the web or
otherwise distribute them non-commercially, provided that attribution to the author is
given, the modifications are clearly noted, and the modified copies are distributed under
the same license as the original. This includes translations to other languages.

For uses of the book in ways not covered by the license, permission of the author is required.
While it is not actually required by the license, I do appreciate hearing from people who
are using or distributing my work.

* kX

A technical note on production: The on-line and PDF versions of this book are created
from a single source, which is written largely in XML. To produce the PDF version, the XML
is processed into a form that can be used by the TeX typesetting program. In addition to XML
files, the source includes DTDs, XSLT transformations, Java source code files, image files, a
TeX macro file, and a couple of scripts that are used in processing. The scripts work on Linux
and on Mac OS.

I have made the complete source files available for download at the following
address:

http://math.hws.edu/eck/cs124/downloads/javanotes8-full-source.zip

These files were not originally meant for publication, and therefore are not very cleanly
written. Furthermore, it requires a fair amount of expertise to use them. However, I have had
several requests for the sources and have made them available on an “as-is” basis. For more
information about the sources and how they are used see the README file from the source
download.

Professor David J. Eck

Department of Mathematics and Computer Science
Hobart and William Smith Colleges

300 Pulteney Street

Geneva, New York 14456, USA

Email: eck@hws.edu

WWW: http://math.hws.edu/eck/

http://math.hws.edu/eck/cs124/javanotes7/
http://math.hws.edu/eck/cs124/javanotes8/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://math.hws.edu/eck/cs124/downloads/javanotes8-full-source.zip
http://math.hws.edu/eck/

Chapter 1

Overview: The Mental Landscape

WHEN YOU BEGIN a journey, it’s a good idea to have a mental map of the terrain you’ll be
passing through. The same is true for an intellectual journey, such as learning to write computer
programs. In this case, you’ll need to know the basics of what computers are and how they
work. You’ll want to have some idea of what a computer program is and how one is created.
Since you will be writing programs in the Java programming language, you’ll want to know
something about that language in particular and about the modern computing environment for
which Java is designed.

As you read this chapter, don’t worry if you can’t understand everything in detail. (In fact,
it would be impossible for you to learn all the details from the brief expositions in this chapter.)
Concentrate on learning enough about the big ideas to orient yourself, in preparation for the
rest of the book. Most of what is covered in this chapter will be covered in much greater detail
later in the book.

1.1 The Fetch and Execute Cycle: Machine Language

A COMPUTER IS A COMPLEX SYSTEM consisting of many different components. But at the
heart—or the brain, if you want—of the computer is a single component that does the actual
computing. This is the Central Processing Unit, or CPU. In a modern desktop computer,
the CPU is a single “chip” on the order of one square inch in size. The job of the CPU is to
execute programs.

A program is simply a list of unambiguous instructions meant to be followed mechanically
by a computer. A computer is built to carry out instructions that are written in a very simple
type of language called machine language. Each type of computer has its own machine
language, and the computer can directly execute a program only if the program is expressed in
that language. (It can execute programs written in other languages if they are first translated
into machine language.)

When the CPU executes a program, that program is stored in the computer’s main mem-
ory (also called the RAM or random access memory). In addition to the program, memory
can also hold data that is being used or processed by the program. Main memory consists of a
sequence of locations. These locations are numbered, and the sequence number of a location
is called its address. An address provides a way of picking out one particular piece of informa-
tion from among the millions stored in memory. When the CPU needs to access the program
instruction or data in a particular location, it sends the address of that information as a signal
to the memory; the memory responds by sending back the value contained in the specified

CHAPTER 1. THE MENTAL LANDSCAPE 2

location. The CPU can also store information in memory by specifying the information to be
stored and the address of the location where it is to be stored.

On the level of machine language, the operation of the CPU is fairly straightforward (al-
though it is very complicated in detail). The CPU executes a program that is stored as a
sequence of machine language instructions in main memory. It does this by repeatedly reading,
or fetching, an instruction from memory and then carrying out, or executing, that instruc-
tion. This process—fetch an instruction, execute it, fetch another instruction, execute it, and
so on forever—is called the fetch-and-execute cycle. With one exception, which will be
covered in the next section, this is all that the CPU ever does. (This is all really somewhat
more complicated in modern computers. A typical processing chip these days contains several
CPU “cores,” which allows it to execute several instructions simultaneously. And access to
main memory is speeded up by memory “caches,” which can be more quickly accessed than
main memory and which are meant to hold data and instructions that the CPU is likely to
need soon. However, these complications don’t change the basic operation.)

A CPU contains an Arithmetic Logic Unit, or ALU, which is the part of the processor
that carries out operations such as addition and subtraction. It also holds a small number of
registers, which are small memory units capable of holding a single number. A typical CPU
might have 16 or 32 “general purpose” registers, which hold data values that are immediately
accessible for processing, and many machine language instructions refer to these registers. For
example, there might be an instruction that takes two numbers from two specified registers,
adds those numbers (using the ALU), and stores the result back into a register. And there
might be instructions for copying a data value from main memory into a register, or from a
register into main memory.

The CPU also includes special purpose registers. The most important of these is the pro-
gram counter, or PC. The CPU uses the PC to keep track of where it is in the program it
is executing. The PC simply stores the memory address of the next instruction that the CPU
should execute. At the beginning of each fetch-and-execute cycle, the CPU checks the PC to
see which instruction it should fetch. During the course of the fetch-and-execute cycle, the
number in the PC is updated to indicate the instruction that is to be executed in the next
cycle. Usually, but not always, this is just the instruction that sequentially follows the current
instruction in the program. Some machine language instructions modify the value that is stored
in the PC. This makes it possible for the computer to “jump” from one point in the program
to another point, which is essential for implementing the program features known as loops and
branches that are discussed in Section 1.4.

* kox

A computer executes machine language programs mechanically—that is without under-
standing them or thinking about them—simply because of the way it is physically put together.
This is not an easy concept. A computer is a machine built of millions of tiny switches called
transistors, which have the property that they can be wired together in such a way that an
output from one switch can turn another switch on or off. As a computer computes, these
switches turn each other on or off in a pattern determined both by the way they are wired
together and by the program that the computer is executing.

Machine language instructions are expressed as binary numbers. A binary number is made
up of just two possible digits, zero and one. Each zero or one is called a bit. So, a machine
language instruction is just a sequence of zeros and ones. Each particular sequence encodes
some particular instruction. The data that the computer manipulates is also encoded as binary
numbers. In modern computers, each memory location holds a byte, which is a sequence of

CHAPTER 1. THE MENTAL LANDSCAPE 3

eight bits. A machine language instruction or a piece of data generally consists of several bytes,
stored in consecutive memory locations. For example, when a CPU reads an instruction from
memory, it might actually read four or eight bytes from four or eight memory locations; the
memory address of the instruction is the address of the first of those bytes.

A computer can work directly with binary numbers because switches can readily represent
such numbers: Turn the switch on to represent a one; turn it off to represent a zero. Machine
language instructions are stored in memory as patterns of switches turned on or off. When a
machine language instruction is loaded into the CPU, all that happens is that certain switches
are turned on or off in the pattern that encodes that instruction. The CPU is built to respond
to this pattern by executing the instruction it encodes; it does this simply because of the way
all the other switches in the CPU are wired together.

So, you should understand this much about how computers work: Main memory holds ma-
chine language programs and data. These are encoded as binary numbers. The CPU fetches
machine language instructions from memory one after another and executes them. Each in-
struction makes the CPU perform some very small task, such as adding two numbers or moving
data to or from memory. The CPU does all this mechanically, without thinking about or un-
derstanding what it does—and therefore the program it executes must be perfect, complete in
all details, and unambiguous because the CPU can do nothing but execute it exactly as written.
Here is a schematic view of this first-stage understanding of the computer:

Memory

c P U 10001010] (Location 0)

00001100 (Location 1)
10111000| (Location 2)

Registers Data to Memory [01000001 | (Location 3)
7100001011 | (Location 4)

“Data from Memory 11011101 (Location 5)

10110000 | (Location 6)
01010010 (Location 7)
11111010 (Location 8)

01001100] (Location 9)

Y

[PC] quress for 00100011 (Location 10)
rea 'Z%’t";”t'”g 00011010 (Location 11)

1.2 Asynchronous Events: Polling Loops and Interrupts

THE CPU SPENDS ALMOST ALL of its time fetching instructions from memory and executing
them. However, the CPU and main memory are only two out of many components in a real
computer system. A complete system contains other devices such as:

e A hard disk or solid state drive for storing programs and data files. (Note that main
memory holds only a comparatively small amount of information, and holds it only as
long as the power is turned on. A hard disk or solid state drive is used for permanent
storage of larger amounts of information, but programs have to be loaded from there into
main memory before they can actually be executed. A hard disk stores data on a spinning
magnetic disk, while a solid state drive is a purely electronic device with no moving parts.)

CHAPTER 1. THE MENTAL LANDSCAPE 4

e A keyboard and mouse for user input.
e A monitor and printer which can be used to display the computer’s output.
e An audio output device that allows the computer to play sounds.

e A network interface that allows the computer to communicate with other computers
that are connected to it on a network, either wirelessly or by wire.

e A scanner that converts images into coded binary numbers that can be stored and
manipulated on the computer.

The list of devices is entirely open ended, and computer systems are built so that they can
easily be expanded by adding new devices. Somehow the CPU has to communicate with and
control all these devices. The CPU can only do this by executing machine language instructions
(which is all it can do, period). The way this works is that for each device in a system, there
is a device driver, which consists of software that the CPU executes when it has to deal
with the device. Installing a new device on a system generally has two steps: plugging the
device physically into the computer, and installing the device driver software. Without the
device driver, the actual physical device would be useless, since the CPU would not be able to
communicate with it.

S S 3

A computer system consisting of many devices is typically organized by connecting those
devices to one or more busses. A bus is a set of wires that carry various sorts of information
between the devices connected to those wires. The wires carry data, addresses, and control
signals. An address directs the data to a particular device and perhaps to a particular register
or location within that device. Control signals can be used, for example, by one device to alert
another that data is available for it on the data bus. A fairly simple computer system might
be organized like this:

C P U Empty Slot
for future
I i | Memory | | Disk Drive Expansion
Input/ Data
Output Address
Controller Control
| Display | |Keyboard Network
Interface

Now, devices such as keyboard, mouse, and network interface can produce input that needs
to be processed by the CPU. How does the CPU know that the data is there? One simple idea,
which turns out to be not very satisfactory, is for the CPU to keep checking for incoming data
over and over. Whenever it finds data, it processes it. This method is called polling, since
the CPU polls the input devices continually to see whether they have any input data to report.
Unfortunately, although polling is very simple, it is also very inefficient. The CPU can waste
an awful lot of time just waiting for input.

CHAPTER 1. THE MENTAL LANDSCAPE 5

To avoid this inefficiency, interrupts are generally used instead of polling. An interrupt
is a signal sent by another device to the CPU. The CPU responds to an interrupt signal by
putting aside whatever it is doing in order to respond to the interrupt. Once it has handled
the interrupt, it returns to what it was doing before the interrupt occurred. For example, when
you press a key on your computer keyboard, a keyboard interrupt is sent to the CPU. The
CPU responds to this signal by interrupting what it is doing, reading the key that you pressed,
processing it, and then returning to the task it was performing before you pressed the key.

Again, you should understand that this is a purely mechanical process: A device signals an
interrupt simply by turning on a wire. The CPU is built so that when that wire is turned on,
the CPU saves enough information about what it is currently doing so that it can return to
the same state later. This information consists of the contents of important internal registers
such as the program counter. Then the CPU jumps to some predetermined memory location
and begins executing the instructions stored there. Those instructions make up an interrupt
handler that does the processing necessary to respond to the interrupt. (This interrupt handler
is part of the device driver software for the device that signaled the interrupt.) At the end of
the interrupt handler is an instruction that tells the CPU to jump back to what it was doing;
it does that by restoring its previously saved state.

Interrupts allow the CPU to deal with asynchronous events. In the regular fetch-and-
execute cycle, things happen in a predetermined order; everything that happens is “synchro-
nized” with everything else. Interrupts make it possible for the CPU to deal efficiently with
events that happen “asynchronously,” that is, at unpredictable times.

As another example of how interrupts are used, consider what happens when the CPU needs
to access data that is stored on a hard disk. The CPU can access data directly only if it is
in main memory. Data on the disk has to be copied into memory before it can be accessed.
Unfortunately, on the scale of speed at which the CPU operates, the disk drive is extremely
slow. When the CPU needs data from the disk, it sends a signal to the disk drive telling it
to locate the data and get it ready. (This signal is sent synchronously, under the control of
a regular program.) Then, instead of just waiting the long and unpredictable amount of time
that the disk drive will take to do this, the CPU goes on with some other task. When the disk
drive has the data ready, it sends an interrupt signal to the CPU. The interrupt handler can
then read the requested data.

S S 3

Now, you might have noticed that all this only makes sense if the CPU actually has several
tasks to perform. If it has nothing better to do, it might as well spend its time polling for input
or waiting for disk drive operations to complete. All modern computers use multitasking to
perform several tasks at once. Some computers can be used by several people at once. Since the
CPU is so fast, it can quickly switch its attention from one user to another, devoting a fraction
of a second to each user in turn. This application of multitasking is called tizmesharing. But a
modern personal computer with just a single user also uses multitasking. For example, the user
might be typing a paper while a clock is continuously displaying the time and a file is being
downloaded over the network.

Each of the individual tasks that the CPU is working on is called a thread. (Or a process;
there are technical differences between threads and processes, but they are not important here,
since it is threads that are used in Java.) Many CPUs can literally execute more than one
thread simultaneously—such CPUs contain multiple “cores,” each of which can run a thread—
but there is always a limit on the number of threads that can be executed at the same time.
Since there are often more threads than can be executed simultaneously, the computer has to be

CHAPTER 1. THE MENTAL LANDSCAPE 6

able switch its attention from one thread to another, just as a timesharing computer switches
its attention from one user to another. In general, a thread that is being executed will continue
to run until one of several things happens:

e The thread might voluntarily yield control, to give other threads a chance to run.

e The thread might have to wait for some asynchronous event to occur. For example, the
thread might request some data from the disk drive, or it might wait for the user to press
a key. While it is waiting, the thread is said to be blocked, and other threads, if any, have
a chance to run. When the event occurs, an interrupt will “wake up” the thread so that
it can continue running.

e The thread might use up its allotted slice of time and be suspended to allow other threads
to run. Most computers can “forcibly” suspend a thread in this way; computers that
can do that are said to use preemptive multitasking. To do preemptive multitasking,
a computer needs a special timer device that generates an interrupt at regular intervals,
such as 100 times per second. When a timer interrupt occurs, the CPU has a chance to
switch from one thread to another, whether the thread that is currently running likes it
or not. All modern desktop and laptop computers, and even typical smartphones and
tablets, use preemptive multitasking.

Ordinary users, and indeed ordinary programmers, have no need to deal with interrupts and
interrupt handlers. They can concentrate on the different tasks that they want the computer to
perform; the details of how the computer manages to get all those tasks done are not important
to them. In fact, most users, and many programmers, can ignore threads and multitasking
altogether. However, threads have become increasingly important as computers have become
more powerful and as they have begun to make more use of multitasking and multiprocessing.
In fact, the ability to work with threads is fast becoming an essential job skill for programmers.
Fortunately, Java has good support for threads, which are built into the Java programming
language as a fundamental programming concept. Programming with threads will be covered
in Chapter 12.

Just as important in Java and in modern programming in general is the basic concept of
asynchronous events. While programmers don’t actually deal with interrupts directly, they do
often find themselves writing event handlers, which, like interrupt handlers, are called asyn-
chronously when specific events occur. Such “event-driven programming” has a very different
feel from the more traditional straight-through, synchronous programming. We will begin with
the more traditional type of programming, which is still used for programming individual tasks,
but we will return to threads and events later in the text, starting in Chapter 6

S S 3

By the way, the software that does all the interrupt handling, handles communication with
the user and with hardware devices, and controls which thread is allowed to run is called
the operating system. The operating system is the basic, essential software without which
a computer would not be able to function. Other programs, such as word processors and
Web browsers, are dependent upon the operating system. Common desktop operating systems
include Linux, various versions of Windows, and Mac OS. Operating systems for smartphones
and tablets include Android and i0S.

CHAPTER 1. THE MENTAL LANDSCAPE 7

1.3 The Java Virtual Machine

MACHINE LANGUAGE CONSISTS of very simple instructions that can be executed directly by
the CPU of a computer. Almost all programs, though, are written in high-level programming
languages such as Java, Python, or C+4. A program written in a high-level language cannot
be run directly on any computer. First, it has to be translated into machine language. This
translation can be done by a program called a compiler. A compiler takes a high-level-language
program and translates it into an executable machine-language program. Once the translation
is done, the machine-language program can be run any number of times, but of course it can only
be run on one type of computer (since each type of computer has its own individual machine
language). If the program is to run on another type of computer it has to be re-translated,
using a different compiler, into the appropriate machine language.

There is an alternative to compiling a high-level language program. Instead of using a
compiler, which translates the program all at once, you can use an interpreter, which translates
it instruction-by-instruction, as necessary. An interpreter is a program that acts much like a
CPU, with a kind of fetch-and-execute cycle. In order to execute a program, the interpreter
runs in a loop in which it repeatedly reads one instruction from the program, decides what is
necessary to carry out that instruction, and then performs the appropriate machine-language
commands to do so.

(A compiler is like a human translator who translates an entire book from one language to
another, producing a new book in the second language. An interpreter is more like a human
interpreter who translates a speech at the United Nations from one language to another at the
same time that the speech is being given.)

One use of interpreters is to execute high-level language programs. For example, the pro-
gramming language Lisp is usually executed by an interpreter rather than a compiler. However,
interpreters have another purpose: They can let you use a machine-language program meant
for one type of computer on a completely different type of computer. For example, one of the
original home computers was the Commodore 64 or “C64”. While you might not find an actual
C64, you can find programs that run on other computers—or even in a web browser—that
“emulate” one. Such an emulator can run C64 programs by acting as an interpreter for the
C64 machine language.

x kX

The designers of Java chose to use a combination of compiling and interpreting. Programs
written in Java are compiled into machine language, but it is a machine language for a computer
that doesn’t really exist. This so-called “virtual” computer is known as the Java Virtual Ma-
chine, or JVM. The machine language for the Java Virtual Machine is called Java bytecode.
There is no reason why Java bytecode couldn’t be used as the machine language of a real com-
puter, rather than a virtual computer. But in fact the use of a virtual machine makes possible
one of the main selling points of Java: the fact that it can actually be used on any computer.
All that the computer needs is an interpreter for Java bytecode. Such an interpreter simulates
the JVM in the same way that a C64 emulator simulates a Commodore 64 computer. (The
term JVM is also used for the Java bytecode interpreter program that does the simulation, so
we say that a computer needs a JVM in order to run Java programs. Technically, it would be
more correct to say that the interpreter implements the JVM than to say that it is a JVM.)

Of course, a different Java bytecode interpreter is needed for each type of computer, but
once a computer has a Java bytecode interpreter, it can run any Java bytecode program, and
the same program can be run on any computer that has such an interpreter. This is one of the

CHAPTER 1. THE MENTAL LANDSCAPE 8

essential features of Java: the same compiled program can be run on many different types of
computers.

Java Interpreter

for Mac OS
J Java
ava Compiler |=—3 Bytecode =3 Java Interpreter
Program Program for Windows

Java Interpreter
for Linux

Why, you might wonder, use the intermediate Java bytecode at all? Why not just distribute
the original Java program and let each person compile it into the machine language of whatever
computer they want to run it on? There are several reasons. First of all, a compiler has to
understand Java, a complex high-level language. The compiler is itself a complex program.
A Java bytecode interpreter, on the other hand, is a relatively small, simple program. This
makes it easy to write a bytecode interpreter for a new type of computer; once that is done,
that computer can run any compiled Java program. It would be much harder to write a Java
compiler for the same computer.

Furthermore, some Java programs are meant to be downloaded over a network. This leads
to obvious security concerns: you don’t want to download and run a program that will damage
your computer or your files. The bytecode interpreter acts as a buffer between you and the
program you download. You are really running the interpreter, which runs the downloaded
program indirectly. The interpreter can protect you from potentially dangerous actions on the
part of that program.

When Java was still a new language, it was criticized for being slow: Since Java bytecode was
executed by an interpreter, it seemed that Java bytecode programs could never run as quickly
as programs compiled into native machine language (that is, the actual machine language of the
computer on which the program is running). However, this problem has been largely overcome
by the use of just-in-time compilers for executing Java bytecode. A just-in-time compiler
translates Java bytecode into native machine language. It does this while it is executing the
program. Just as for a normal interpreter, the input to a just-in-time compiler is a Java bytecode
program, and its task is to execute that program. But as it is executing the program, it also
translates parts of it into machine language. The translated parts of the program can then be
executed much more quickly than they could be interpreted. Since a given part of a program is
often executed many times as the program runs, a just-in-time compiler can significantly speed
up the overall execution time.

I should note that there is no necessary connection between Java and Java bytecode. A
program written in Java could certainly be compiled into the machine language of a real com-
puter. And programs written in other languages can be compiled into Java bytecode. However,
the combination of Java and Java bytecode is platform-independent, secure, and network-
compatible while allowing you to program in a modern high-level object-oriented language.

In the past few years, it has become fairly common to create new programming languages,
or versions of old languages, that compile into Java bytecode. The compiled bytecode programs
can then be executed by a standard JVM. New languages that have been developed specifically

CHAPTER 1. THE MENTAL LANDSCAPE 9

for programming the JVM include Scala, Groovy, Clojure, and Processing. Jython and JRuby
are versions of older languages, Python and Ruby, that target the JVM. These languages make
it possible to enjoy many of the advantages of the JVM while avoiding some of the technicalities
of the Java language. In fact, the use of other languages with the JVM has become important
enough that several new features have been added to the JVM specifically to add better support
for some of those languages. And this improvement to the JVM has in turn made possible some
new features in Java.

x kX

I should also note that the really hard part of platform-independence is providing a “Graph-
ical User Interface”—with windows, buttons, etc.—that will work on all the platforms that
support Java. You'll see more about this problem in Section 1.6.

1.4 Fundamental Building Blocks of Programs

THERE ARE TWO BASIC ASPECTS of programming: data and instructions. To work with
data, you need to understand wariables and types; to work with instructions, you need to
understand control structures and subroutines. You’ll spend a large part of the course
becoming familiar with these concepts.

A wariable is just a memory location (or several consecutive locations treated as a unit)
that has been given a name so that it can be easily referred to and used in a program. The
programmer only has to worry about the name; it is the compiler’s responsibility to keep track
of the memory location. As a programmer, you just need to keep in mind that the name refers
to a kind of “box” in memory that can hold data, even though you don’t have to know where
in memory that box is located.

In Java and in many other programming languages, a variable has a type that indicates
what sort of data it can hold. One type of variable might hold integers—whole numbers such as
3, -7, and O—while another holds floating point numbers—numbers with decimal points such as
3.14, -2.7, or 17.0. (Yes, the computer does make a distinction between the integer 17 and the
floating-point number 17.0; they actually look quite different inside the computer.) There could
also be types for individual characters ("A’, ’;’, etc.), strings (“Hello”, “A string can include
many characters”, etc.), and less common types such as dates, colors, sounds, or any other kind
of data that a program might need to store.

Programming languages always have commands for getting data into and out of variables
and for doing computations with data. For example, the following “assignment statement,”
which might appear in a Java program, tells the computer to take the number stored in the
variable named “principal”, multiply that number by 0.07, and then store the result in the
variable named “interest”:

interest = principal * 0.07;

There are also “input commands” for getting data from the user or from files on the computer’s
disks, and there are “output commands” for sending data in the other direction.

These basic commands—for moving data from place to place and for performing
computations—are the building blocks for all programs. These building blocks are combined
into complex programs using control structures and subroutines.

S S 3

A program is a sequence of instructions. In the ordinary “flow of control,” the computer
executes the instructions in the sequence in which they occur in the program, one after the

CHAPTER 1. THE MENTAL LANDSCAPE 10

other. However, this is obviously very limited: the computer would soon run out of instructions
to execute. Control structures are special instructions that can change the flow of control.
There are two basic types of control structure: loops, which allow a sequence of instructions
to be repeated over and over, and branches, which allow the computer to decide between two
or more different courses of action by testing conditions that occur as the program is running.
For example, it might be that if the value of the variable “principal” is greater than 10000,
then the “interest” should be computed by multiplying the principal by 0.05; if not, then the
interest should be computed by multiplying the principal by 0.04. A program needs some
way of expressing this type of decision. In Java, it could be expressed using the following “if
statement”:
if (principal > 10000)
interest = principal * 0.05;
else
interest = principal * 0.04;

(Don’t worry about the details for now. Just remember that the computer can test a condition
and decide what to do next on the basis of that test.)

Loops are used when the same task has to be performed more than once. For example,
if you want to print out a mailing label for each name on a mailing list, you might say, “Get
the first name and address and print the label; get the second name and address and print
the label; get the third name and address and print the label...” But this quickly becomes
ridiculous—and might not work at all if you don’t know in advance how many names there are.
What you would like to say is something like “While there are more names to process, get the
next name and address, and print the label.” A loop can be used in a program to express such
repetition.

* ok ok

Large programs are so complex that it would be almost impossible to write them if there
were not some way to break them up into manageable “chunks.” Subroutines provide one way to
do this. A subroutine consists of the instructions for performing some task, grouped together
as a unit and given a name. That name can then be used as a substitute for the whole set of
instructions. For example, suppose that one of the tasks that your program needs to perform
is to draw a house on the screen. You can take the necessary instructions, make them into
a subroutine, and give that subroutine some appropriate name—say, “drawHouse()”. Then
anyplace in your program where you need to draw a house, you can do so with the single
command:

drawHouse() ;

This will have the same effect as repeating all the house-drawing instructions in each place.

The advantage here is not just that you save typing. Organizing your program into sub-
routines also helps you organize your thinking and your program design effort. While writing
the house-drawing subroutine, you can concentrate on the problem of drawing a house without
worrying for the moment about the rest of the program. And once the subroutine is written,
you can forget about the details of drawing houses—that problem is solved, since you have a
subroutine to do it for you. A subroutine becomes just like a built-in part of the language which
you can use without thinking about the details of what goes on “inside” the subroutine.

S S 3

Variables, types, loops, branches, and subroutines are the basis of what might be called
“traditional programming.” However, as programs become larger, additional structure is needed

CHAPTER 1. THE MENTAL LANDSCAPE 11

to help deal with their complexity. One of the most effective tools that has been found is object-
oriented programming, which is discussed in the next section.

1.5 Objects and Object-oriented Programming

Procrams MusT BE DESIGNED. No one can just sit down at the computer and compose a
program of any complexity. The discipline called software engineering is concerned with
the construction of correct, working, well-written programs. The software engineer tries to
use accepted and proven methods for analyzing the problem to be solved and for designing a
program to solve that problem.

During the 1970s and into the 80s, the primary software engineering methodology was
structured programming. The structured programming approach to program design was
based on the following advice: To solve a large problem, break the problem into several pieces
and work on each piece separately; to solve each piece, treat it as a new problem which can itself
be broken down into smaller problems; eventually, you will work your way down to problems
that can be solved directly, without further decomposition. This approach is called top-down
programmsing.

There is nothing wrong with top-down programming. It is a valuable and often-used ap-
proach to problem-solving. However, it is incomplete. For one thing, it deals almost entirely
with producing the instructions necessary to solve a problem. But as time went on, people
realized that the design of the data structures for a program was at least as important as the
design of subroutines and control structures. Top-down programming doesn’t give adequate
consideration to the data that the program manipulates.

Another problem with strict top-down programming is that it makes it difficult to reuse
work done for other projects. By starting with a particular problem and subdividing it into
convenient pieces, top-down programming tends to produce a design that is unique to that
problem. It is unlikely that you will be able to take a large chunk of programming from another
program and fit it into your project, at least not without extensive modification. Producing
high-quality programs is difficult and expensive, so programmers and the people who employ
them are always eager to reuse past work.

N S 3

So, in practice, top-down design is often combined with bottom-up design. In bottom-up
design, the approach is to start “at the bottom,” with problems that you already know how to
solve (and for which you might already have a reusable software component at hand). From
there, you can work upwards towards a solution to the overall problem.

The reusable components should be as “modular” as possible. A module is a component of a
larger system that interacts with the rest of the system in a simple, well-defined, straightforward
manner. The idea is that a module can be “plugged into” a system. The details of what goes on
inside the module are not important to the system as a whole, as long as the module fulfills its
assigned role correctly. This is called information hiding, and it is one of the most important
principles of software engineering.

One common format for software modules is to contain some data, along with some sub-
routines for manipulating that data. For example, a mailing-list module might contain a list of
names and addresses along with a subroutine for adding a new name, a subroutine for printing
mailing labels, and so forth. In such modules, the data itself is often hidden inside the module;
a program that uses the module can then manipulate the data only indirectly, by calling the
subroutines provided by the module. This protects the data, since it can only be manipulated

CHAPTER 1. THE MENTAL LANDSCAPE 12

in known, well-defined ways. And it makes it easier for programs to use the module, since they
don’t have to worry about the details of how the data is represented. Information about the
representation of the data is hidden.

Modules that could support this kind of information-hiding became common in program-
ming languages in the early 1980s. Since then, a more advanced form of the same idea has
more or less taken over software engineering. This latest approach is called object-oriented
programming, often abbreviated as OOP.

The central concept of object-oriented programming is the object, which is a kind of module
containing data and subroutines. The point-of-view in OOP is that an object is a kind of self-
sufficient entity that has an internal state (the data it contains) and that can respond to
messages (calls to its subroutines). A mailing list object, for example, has a state consisting
of a list of names and addresses. If you send it a message telling it to add a name, it will
respond by modifying its state to reflect the change. If you send it a message telling it to print
itself, it will respond by printing out its list of names and addresses.

The OOP approach to software engineering is to start by identifying the objects involved in
a problem and the messages that those objects should respond to. The program that results is
a collection of objects, each with its own data and its own set of responsibilities. The objects
interact by sending messages to each other. There is not much “top-down” in the large-scale
design of such a program, and people used to more traditional programs can have a hard time
getting used to OOP. However, people who use OOP would claim that object-oriented programs
tend to be better models of the way the world itself works, and that they are therefore easier
to write, easier to understand, and more likely to be correct.

S S 3

You should think of objects as “knowing” how to respond to certain messages. Different
objects might respond to the same message in different ways. For example, a “print” message
would produce very different results, depending on the object it is sent to. This property of
objects—that different objects can respond to the same message in different ways—is called
polymorphism.

It is common for objects to bear a kind of “family resemblance” to one another. Objects
that contain the same type of data and that respond to the same messages in the same way
belong to the same class. (In actual programming, the class is primary; that is, a class is
created and then one or more objects are created using that class as a template.) But objects
can be similar without being in exactly the same class.

For example, consider a drawing program that lets the user draw lines, rectangles, ovals,
polygons, and curves on the screen. In the program, each visible object on the screen could be
represented by a software object in the program. There would be five classes of objects in the
program, one for each type of visible object that can be drawn. All the lines would belong to
one class, all the rectangles to another class, and so on. These classes are obviously related;
all of them represent “drawable objects.” They would, for example, all presumably be able to
respond to a “draw yourself” message. Another level of grouping, based on the data needed to
represent each type of object, is less obvious, but would be very useful in a program: We can
group polygons and curves together as “multipoint objects,” while lines, rectangles, and ovals
are “two-point objects.” (A line is determined by its two endpoints, a rectangle by two of its
corners, and an oval by two corners of the rectangle that contains it. The rectangles that I am
talking about here have sides that are vertical and horizontal, so that they can be specified by
just two points; this is the common meaning of “rectangle” in drawing programs.) We could
diagram these relationships as follows:

CHAPTER 1. THE MENTAL LANDSCAPE 13

DrawableObject

MultipointObject TwoPointObject

Polygon | | Curve | | Line | | Rectangle | | Oval |

DrawableObject, MultipointObject, and TwoPointObject would be classes in the program.
MultipointObject and TwoPointObject would be subclasses of DrawableObject. The class
Line would be a subclass of TwoPointObject and (indirectly) of DrawableObject. A subclass of
a class is said to inherit the properties of that class. The subclass can add to its inheritance and
it can even “override” part of that inheritance (by defining a different response to some message).
Nevertheless, lines, rectangles, and so on are drawable objects, and the class DrawableObject
expresses this relationship.

Inheritance is a powerful means for organizing a program. It is also related to the problem
of reusing software components. A class is the ultimate reusable component. Not only can it
be reused directly if it fits exactly into a program you are trying to write, but if it just almost
fits, you can still reuse it by defining a subclass and making only the small changes necessary
to adapt it exactly to your needs.

So, OOP is meant to be both a superior program-development tool and a partial solution
to the software reuse problem. Objects, classes, and object-oriented programming will be
important themes throughout the rest of this text. You will start using objects that are built
into the Java language in the next chapter, and in Chapter 5 you will begin creating your own
classes and objects.

1.6 The Modern User Interface

WHEN COMPUTERS WERE FIRST INTRODUCED, ordinary people—including most programmers—
couldn’t get near them. They were locked up in rooms with white-coated attendants who would
take your programs and data, feed them to the computer, and return the computer’s response
some time later. When timesharing—where the computer switches its attention rapidly from
one person to another—was invented in the 1960s, it became possible for several people to
interact directly with the computer at the same time. On a timesharing system, users sit at
“terminals” where they type commands to the computer, and the computer types back its re-
sponse. Early personal computers also used typed commands and responses, except that there
was only one person involved at a time. This type of interaction between a user and a computer
is called a command-line interface.

Today, of course, most people interact with computers in a completely different way. They
use a Graphical User Interface, or GUI. The computer draws interface components on the
screen. The components include things like windows, scroll bars, menus, buttons, and icons.
Usually, a mouse is used to manipulate such components or, on “touchscreens,” your fingers.
Assuming that you have not just been teleported in from the 1970s, you are no doubt already

CHAPTER 1. THE MENTAL LANDSCAPE 14

familiar with the basics of graphical user interfaces!

A lot of GUI interface components have become fairly standard. That is, they have similar
appearance and behavior on many different computer platforms including Mac OS, Windows,
and Linux. Java programs, which are supposed to run on many different platforms without
modification to the program, can use all the standard GUI components. They might vary a
little in appearance from platform to platform, but their functionality should be identical on
any computer on which the program runs.

Shown below is an image of a very simple Java program that demonstrates a few standard
GUI interface components. When the program is run, a window similar to the picture shown
here will open on the computer screen. There are four components in the window with which the
user can interact: a button, a checkbox, a text field, and a pop-up menu. These components
are labeled. There are a few other components in the window. The labels themselves are
components (even though you can’t interact with them). The right half of the window is a
text area component, which can display multiple lines of text. A scrollbar component appears
alongside the text area when the number of lines of text becomes larger than will fit in the
text area. And in fact, in Java terminology, the whole window is itself considered to be a
“component.”

GUIDemo '

Push Button: | Click Me! AL s A

Chackbox: [Click me! Chieckbowas toggled

Pressed return in TextField

Text Field: Hello World! with contents: Hello World!

Pop-up Menu: | Second Option = Selected Second Option from menu

(If you would like to run this program, the source code, GUIDemo.java, is available on line.
For more information on using this and other examples from this textbook, see Section 2.6.)

Now, Java actually has three complete sets of GUI components. One of these, the AWT
or Abstract Windowing Toolkit, was available in the original version of Java. The second,
which is known as Swing, was introduced in Java version 1.2, and was the standard GUI toolkit
for many years. The third GUI toolkit, JavaFX, became a standard part of Java in Version 8
(but but has recently been removed, so that it requires separate installation in some versions
of Java). Although Swing, and even the AWT, can still be used, JavaFX is meant as a more
modern way to write GUTI applications. This textbook covers JavaFX exclusively. (If you need
to learn Swing, you can take a look at the previous version of this book.)

When a user interacts with GUI components, “events” are generated. For example, clicking
a push button generates an event, and pressing a key on the keyboard generates an event.
Each time an event is generated, a message is sent to the program telling it that the event has
occurred, and the program responds according to its program. In fact, a typical GUI program
consists largely of “event handlers” that tell the program how to respond to various types of
events. In the above example, the program has been programmed to respond to each event by
displaying a message in the text area. In a more realistic example, the event handlers would
have more to do.

The use of the term “message” here is deliberate. Messages, as you saw in the previous sec-
tion, are sent to objects. In fact, Java GUI components are implemented as objects. Java
includes many predefined classes that represent various types of GUI components. Some of

http://math.hws.edu/eck/cs124/javanotes8/source/chapter1/GUIDemo.java

CHAPTER 1. THE MENTAL LANDSCAPE 15

these classes are subclasses of others. Here is a diagram showing just a few of the JavaFX GUI
classes and their relationships:

Control

| Label | |ButtonBase| | Slider | |TextInputControl| |ComboBox|

| Button | | CheckBox | | TextField | | TextArea |

Don’t worry about the details for now, but try to get some feel about how object-oriented
programming and inheritance are used here. Note that all the GUI classes shown here are
subclasses, directly or indirectly, of a class called Control, which represents general properties
that are shared by many JavaFX components. In the diagram, two of the direct subclasses
of Control themselves have subclasses. The classes TextField and TextArea, which have certain
behaviors in common, are grouped together as subclasses of TextlnputControl. Similarly But-
ton and CheckBox are subclasses of ButtonBase, which represents properties common to both
buttons and checkboxes. (ComboBox, by the way, is the class that represents pop-up menus.)

Just from this brief discussion, perhaps you can see how GUI programming can make effec-
tive use of object-oriented design. In fact, GUIs, with their “visible objects,” are probably a
major factor contributing to the popularity of OOP.

Programming with GUI components and events is one of the most interesting aspects of
Java. However, we will spend several chapters on the basics before returning to this topic in
Chapter 6.

1.7 The Internet and Beyond

COMPUTERS CAN BE CONNECTED together on metworks. A computer on a network can
communicate with other computers on the same network by exchanging data and files or by
sending and receiving messages. Computers on a network can even work together on a large
computation.

Today, millions of computers throughout the world are connected to a single huge network
called the Internet. New computers are being connected to the Internet every day, both
by wireless communication and by physical connection using technologies such as DSL, cable
modems, and Ethernet.

There are elaborate protocols for communication over the Internet. A protocol is simply a
detailed specification of how communication is to proceed. For two computers to communicate
at all, they must both be using the same protocols. The most basic protocols on the Internet are
the Internet Protocol (IP), which specifies how data is to be physically transmitted from one
computer to another, and the Transmission Control Protocol (TCP), which ensures that
data sent using IP is received in its entirety and without error. These two protocols, which are
referred to collectively as TCP/IP, provide a foundation for communication. Other protocols

CHAPTER 1. THE MENTAL LANDSCAPE 16

use TCP/IP to send specific types of information such as web pages, electronic mail, and data
files.

All communication over the Internet is in the form of packets. A packet consists of some
data being sent from one computer to another, along with addressing information that indicates
where on the Internet that data is supposed to go. Think of a packet as an envelope with an
address on the outside and a message on the inside. (The message is the data.) The packet
also includes a “return address,” that is, the address of the sender. A packet can hold only
a limited amount of data; longer messages must be divided among several packets, which are
then sent individually over the Net and reassembled at their destination.

Every computer on the Internet has an IP address, a number that identifies it uniquely
among all the computers on the Net. (Actually, the claim about uniqueness is not quite true, but
the basic idea is valid, and the full truth is complicated.) The IP address is used for addressing
packets. A computer can only send data to another computer on the Internet if it knows that
computer’s IP address. Since people prefer to use names rather than numbers, most computers
are also identified by names, called domain names. For example, the main computer of
the Mathematics Department at Hobart and William Smith Colleges has the domain name
math.hws.edu. (Domain names are just for convenience; your computer still needs to know
IP addresses before it can communicate. There are computers on the Internet whose job it
is to translate domain names to IP addresses. When you use a domain name, your computer
sends a message to a domain name server to find out the corresponding IP address. Then, your
computer uses the IP address, rather than the domain name, to communicate with the other
computer.)

The Internet provides a number of services to the computers connected to it (and, of course,
to the users of those computers). These services use TCP/IP to send various types of data over
the Net. Among the most popular services are instant messaging, file sharing, electronic mail,
and the World-Wide Web. Each service has its own protocols, which are used to control
transmission of data over the network. Each service also has some sort of user interface, which
allows the user to view, send, and receive data through the service.

For example, the email service uses a protocol known as SMTP (Simple Mail Transfer
Protocol) to transfer email messages from one computer to another. Other protocols, such as
POP and IMAP, are used to fetch messages from an email account so that the recipient can
read them. A person who uses email, however, doesn’t need to understand or even know about
these protocols. Instead, they are used behind the scenes by computer programs to send and
receive email messages. These programs provide the user with an easy-to-use user interface to
the underlying network protocols.

The World-Wide Web is perhaps the most exciting of network services. The World-Wide
Web allows you to request pages of information that are stored on computers all over the
Internet. A Web page can contain links to other pages on the same computer from which
it was obtained or to other computers anywhere in the world. A computer that stores such
pages of information is called a web server. The user interface to the Web is the type of
program known as a web browser. Common web browsers include Microsoft Edge, Internet
Explorer, Firefox, Chrome, and Safari. You use a Web browser to request a page of information.
The browser sends a request for that page to the computer on which the page is stored, and
when a response is received from that computer, the web browser displays it to you in a neatly
formatted form. A web browser is just a user interface to the Web. Behind the scenes, the
web browser uses a protocol called HTTP (HyperText Transfer Protocol) to send each page
request and to receive the response from the web server.

CHAPTER 1. THE MENTAL LANDSCAPE 17

S S 3

Now just what, you might be thinking, does all this have to do with Java? In fact, Java
is intimately associated with the Internet and the World-Wide Web. When Java was first
introduced, one of its big attractions was the ability to write applets. An applet is a small
program that is transmitted over the Internet and that runs on a web page. Applets made it
possible for a web page to perform complex tasks and have complex interactions with the user.
Alas, applets have suffered from a variety of problems, and they have fallen out of use. There
are now other options for running programs on Web pages.

But applets were only one aspect of Java’s relationship with the Internet. Java can be
used to write complex, stand-alone applications that do not depend on a Web browser. Many
of these programs are network-related. For example many of the largest and most complex
web sites use web server software that is written in Java. Java includes excellent support for
network protocols, and its platform independence makes it possible to write network programs
that work on many different types of computer. You will learn about Java’s network support
in Chapter 11.

Its support for networking is not Java’s only advantage. But many good programming
languages have been invented only to be soon forgotten. Java has had the good luck to ride on
the coattails of the Internet’s immense and increasing popularity.

S S 3

As Java has matured, its applications have reached far beyond the Net. The standard
version of Java already comes with support for many technologies, such as cryptography, data
compression, sound processing, and three-dimensional graphics. And programmers have written
Java libraries to provide additional capabilities. Complex, high-performance systems can be
developed in Java. For example, Hadoop, a system for large scale data processing, is written in
Java. Hadoop is used by Yahoo, Facebook, and other Web sites to process the huge amounts
of data generated by their users.

Furthermore, Java is not restricted to use on traditional computers. Java can be used to
write programs for many smartphones (though not for the iPhone). It is the primary devel-
opment language for Android-based devices. (Android uses Google’s own version of Java and
does not use the same graphical user interface components as standard Java.) Java is also the
programming language for the Amazon Kindle eBook reader and for interactive features on
Blu-Ray video disks.

At this time, Java certainly ranks as one of the most widely used programming languages.
It is a good choice for almost any programming project that is meant to run on more than
one type of computing device, and is a reasonable choice even for many programs that will
run on only one device. It is probably still the most widely taught language at Colleges and
Universities. It is similar enough to other popular languages, such as C++4, JavaScript, and
Python, that knowing it will give you a good start on learning those languages as well. Overall,
learning Java is a great starting point on the road to becoming an expert programmer. I hope
you enjoy the journey!

Quiz 18

Quiz on Chapter 1

(answers)

1. One of the components of a computer is its CPU. What is a CPU and what role does it
play in a computer?

2. Explain what is meant by an “asynchronous event.” Give some examples.
3. What is the difference between a “compiler” and an “interpreter”?
4. Explain the difference between high-level languages and machine language.

5. If you have the source code for a Java program, and you want to run that program, you
will need both a compiler and an interpreter. What does the Java compiler do, and what
does the Java interpreter do?

6. What is a subroutine?
7. Java is an object-oriented programming language. What is an object?

8. What is a variable? (There are four different ideas associated with variables in Java. Try
to mention all four aspects in your answer. Hint: One of the aspects is the variable’s
name.)

9. Java is a “platform-independent language.” What does this mean?

10. What is the “Internet”? Give some examples of how it is used. (What kind of services
does it provide?)

http://math.hws.edu/eck/cs124/javanotes8/c1/quiz_answers.html

Chapter 2

Programming in the Small I:
Names and Things

ON A BASIC LEVEL (the level of machine language), a computer can perform only very simple
operations. A computer performs complex tasks by stringing together large numbers of such
operations. Such tasks must be “scripted” in complete and perfect detail by programs. Creating
complex programs will never be really easy, but the difficulty can be handled to some extent by
giving the program a clear overall structure. The design of the overall structure of a program
is what I call “programming in the large.”

Programming in the small, which is sometimes called coding, would then refer to filling in
the details of that design. The details are the explicit, step-by-step instructions for performing
fairly small-scale tasks. When you do coding, you are working “close to the machine,” with some
of the same concepts that you might use in machine language: memory locations, arithmetic
operations, loops and branches. In a high-level language such as Java, you get to work with
these concepts on a level several steps above machine language. However, you still have to
worry about getting all the details exactly right.

This chapter and the next examine the facilities for programming in the small in the Java
programming language. Don’t be misled by the term “programming in the small” into thinking
that this material is easy or unimportant. This material is an essential foundation for all types
of programming. If you don’t understand it, you can’t write programs, no matter how good
you get at designing their large-scale structure.

The last section of this chapter discusses programming environments. That section
contains information about how to compile and run Java programs, and you should take a look
at it before trying to write and use your own programs or trying to use the sample programs
in this book.

2.1 The Basic Java Application

A PROGRAM IS A SEQUENCE of instructions that a computer can execute to perform some
task. A simple enough idea, but for the computer to make any use of the instructions, they
must be written in a form that the computer can use. This means that programs have to be
written in programming languages. Programming languages differ from ordinary human
languages in being completely unambiguous and very strict about what is and is not allowed
in a program. The rules that determine what is allowed are called the syntax of the language.
Syntax rules specify the basic vocabulary of the language and how programs can be constructed

19

CHAPTER 2. NAMES AND THINGS 20

using things like loops, branches, and subroutines. A syntactically correct program is one that
can be successfully compiled or interpreted; programs that have syntax errors will be rejected
(hopefully with a useful error message that will help you fix the problem).

So, to be a successful programmer, you have to develop a detailed knowledge of the syntax
of the programming language that you are using. However, syntax is only part of the story. It’s
not enough to write a program that will run—you want a program that will run and produce
the correct result! That is, the meaning of the program has to be right. The meaning of
a program is referred to as its semantics. More correctly, the semantics of a programming
language is the set of rules that determine the meaning of a program written in that language.
A semantically correct program is one that does what you want it to.

Furthermore, a program can be syntactically and semantically correct but still be a pretty
bad program. Using the language correctly is not the same as using it well. For example, a
good program has “style.” It is written in a way that will make it easy for people to read and
to understand. It follows conventions that will be familiar to other programmers. And it has
an overall design that will make sense to human readers. The computer is completely oblivious
to such things, but to a human reader, they are paramount. These aspects of programming are
sometimes referred to as pragmatics. (I will often use the more common term style.)

When I introduce a new language feature, I will explain the syntax, the semantics, and
some of the pragmatics of that feature. You should memorize the syntax; that’s the easy part.
Then you should get a feeling for the semantics by following the examples given, making sure
that you understand how they work, and, ideally, writing short programs of your own to test
your understanding. And you should try to appreciate and absorb the pragmatics—this means
learning how to use the language feature well, with style that will earn you the admiration of
other programmers.

Of course, even when you’ve become familiar with all the individual features of the language,
that doesn’t make you a programmer. You still have to learn how to construct complex programs
to solve particular problems. For that, you’ll need both experience and taste. You'll find hints
about software development throughout this textbook.

* kX

We begin our exploration of Java with the problem that has become traditional for such
beginnings: to write a program that displays the message “Hello World!”. This might seem like
a trivial problem, but getting a computer to do this is really a big first step in learning a new
programming language (especially if it’s your first programming language). It means that you
understand the basic process of:

1. getting the program text into the computer,
2. compiling the program, and

3. running the compiled program.

The first time through, each of these steps will probably take you a few tries to get right. 1
won’t go into the details here of how you do each of these steps; it depends on the particular
computer and Java programming environment that you are using. See Section 2.6 for informa-
tion about creating and running Java programs in specific programming environments. But in
general, you will type the program using some sort of text editor and save the program in a file.
Then, you will use some command to try to compile the file. You’'ll either get a message that the
program contains syntax errors, or you’ll get a compiled version of the program. In the case of
Java, the program is compiled into Java bytecode, not into machine language. Finally, you can
run the compiled program by giving some appropriate command. For Java, you will actually use

CHAPTER 2. NAMES AND THINGS 21

an interpreter to execute the Java bytecode. Your programming environment might automate
some of the steps for you—for example, the compilation step is often done automatically—but
you can be sure that the same three steps are being done in the background.

Here is a Java program to display the message “Hello World!”. Don’t expect to understand
what’s going on here just yet; some of it you won’t really understand until a few chapters from
now:

/** A program to display the message
* "Hello World!" on standard output.
*/

public class HelloWorld {

public static void main(String[] args) {
System.out.println("Hello World!");
}

} // end of class HelloWorld

The command that actually displays the message is:
System.out.println("Hello World!");

This command is an example of a subroutine call statement. It uses a “built-in subroutine”
named System.out.println to do the actual work. Recall that a subroutine consists of the
instructions for performing some task, chunked together and given a name. That name can be
used to “call” the subroutine whenever that task needs to be performed. A built-in subroutine
is one that is already defined as part of the language and therefore automatically available for
use in any program.

When you run this program, the message “Hello World!” (without the quotes) will be
displayed on standard output. Unfortunately, I can’t say exactly what that means! Java is
meant to run on many different platforms, and standard output will mean different things on
different platforms. However, you can expect the message to show up in some convenient or
inconvenient place. (If you use a command-line interface, like that in Oracle’s Java Development
Kit, you type in a command to tell the computer to run the program. The computer will type
the output from the program, Hello World!, on the next line. In an integrated development
environment such as Eclipse, the output might appear somewhere in one of the environment’s
windows.)

You must be curious about all the other stuff in the above program. Part of it consists of
comments. Comments in a program are entirely ignored by the computer; they are there for
human readers only. This doesn’t mean that they are unimportant. Programs are meant to be
read by people as well as by computers, and without comments, a program can be very difficult
to understand. Java has two types of comments. The first type begins with // and extends to
the end of a line. There is a comment of this form on the last line of the above program. The
computer ignores the // and everything that follows it on the same line. The second type of
comment starts with /* and ends with */, and it can extend over more than one line. The first
three lines of the program are an example of this second type of comment. (A comment that
actually begins with /*x*, like this one does, has special meaning; it is a “Javadoc” comment
that can be used to produce documentation for the program. See Subsection 4.6.5.)

Everything else in the program is required by the rules of Java syntax. All programming in
Java is done inside “classes.” The first line in the above program (not counting the comment)
says that this is a class named HelloWorld. “HelloWorld,” the name of the class, also serves as

CHAPTER 2. NAMES AND THINGS 22

the name of the program. Not every class is a program. In order to define a program, a class
must include a subroutine named main, with a definition that takes the form:

public static void main(String[] args) {
(statements)

3

When you tell the Java interpreter to run the program, the interpreter calls this main()
subroutine, and the statements that it contains are executed. These statements make up the
script that tells the computer exactly what to do when the program is executed. The main()
routine can call other subroutines that are defined in the same class or even in other classes,
but it is the main() routine that determines how and in what order the other subroutines are
used.

The word “public” in the first line of main () means that this routine can be called from out-
side the program. This is essential because the main() routine is called by the Java interpreter,
which is something external to the program itself. The remainder of the first line of the routine
is harder to explain at the moment; for now, just think of it as part of the required syntax.
The definition of the subroutine—that is, the instructions that say what it does—consists of
the sequence of “statements” enclosed between braces, { and }. Here, I've used (statements) as
a placeholder for the actual statements that make up the program. Throughout this textbook,
I will always use a similar format: anything that you see in (this style of text) (italic in angle
brackets) is a placeholder that describes something you need to type when you write an actual
program.

As noted above, a subroutine can’t exist by itself. It has to be part of a “class”. A program
is defined by a public class that takes the form:

(optional-package-declaration)
(optional-imports)

public class (program-name) {
(optional-variable-declarations-and-subroutines)

public static void main(String[] args) {
(statements)

b
(optional-variable-declarations-and-subroutines)

}

The first two lines have to do with using packages. A package is a group of classes. You will
start learning about packages in Section 2.4, but our first few example programs will not use
them.

The (program-name) in the line that begins “public class” is the name of the program, as
well as the name of the class. (Remember, again, that (program-name) is a placeholder for the
actual name!) If the name of the class is HelloWorld, then the class must be saved in a file
called HelloWorld.java. When this file is compiled, another file named HelloWorld.class
will be produced. This class file, HelloWorld.class, contains the translation of the program
into Java bytecode, which can be executed by a Java interpreter. HelloWorld. java is called
the source code for the program. To execute the program, you only need the compiled class
file, not the source code.

The layout of the program on the page, such as the use of blank lines and indentation, is not
part of the syntax or semantics of the language. The computer doesn’t care about layout—you

CHAPTER 2. NAMES AND THINGS 23

could run the entire program together on one line as far as it is concerned. However, layout is
important to human readers, and there are certain style guidelines for layout that are followed
by most programmers.

Also note that according to the above syntax specification, a program can contain other
subroutines besides main(), as well as things called “variable declarations.” You’ll learn more
about these later, but not until Chapter 4.

2.2 Variables and the Primitive Types

NAMES ARE FUNDAMENTAL TO PROGRAMMING. In programs, names are used to refer to many
different sorts of things. In order to use those things, a programmer must understand the rules
for giving names to them and the rules for using the names to work with them. That is, the
programmer must understand the syntax and the semantics of names.

According to the syntax rules of Java, the most basic names are identifiers. Identifiers
can be used to name classes, variables, and subroutines. An identifier is a sequence of one or
more characters. It must begin with a letter or underscore and must consist entirely of letters,
digits, and underscores. (“Underscore” refers to the character ’_’.) For example, here are some
legal identifiers:

N n rate x15 quite_a_longname HelloWorld

No spaces are allowed in identifiers; HelloWorld is a legal identifier, but “Hello World” is
not. Upper case and lower case letters are considered to be different, so that HelloWorld,
helloworld, HELLOWORLD, and hElloWorLD are all distinct names. Certain words are reserved
for special uses in Java, and cannot be used as identifiers. These reserved words include:
class, public, static, if, else, while, and several dozen other words. (Remember that
reserved words are not identifiers, since they can’t be used as names for things.)

Java is actually pretty liberal about what counts as a letter or a digit. Java uses the
Unicode character set, which includes thousands of characters from many different languages
and different alphabets, and many of these characters count as letters or digits. However, I will
be sticking to what can be typed on a regular English keyboard.

The pragmatics of naming includes style guidelines about how to choose names for things.
For example, it is customary for names of classes to begin with upper case letters, while names
of variables and of subroutines begin with lower case letters; you can avoid a lot of confusion by
following this standard convention in your own programs. Most Java programmers do not use
underscores in names, although some do use them at the beginning of the names of certain kinds
of variables. When a name is made up of several words, such as HelloWorld or interestRate,
it is customary to capitalize each word, except possibly the first; this is sometimes referred
to as camel case, since the upper case letters in the middle of a name are supposed to look
something like the humps on a camel’s back.

Finally, I'll note that in addition to simple identifiers, things in Java can have compound
names which consist of several simple names separated by periods. (Compound names are also
called qualified names.) You've already seen an example: System.out.println. The idea
here is that things in Java can contain other things. A compound name is a kind of path to an
item through one or more levels of containment. The name System. out.println indicates that
something called “System” contains something called “out” which in turn contains something
called “println”.

CHAPTER 2. NAMES AND THINGS 24

2.2.1 Variables

Programs manipulate data that are stored in memory. In machine language, data can only be
referred to by giving the numerical address of the location in memory where the data is stored.
In a high-level language such as Java, names are used instead of numbers to refer to data. It
is the job of the computer to keep track of where in memory the data is actually stored; the
programmer only has to remember the name. A name used in this way—to refer to data stored
in memory—is called a variable.

Variables are actually rather subtle. Properly speaking, a variable is not a name for the
data itself but for a location in memory that can hold data. You should think of a variable as
a container or box where you can store data that you will need to use later. The variable refers
directly to the box and only indirectly to the data in the box. Since the data in the box can
change, a variable can refer to different data values at different times during the execution of
the program, but it always refers to the same box. Confusion can arise, especially for beginning
programmers, because when a variable is used in a program in certain ways, it refers to the
container, but when it is used in other ways, it refers to the data in the container. You’'ll see
examples of both cases below.

In Java, the only way to get data into a variable—that is, into the box that the variable
names—is with an assignment statement. An assignment statement takes the form:

(variable) = (expression);

where (expression) represents anything that refers to or computes a data value. When the
computer comes to an assignment statement in the course of executing a program, it evaluates
the expression and puts the resulting data value into the variable. For example, consider the
simple assignment statement

rate = 0.07;

The (variable) in this assignment statement is rate, and the (expression) is the number 0.07.
The computer executes this assignment statement by putting the number 0.07 in the variable
rate, replacing whatever was there before. Now, consider the following more complicated
assignment statement, which might come later in the same program:

interest = rate * principal;

Here, the value of the expression “rate * principal” is being assigned to the variable
interest. In the expression, the * is a “multiplication operator” that tells the computer
to multiply rate times principal. The names rate and principal are themselves variables,
and it is really the values stored in those variables that are to be multiplied. We see that when
a variable is used in an expression, it is the value stored in the variable that matters; in this
case, the variable seems to refer to the data in the box, rather than to the box itself. When
the computer executes this assignment statement, it takes the value of rate, multiplies it by
the value of principal, and stores the answer in the box referred to by interest. When a
variable is used on the left-hand side of an assignment statement, it refers to the box that is
named by the variable.

(Note, by the way, that an assignment statement is a command that is executed by the
computer at a certain time. It is not a statement of fact. For example, suppose a program
includes the statement “rate = 0.07;”. If the statement “interest = rate * principal;”
is executed later in the program, can we say that the principal is multiplied by 0.07?7 No!
The value of rate might have been changed in the meantime by another statement. The

CHAPTER 2. NAMES AND THINGS 25

meaning of an assignment statement is completely different from the meaning of an equation
in mathematics, even though both use the symbol ”=".)

2.2.2 Types

A variable in Java is designed to hold only one particular type of data; it can legally hold that
type of data and no other. The compiler will consider it to be a syntax error if you try to
violate this rule by assigning a value of the wrong type to a variable. We say that Java is a
strongly typed language because it enforces this rule.

There are eight so-called primitive types built into Java. The primitive types are named
byte, short, int, long, float, double, char, and boolean. The first four types hold integers
(whole numbers such as 17, -38477, and 0). The four integer types are distinguished by the
ranges of integers they can hold. The float and double types hold real numbers (such as 3.6 and
-145.99). Again, the two real types are distinguished by their range and accuracy. A variable
of type char holds a single character from the Unicode character set. And a variable of type
boolean holds one of the two logical values true or false.

Any data value stored in the computer’s memory must be represented as a binary number,
that is as a string of zeros and ones. A single zero or one is called a bit. A string of eight
bits is called a byte. Memory is usually measured in terms of bytes. Not surprisingly, the byte
data type refers to a single byte of memory. A variable of type byte holds a string of eight
bits, which can represent any of the integers between -128 and 127, inclusive. (There are 256
integers in that range; eight bits can represent 256—two raised to the power eight—different
values.) As for the other integer types,

e short corresponds to two bytes (16 bits). Variables of type short have values in the range
-32768 to 32767.

e int corresponds to four bytes (32 bits). Variables of type int have values in the range
-2147483648 to 2147483647.

e long corresponds to eight bytes (64 bits). Variables of type long have values in the range
-9223372036854775808 to 9223372036854 775807.

You don’t have to remember these numbers, but they do give you some idea of the size of
integers that you can work with. Usually, for representing integer data you should just stick to
the int data type, which is good enough for most purposes.

The float data type is represented in four bytes of memory, using a standard method for
encoding real numbers. The maximum value for a float is about 10 raised to the power 38.
A float can have about 7 significant digits. (So that 32.3989231134 and 32.3989234399 would
both have to be rounded off to about 32.398923 in order to be stored in a variable of type
float.) A double takes up 8 bytes, can range up to about 10 to the power 308, and has about
15 significant digits. Ordinarily, you should stick to the double type for real values.

A variable of type char occupies two bytes in memory. The value of a char variable is a
single character such as A, *, x, or a space character. The value can also be a special character
such a tab or a carriage return or one of the many Unicode characters that come from different
languages. Values of type char are closely related to integer values, since a character is actually
stored as a 16-bit integer code number. In fact, we will see that chars in Java can actually be
used like integers in certain situations.

It is important to remember that a primitive type value is represented using only a certain,
finite number of bits. So, an int can’t be an arbitrary integer; it can only be an integer

CHAPTER 2. NAMES AND THINGS 26

in a certain finite range of values. Similarly, float and double variables can only take on
certain values. They are not true real numbers in the mathematical sense. For example, the
mathematical constant 7w can only be approximated by a value of type float or double, since
it would require an infinite number of decimal places to represent it exactly. For that matter,
many simple numbers such as 1/3 can only be approximated by floats and doubles.

2.2.3 Literals

A data value is stored in the computer as a sequence of bits. In the computer’s memory, it
doesn’t look anything like a value written on this page. You need a way to include constant
values in the programs that you write. In a program, you represent constant values as literals.
A literal is something that you can type in a program to represent a value. It is a kind of name
for a constant value.

For example, to type a value of type char in a program, you must surround it with a pair
of single quote marks, such as >A’, >*’ or >x’. The character and the quote marks make up a
literal of type char. Without the quotes, A would be an identifier and * would be a multiplication
operator. The quotes are not part of the value and are not stored in the variable; they are just
a convention for naming a particular character constant in a program. If you want to store the
character A in a variable ch of type char, you could do so with the assignment statement

ch = ’A’;

Certain special characters have special literals that use a backslash, \, as an “escape character.”
In particular, a tab is represented as >\t’, a carriage return as >\r’, a linefeed as >\n’, the
single quote character as >\’’, and the backslash itself as >\\’. Note that even though you
type two characters between the quotes in >\t’, the value represented by this literal is a single
tab character.

Numeric literals are a little more complicated than you might expect. Of course, there
are the obvious literals such as 317 and 17.42. But there are other possibilities for expressing
numbers in a Java program. First of all, real numbers can be represented in an exponential
form such as 1.3e12 or 12.3737e-108. The “el2” and “e-108” represent powers of 10, so that
1.3e12 means 1.3 times 10'? and 12.3737e-108 means 12.3737 times 10719, This format can be
used to express very large and very small numbers. Any numeric literal that contains a decimal
point or exponential is a literal of type double. To make a literal of type float, you have to
append an “F” or “f” to the end of the number. For example, “1.2F” stands for 1.2 considered
as a value of type float. (Occasionally, you need to know this because the rules of Java say that
you can’t assign a value of type double to a variable of type float, so you might be confronted
with a ridiculous-seeming error message if you try to do something like “x = 1.2;” if x is a
variable of type float. You have to say “x = 1.2F;". This is one reason why I advise sticking
to type double for real numbers.)

Even for integer literals, there are some complications. Ordinary integers such as 177777
and -32 are literals of type byte, short, or int, depending on their size. You can make a literal
of type long by adding “L” as a suffix. For example: 17L or 728476874368L. As another
complication, Java allows binary, octal (base-8), and hexadecimal (base-16) literals. I don’t
want to cover number bases in detail, but in case you run into them in other people’s programs,
it’s worth knowing a few things: Octal numbers use only the digits 0 through 7. In Java, a
numeric literal that begins with a 0 is interpreted as an octal number; for example, the octal
literal 045 represents the number 37, not the number 45. Octal numbers are rarely used, but
you need to be aware of what happens when you start a number with a zero. Hexadecimal

CHAPTER 2. NAMES AND THINGS 27

numbers use 16 digits, the usual digits 0 through 9 and the letters A, B, C, D, E, and F. Upper
case and lower case letters can be used interchangeably in this context. The letters represent
the numbers 10 through 15. In Java, a hexadecimal literal begins with 0x or 0X, as in 0x45
or OxFF7A. Finally, binary literals start with Ob or OB and contain only the digits 0 and 1; for
example: 0b10110.

As a final complication, numeric literals can include the underscore character (“_”), which
can be used to separate groups of digits. For example, the integer constant for two billion could
be written 2_.000_000_000, which is a good deal easier to decipher than 2000000000. There is
no rule about how many digits have to be in each group. Underscores can be especially useful
in long binary numbers; for example, 0b1010_.1100_1011.

I will note that hexadecimal numbers can also be used in character literals to represent
arbitrary Unicode characters. A Unicode literal consists of \u followed by four hexadecimal
digits. For example, the character literal >\uOOE9’ represents the Unicode character that is an
“e” with an acute accent.

For the type boolean, there are precisely two literals: true and false. These literals are
typed just as I've written them here, without quotes, but they represent values, not variables.
Boolean values occur most often as the values of conditional expressions. For example,

rate > 0.05

is a boolean-valued expression that evaluates to true if the value of the variable rate is greater
than 0.05, and to false if the value of rate is less than or equal to 0.05. As you’ll see in
Chapter 3, boolean-valued expressions are used extensively in control structures. Of course,
boolean values can also be assigned to variables of type boolean. For example, if test is a
variable of type boolean, then both of the following assignment statements are legal:

test = true;
test rate > 0.05;

2.2.4 Strings and String Literals

Java has other types in addition to the primitive types, but all the other types represent objects
rather than “primitive” data values. For the most part, we are not concerned with objects for
the time being. However, there is one predefined object type that is very important: the type
String. (String is a type, but not a primitive type; it is in fact the name of a class, and we will
return to that aspect of strings in the next section.)

A value of type String is a sequence of characters. You've already seen a string literal:
"Hello World!". The double quotes are part of the literal; they have to be typed in the
program. However, they are not part of the actual String value, which consists of just the
characters between the quotes. A string can contain any number of characters, even zero. A
string with no characters is called the empty string and is represented by the literal "", a pair
of double quote marks with nothing between them. Remember the difference between single
quotes and double quotes! Single quotes are used for char literals and double quotes for String
literals! There is a big difference between the String "A" and the char >A’.

Within a string literal, special characters can be represented using the backslash notation.
Within this context, the double quote is itself a special character. For example, to represent
the string value

I said, "Are you listening!"

with a linefeed at the end, you would have to type the string literal:

CHAPTER 2. NAMES AND THINGS 28

"I said, \"Are you listening!'!\"\n"

You can also use \t, \r, \\, and Unicode sequences such as \uOOE9 to represent other
special characters in string literals.

2.2.5 Variables in Programs

A variable can be used in a program only if it has first been declared. A variable declaration
statement is used to declare one or more variables and to give them names. When the computer
executes a variable declaration, it sets aside memory for the variable and associates the variable’s
name with that memory. A simple variable declaration takes the form:

(type-name) (variable-name-or-names);

The (variable-name-or-names) can be a single variable name or a list of variable names sepa-
rated by commas. (We’ll see later that variable declaration statements can actually be some-
what more complicated than this.) Good programming style is to declare only one variable in
a declaration statement, unless the variables are closely related in some way. For example:

int numberOfStudents;

String name;

double x, y;

boolean isFinished;

char firstInitial, middleInitial, lastInitial;

It is also good style to include a comment with each variable declaration to explain its
purpose in the program, or to give other information that might be useful to a human reader.
For example:

double principal; // Amount of money invested.
double interestRate; // Rate as a decimal, not percentage.

In this chapter, we will only use variables declared inside the main() subroutine of a pro-
gram. Variables declared inside a subroutine are called local variables for that subroutine.
They exist only inside the subroutine, while it is running, and are completely inaccessible from
outside. Variable declarations can occur anywhere inside the subroutine, as long as each vari-
able is declared before it is used in any way. Some people like to declare all the variables at
the beginning of the subroutine. Others like to wait to declare a variable until it is needed. My
preference: Declare important variables at the beginning of the subroutine, and use a comment
to explain the purpose of each variable. Declare “utility variables” which are not important to
the overall logic of the subroutine at the point in the subroutine where they are first used. Here
is a simple program using some variables and assignment statements:

/%%

This class implements a simple program that
will compute the amount of interest that is
earned on $17,000 invested at an interest

rate of 0.027 for one year. The interest and
the value of the investment after one year are
printed to standard output.

* X ¥ ¥ X x

*/
public class Interest {

public static void main(String[] args) {

CHAPTER 2. NAMES AND THINGS 29

/* Declare the variables. */

double principal; // The value of the investment.
double rate; // The annual interest rate.
double interest; // Interest earned in one year.

/* Do the computations. */

principal = 17000;
rate = 0.027;
interest = principal * rate; // Compute the interest.

principal = principal + interest;
// Compute value of investment after one year, with interest.
// (Note: The new value replaces the old value of principal.)

/* Output the results. */

System.out.print("The interest earned is $");
System.out.println(interest);

System.out.print ("The value of the investment after one year is $");
System.out.println(principal);

} // end of main()
} // end of class Interest

This program uses several subroutine call statements to display information to the user of the
program. Two different subroutines are used: System.out.print and System.out.println.
The difference between these is that System.out.println adds a linefeed after the end of the
information that it displays, while System.out.print does not. Thus, the value of interest,
which is displayed by the subroutine call “System.out.println(interest);”, follows on the
same line as the string displayed by the previous System.out.print statement. Note that the
value to be displayed by System.out.print or System.out.println is provided in parentheses
after the subroutine name. This value is called a parameter to the subroutine. A parameter
provides a subroutine with information it needs to perform its task. In a subroutine call state-
ment, any parameters are listed in parentheses after the subroutine name. Not all subroutines
have parameters. If there are no parameters in a subroutine call statement, the subroutine
name must be followed by an empty pair of parentheses.

All the sample programs for this textbook are available in separate source code files in the
on-line version of this text at http://math.hws.edu/javanotes/source. They are also included
in the downloadable archives of the web site, in a folder named source. The source code for
the Interest program, for example, can be found in the file Interest.java in subfolder named
chapter? inside the source folder.

2.3 Strings, Classes, Objects, and Subroutines

THE PREVIOUS SECTION introduced the eight primitive data types and the type String. There
is a fundamental difference between the primitive types and String: Values of type String
are objects. While we will not study objects in detail until Chapter 5, it will be useful for
you to know a little about them and about a closely related topic: classes. This is not just
because strings are useful but because objects and classes are essential to understanding another
important programming concept, subroutines.

http://math.hws.edu/javanotes/source
http://math.hws.edu/eck/cs124/javanotes8/source/chapter2/Interest.java

CHAPTER 2. NAMES AND THINGS 30

2.3.1 Built-in Subroutines and Functions

Recall that a subroutine is a set of program instructions that have been chunked together and
given a name. A subroutine is designed to perform some task. To get that task performed
in a program, you can “call” the subroutine using a subroutine call statement. In Chapter 4,
you’ll learn how to write your own subroutines, but you can get a lot done in a program just
by calling subroutines that have already been written for you. In Java, every subroutine is
contained either in a class or in an object. Some classes that are standard parts of the Java
language contain predefined subroutines that you can use. A value of type String, which is an
object, contains subroutines that can be used to manipulate that string. These subroutines
are “built into” the Java language. You can call all these subroutines without understanding
how they were written or how they work. Indeed, that’s the whole point of subroutines: A
subroutine is a “black box” which can be used without knowing what goes on inside.

Let’s first consider subroutines that are part of a class. One of the purposes of a class is
to group together some variables and subroutines, which are contained in that class. These
variables and subroutines are called static members of the class. You’ve seen one example:
In a class that defines a program, the main() routine is a static member of the class. The parts
of a class definition that define static members are marked with the reserved word “static”,
such as the word “static” in public static void main...

When a class contains a static variable or subroutine, the name of the class is part of the full
name of the variable or subroutine. For example, the standard class named System contains
a subroutine named exit. To use that subroutine in your program, you must refer to it as
System.exit. This full name consists of the name of the class that contains the subroutine,
followed by a period, followed by the name of the subroutine. This subroutine requires an
integer as its parameter, so you would actually use it with a subroutine call statement such as

System.exit (0);

Calling System.exit will terminate the program and shut down the Java Virtual Machine. You
could use it if you had some reason to terminate the program before the end of the main routine.
(The parameter tells the computer why the program was terminated. A parameter value of 0
indicates that the program ended normally. Any other value indicates that the program was
terminated because an error was detected, so you could call System.exit (1) to indicate that
the program is ending because of an error. The parameter is sent back to the operating system;
in practice, the value is usually ignored by the operating system.)

System is just one of many standard classes that come with Java. Another useful class
is called Math. This class gives us an example of a class that contains static variables: It
includes the variables Math.PI and Math.E whose values are the mathematical constants =«
and e. Math also contains a large number of mathematical “functions.” Every subroutine
performs some specific task. For some subroutines, that task is to compute or retrieve some
data value. Subroutines of this type are called functions. We say that a function returns a
value. Generally, the returned value is meant to be used somehow in the program that calls
the function.

You are familiar with the mathematical function that computes the square root of a number.
The corresponding function in Java is called Math.sqrt. This function is a static member
subroutine of the class named Math. If x is any numerical value, then Math.sqrt (x) computes
and returns the square root of that value. Since Math.sqrt(x) represents a value, it doesn’t
make sense to put it on a line by itself in a subroutine call statement such as

Math.sqrt(x); // This doesn’t make sense!

CHAPTER 2. NAMES AND THINGS 31

What, after all, would the computer do with the value computed by the function in this case?
You have to tell the computer to do something with the value. You might tell the computer to
display it:

System.out.print(Math.sqrt(x)); // Display the square root of x.

or you might use an assignment statement to tell the computer to store that value in a variable:
lengthO0fSide = Math.sqrt(x);

The function call Math.sqrt (x) represents a value of type double, and it can be used anyplace
where a numeric literal of type double could be used. The x in this formula represents the
parameter to the subroutine; it could be a variable named “x”, or it could be replaced by any
expression that represents a numerical value. For example, Math.sqrt (2) computes the square
root of 2, and Math.sqrt (axa+b*b) would be legal as long as a and b are numeric variables.

The Math class contains many static member functions. Here is a list of some of the more
important of them:

e Math.abs(x), which computes the absolute value of x.

e The usual trigonometric functions, Math.sin(x), Math.cos(x), and Math.tan(x). (For
all the trigonometric functions, angles are measured in radians, not degrees.)

e The inverse trigonometric functions arcsin, arccos, and arctan, which are written as:
Math.asin(x), Math.acos(x), and Math.atan(x). The return value is expressed in radi-
ans, not degrees.

e The exponential function Math.exp(x) for computing the number e raised to the power
x, and the natural logarithm function Math.log(x) for computing the logarithm of x in
the base e.

e Math.pow(x,y) for computing x raised to the power y.

e Math.floor(x), which rounds x down to the nearest integer value that is less than or
equal to x. Even though the return value is mathematically an integer, it is returned
as a value of type double, rather than of type int as you might expect. For example,
Math.floor(3.76) is 3.0, and Math.floor(-4.2) is -5. The function Math.round(x)
returns the integer that is closest to x, and Math.ceil(x) rounds x up to an integer.
(“Ceil” is short for “ceiling”, the opposite of “floor.”)

e Math.random(), which returns a randomly chosen double in the range 0.0 <=
Math.random() < 1.0. (The computer actually calculates so-called “pseudorandom”
numbers, which are not truly random but are effectively random enough for most pur-
poses.) We will find a lot of uses for Math.random in future examples.

For these functions, the type of the parameter—the x or y inside the parentheses—can be
any value of any numeric type. For most of the functions, the value returned by the function
is of type double no matter what the type of the parameter. However, for Math.abs(x), the
value returned will be the same type as x; if x is of type int, then so is Math.abs(x). So, for
example, while Math.sqrt(9) is the double value 3.0, Math.abs(9) is the int value 9.

Note that Math.random() does not have any parameter. You still need the parentheses,
even though there’s nothing between them. The parentheses let the computer know that this is
a subroutine rather than a variable. Another example of a subroutine that has no parameters
is the function System.currentTimeMillis(), from the System class. When this function is
executed, it retrieves the current time, expressed as the number of milliseconds that have passed

CHAPTER 2. NAMES AND THINGS 32

since a standardized base time (the start of the year 1970, if you care). One millisecond is one-
thousandth of a second. The return value of System.currentTimeMillis() is of type long (a
64-bit integer). This function can be used to measure the time that it takes the computer to
perform a task. Just record the time at which the task is begun and the time at which it is
finished and take the difference. For more accurate timing, you can use System.nanoTime ()
instead. System.nanoTime() returns the number of nanoseconds since some arbitrary starting
time, where one nanosecond is one-billionth of a second. However, you should not expect the
time to be truly accurate to the nanosecond.

Here is a sample program that performs a few mathematical tasks and reports the time that
it takes for the program to run.

/%%

* This program performs some mathematical computations and displays the
* results. It also displays the value of the constant Math.PI. It then
* reports the number of seconds that the computer spent on this task.

*/

public class TimedComputation {
public static void main(String[] args) {

long startTime; // Starting time of program, in nanoseconds.

long endTime; // Time when computations are done, in nanoseconds.
long compTime; // Run time in nanoseconds.

double seconds; // Time difference, in seconds.

startTime = System.nanoTime();

double width, height, hypotenuse; // sides of a triangle

width = 42.0;

height = 17.0;

hypotenuse = Math.sqrt(width*width + height*height) ;
System.out.print("A triangle with sides 42 and 17 has hypotenuse ");
System.out.println(hypotenuse) ;

System.out.println("\nMathematically, sin(x)*sin(x) + "
+ "cos(x)*cos(x) - 1 should be 0.");
System.out.println("Let’s check this for x = 100:");
System.out.print (" sin(100)*sin(100) + cos(100)*cos(100) - 1 is: ");
System.out.println(Math.sin(100)*Math.sin(100)
+ Math.cos(100)*Math.cos(100) - 1);
System.out.println("(There can be round-off errors when"
+ " computing with real numbers!)");

System.out.print("\nHere is a random number: ");
System.out.println(Math.random()) ;

System.out.print ("\nThe value of Math.PI is ");
System.out.println(Math.PI);

endTime = System.nanoTime();
compTime = endTime - startTime;
seconds = compTime / 1000000000.0;

System.out.print("\nRun time in nanoseconds was: ");
System.out.println(compTime) ;

System.out.println("(This is probably not perfectly accurate!");
System.out.print ("\nRun time in seconds was: ");

CHAPTER 2. NAMES AND THINGS 33

System.out.println(seconds);
} // end main()

} // end class TimedComputation

2.3.2 Classes and Objects

Classes can be containers for static variables and subroutines. However classes also have another
purpose. They are used to describe objects. In this role, the class is a type, in the same way
that int and double are types. That is, the class name can be used to declare variables. Such
variables can only hold one type of value. The values in this case are objects. An object is
a collection of variables and subroutines. Every object has an associated class that tells what
“type” of object it is. The class of an object specifies what subroutines and variables that
object contains. All objects defined by the same class are similar in that they contain similar
collections of variables and subroutines. For example, an object might represent a point in the
plane, and it might contain variables named x and y to represent the coordinates of that point.
Every point object would have an x and a y, but different points would have different values for
these variables. A class, named Point for example, could exist to define the common structure
of all point objects, and all such objects would then be values of type Point.

As another example, let’s look again at System.out.println. System is a class, and out
is a static variable within that class. However, the value of System.out is an object, and
System.out.println is actually the full name of a subroutine that is contained in the object
System.out. You don’t need to understand it at this point, but the object referred to by
System.out is an object of the class PrintStream. PrintStream is another class that is a standard
part of Java. Any object of type PrintStream is a destination to which information can be
printed; any object of type PrintStream has a println subroutine that can be used to send
information to that destination. The object System.out is just one possible destination, and
System.out.println is a subroutine that sends information to that particular destination.
Other objects of type PrintStream might send information to other destinations such as files
or across a network to other computers. This is object-oriented programming: Many different
things which have something in common—they can all be used as destinations for output—can
all be used in the same way—through a println subroutine. The PrintStream class expresses
the commonalities among all these objects.

The dual role of classes can be confusing, and in practice most classes are designed to
perform primarily or exclusively in only one of the two possible roles. Fortunately, you will not
need to worry too much about it until we start working with objects in a more serious way, in
Chapter 5.

By the way, since class names and variable names are used in similar ways, it might be hard
to tell which is which. Remember that all the built-in, predefined names in Java follow the rule
that class names begin with an upper case letter while variable names begin with a lower case
letter. While this is not a formal syntax rule, I strongly recommend that you follow it in your
own programming. Subroutine names should also begin with lower case letters. There is no
possibility of confusing a variable with a subroutine, since a subroutine name in a program is
always followed by a left parenthesis.

As one final general note, you should be aware that subroutines in Java are often referred
to as methods. Generally, the term “method” means a subroutine that is contained in a class
or in an object. Since this is true of every subroutine in Java, every subroutine in Java is a
method. The same is not true for other programming languages, and for the time being, I will

CHAPTER 2. NAMES AND THINGS 34

prefer to use the more general term, “subroutine.” However, I should note that some people
prefer to use the term “method” from the beginning.

2.3.3 Operations on Strings

String is a class, and a value of type String is an object. That object contains data, namely
the sequence of characters that make up the string. It also contains subroutines. All of these
subroutines are in fact functions. For example, every string object contains a function named
length that computes the number of characters in that string. Suppose that advice is a
variable that refers to a String. For example, advice might have been declared and assigned a
value as follows:

String advice;

advice = "Seize the day!";

Then advice.length() is a function call that returns the number of characters in the string
“Seize the day!”. In this case, the return value would be 14. In general, for any variable str
of type String, the value of str.length() is an int equal to the number of characters in the
string. Note that this function has no parameter; the particular string whose length is being
computed is the value of str. The length subroutine is defined by the class String, and it
can be used with any value of type String. It can even be used with String literals, which are,
after all, just constant values of type String. For example, you could have a program count the
characters in “Hello World” for you by saying
System.out.print ("The number of characters in ");

System.out.print("the string \"Hello World\" is ");
System.out.println("Hello World".length());

The String class defines a lot of functions. Here are some that you might find useful. Assume
that s1 and s2 are variables of type String:

e sl.equals(s2) is a function that returns a boolean value. It returns true if s1 consists
of exactly the same sequence of characters as s2, and returns false otherwise.

e s1.equalsIgnoreCase(s2) is another boolean-valued function that checks whether s1
is the same string as s2, but this function considers upper and lower case letters
to be equivalent. Thus, if s1 is “cat”, then sl.equals("Cat") is false, while
s1.equalsIgnoreCase("Cat") is true.

e s1.length(), as mentioned above, is an integer-valued function that gives the number of
characters in s1.

e s1.charAt(N), where N is an integer, returns a value of type char. It returns the Nth
character in the string. Positions are numbered starting with 0, so s1.charAt(0) is
actually the first character, s1.charAt (1) is the second, and so on. The final position is
sl.length() - 1. For example, the value of "cat".charAt(1) is ’a’. An error occurs if
the value of the parameter is less than zero or is greater than or equal to s1.length().

e s1.substring(N,M), where N and M are integers, returns a value of type String. The
returned value consists of the characters of s1 in positions N, N+1,..., M-1. Note that the
character in position M is not included. The returned value is called a substring of s1. The
subroutine s1.substring(N) returns the substring of s1 consisting of characters starting
at position N up until the end of the string.

e s1.index0f (s2) returns an integer. If s2 occurs as a substring of s1, then the returned
value is the starting position of that substring. Otherwise, the returned value is -1. You

CHAPTER 2. NAMES AND THINGS 35

can also use s1.index0f (ch) to search for a char, ch, in s1. To find the first occurrence
of x at or after position N, you can use s1.index0f (x,N). To find the last occurrence of
x in s1, use s1.lastIndex0f (x).

e s1.compareTo(s2) is an integer-valued function that compares the two strings. If the
strings are equal, the value returned is zero. If s1 is less than s2, the value returned is
a number less than zero, and if s1 is greater than s2, the value returned is some number
greater than zero. There is also a function s1.compareToIgnoreCase(s2). (If both of
the strings consist entirely of lower case letters, or if they consist entirely of upper case
letters, then “less than” and “greater than” refer to alphabetical order. Otherwise, the
ordering is more complicated.)

e s1.toUpperCase() is a String-valued function that returns a new string that is equal to s1,
except that any lower case letters in s1 have been converted to upper case. For example,
"Cat".toUpperCase() is the string "CAT". There is also a function s1.toLowerCase().

e s1.trim() is a String-valued function that returns a new string that is equal to s1 except
that any non-printing characters such as spaces and tabs have been trimmed from the
beginning and from the end of the string. Thus, if s1 has the value "fred ", then
sl.trim() is the string "fred", with the spaces at the end removed.

For the functions s1.toUpperCase(), sl.toLowerCase(), and sl1.trim(), note that the
value of s1 is not changed. Instead a new string is created and returned as the value of
the function. The returned value could be used, for example, in an assignment statement
such as “smallletters = sl.toLowerCase();”. To change the value of s1, you could use an
assignment “s1 = sl.toLowerCase();”.

S S 3

Here is another extremely useful fact about strings: You can use the plus operator, +, to
concatenate two strings. The concatenation of two strings is a new string consisting of all the
characters of the first string followed by all the characters of the second string. For example,
"Hello" + "World" evaluates to "HelloWorld". (Gotta watch those spaces, of course—if you
want a space in the concatenated string, it has to be somewhere in the input data, as in
"Hello " + "World")

Let’s suppose that name is a variable of type String and that it already refers to the name
of the person using the program. Then, the program could greet the user by executing the
statement:

System.out.println("Hello, " + name + ". Pleased to meet you!");

Even more surprising is that you can actually concatenate values of any type onto a String
using the + operator. The value is converted to a string, just as it would be if you printed it to
the standard output, and then that string is concatenated with the other string. For example,
the expression "Number" + 42 evaluates to the string "Number42". And the statements

System.out.print ("After ");
System.out.print(years);
System.out.print(" years, the value is ");
System.out.print(principal);

can be replaced by the single statement:

System.out.print("After " + years +
" years, the value is " + principal);

CHAPTER 2. NAMES AND THINGS 36

Obviously, this is very convenient. It would have shortened some of the examples presented
earlier in this chapter.

2.3.4 Introduction to Enums

Java comes with eight built-in primitive types and a huge collection of types that are defined
by classes, such as String. But even this large collection of types is not sufficient to cover all the
possible situations that a programmer might have to deal with. So, an essential part of Java,
just like almost any other programming language, is the ability to create new types. For the
most part, this is done by defining new classes; you will learn how to do that in Chapter 5. But
we will look here at one particular case: the ability to define enums (short for enumerated
types).

Technically, an enum is considered to be a special kind of class, but that is not important
for now. In this section, we will look at enums in a simplified form. In practice, most uses of
enums will only need the simplified form that is presented here.

An enum is a type that has a fixed list of possible values, which is specified when the enum
is created. In some ways, an enum is similar to the boolean data type, which has true and
false as its only possible values. However, boolean is a primitive type, while an enum is not.

The definition of an enum type has the (simplified) form:

enum (enum-type-name) { (list-of-enum-values) }

This definition cannot be inside a subroutine. You can place it outside the main() routine
of the program (or it can be in a separate file). The (enum-type-name) can be any simple
identifier. This identifier becomes the name of the enum type, in the same way that “boolean”
is the name of the boolean type and “String” is the name of the String type. Each value in the
(list-of-enum-values) must be a simple identifier, and the identifiers in the list are separated by
commas. For example, here is the definition of an enum type named Season whose values are
the names of the four seasons of the year:

enum Season { SPRING, SUMMER, FALL, WINTER }

By convention, enum values are given names that are made up of upper case letters, but that
is a style guideline and not a syntax rule. An enum value is a constant; that is, it represents
a fixed value that cannot be changed. The possible values of an enum type are usually referred
to as enum constants.

Note that the enum constants of type Season are considered to be “contained in” Season,
which means—following the convention that compound identifiers are used for things that are
contained in other things—the names that you actually use in your program to refer to them
are Season.SPRING, Season.SUMMER, Season.FALL, and Season.WINTER.

Once an enum type has been created, it can be used to declare variables in exactly the same
ways that other types are used. For example, you can declare a variable named vacation of
type Season with the statement:

Season vacation;

After declaring the variable, you can assign a value to it using an assignment statement. The
value on the right-hand side of the assignment can be one of the enum constants of type Season.
Remember to use the full name of the constant, including “Season”! For example:

vacation = Season.SUMMER;

CHAPTER 2. NAMES AND THINGS 37

You can print out an enum value with an output statement such as System.out.print(vacation).
The output value will be the name of the enum constant (without the “Season.”). In this case,
the output would be “SUMMER”.

Because an enum is technically a class, the enum values are technically objects. As ob-
jects, they can contain subroutines. One of the subroutines in every enum value is named
ordinal (). When used with an enum value, it returns the ordinal number of the value in
the list of values of the enum. The ordinal number simply tells the position of the value in
the list. That is, Season.SPRING.ordinal () is the int value 0, Season.SUMMER.ordinal () is
1, Season.FALL.ordinal () is 2, and Season.WINTER.ordinal() is 3. (You will see over and
over again that computer scientists like to start counting at zero!) You can, of course, use the
ordinal () method with a variable of type Season, such as vacation.ordinal().

Using enums can make a program more readable, since you can use meaningful names for
the values. And it can prevent certain types of errors, since a compiler can check that the values
assigned to an enum variable are in fact legal values for that variable. For now, you should just
appreciate them as the first example of an important concept: creating new types. Here is a
little example that shows enums being used in a complete program:

public class EnumDemo {

// Define two enum types -- remember that the definitions
// go OUTSIDE the main() routine!

enum Day { SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY }
enum Month { JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC }

public static void main(String[] args) {

Day tgif; // Declare a variable of type Day.

Month libra; // Declare a variable of type Month.

tgif = Day.FRIDAY; // Assign a value of type Day to tgif.
libra = Month.OCT; // Assign a value of type Month to libra.

System.out.print("My sign is libra, since I was born in ");
System.out.println(libra); // Output value will be: OCT
System.out.print("That’s the ");

System.out.print(libra.ordinal());
System.out.println("-th month of the year.");
System.out.println(" (Counting from O, of course!)");

System.out.print("Isn’t it nice to get to ");
System.out.println(tgif); // Output value will be: FRIDAY

System.out.println(tgif + " is the " + tgif.ordinal()
+ "-th day of the week.");

}

(As I mentioned, an enum can actually be defined in a separate file. The sample program
SeparateEnumDemo.java is identical to EnumDemo.java, except that the enum types that it
uses are defined in files named Month.java and Day.java.)

http://math.hws.edu/eck/cs124/javanotes8/source/chapter2/SeparateEnumDemo.java
http://math.hws.edu/eck/cs124/javanotes8/source/chapter2/EnumDemo.java
http://math.hws.edu/eck/cs124/javanotes8/source/chapter2/Month.java
http://math.hws.edu/eck/cs124/javanotes8/source/chapter2/Day.java

CHAPTER 2. NAMES AND THINGS 38

2.3.5 Text Blocks: Multiline Strings

Java 15 introduced a new kind of string literal to represent multiline strings. (Recall that a
literal is something you type in program to represent a constant value.) The new literals are
called text blocks. A text block starts with a string of three double-quote characters, followed
by optional white space and then a new line. The white space and newline are not part of the
string constant that is represented by the text block. The text block is terminated by another
string of three double-quote characters. A text block can be used anywhere an ordinary string
literal could be used. For example,

String poem = """
As I was walking down the stair,
I met a man who wasn’t there.
He wasn’t there again today.
I wish, I wish he’d go away!""";

This is easier to write and to read than the following equivalent code, which builds up the
multiline string using concatenation:

String poem = "As I was walking down the stair,\n"
+ " I met a man who wasn’t there.\n"
+ "He wasn’t there again today.\n"
+ " I wish, I wish he’d go away!\n";

Note that extra white space at the beginning of each line of the text block is removed from the
string that is represented by the literal, but that newlines are preserved.

A textblock can include escaped characters such as \t or \\, but aside from the backslash
character, ’\’, nothing in the text block has special meaning. For example, something in the text
block that looks like a Java comment is not actually a comment; it is just ordinary characters
that are part of the string.

2.4 Text Input and Output

WE HAVE SEEN THAT IT IS VERY EASY to display text to the user with the functions
System.out.print and System.out.println. But there is more to say on the topic of out-
putting text. Furthermore, most programs use data that is input to the program at run time
rather than built into the program. So you need to know how to do input as well as output.
This section explains how to get data from the user, and it covers output in more detail than
we have seen so far. It also has a section on using files for input and output.

2.4.1 Basic Output and Formatted Output

The most basic output function is System.out.print (x), where x can be a value or expression
of any type. If the parameter, x, is not already a string, it is converted to a value of type String,
and the string is then output to the destination called standard output. (Generally, this
means that the string is displayed to the user; however, in GUI programs, it outputs to a place
where a typical user is unlikely to see it. Furthermore, standard output can be “redirected”
to write to a different output destination. Nevertheless, for the type of program that we are
working with now, the purpose of System.out is to display text to the user.)
System.out.println(x) outputs the same text as System.out.print, but it follows that
text by a line feed, which means that any subsequent output will be on the next line. It is

CHAPTER 2. NAMES AND THINGS 39

possible to use this function with no parameter, System. out.println(), which outputs nothing
but a line feed. Note that System.out.println(x) is equivalent to

System.out.print(x);
System.out.println();

You might have noticed that System.out.print outputs real numbers with as many digits
after the decimal point as necessary, so that for example 7 is output as 3.141592653589793, and
numbers that are supposed to represent money might be output as 1050.0 or 43.575. You might
prefer to have these numbers output as, for example, 3.14159, 1050.00, and 43.58. Java has a
“formatted output” capability that makes it easy to control how real numbers and other values
are printed. A lot of formatting options are available. I will cover just a few of the simplest
and most commonly used possibilities here.

The function System.out.printf can be used to produce formatted output. (The name
“printf,” which stands for “print formatted,” is copied from the C and C++ programming
languages, where this type of output originated.) System.out.printf takes one or more pa-
rameters. The first parameter is a String that specifies the format of the output. This parameter
is called the format string. The remaining parameters specify the values that are to be out-
put. Here is a statement that will print a number in the proper format for a dollar amount,
where amount is a variable of type double:

System.out.printf("%1.2f", amount);

The output format for a value is give by a format specifier in the format string. In this
example, the format specifier is %1.2f. The format string (in the simple cases that I cover
here) contains one format specifier for each of the values that is to be output. Some typical
format specifiers are %d, %12d, %10s, %1.2f, %15.8e and %1.8g. Every format specifier begins
with a percent sign (%) and ends with a letter, possibly with some extra formatting information
in between. The letter specifies the type of output that is to be produced. For example, in
%d and %12d, the “d” specifies that an integer is to be written. The “12” in %124 specifies the
minimum number of spaces that should be used for the output. If the integer that is being
output takes up fewer than 12 spaces, extra blank spaces are added in front of the integer to
bring the total up to 12. We say that the output is “right-justified in a field of length 12.” A
very large value is not forced into 12 spaces; if the value has more than 12 digits, all the digits
will be printed, with no extra spaces. The specifier %d means the same as %1d—that is, an
integer will be printed using just as many spaces as necessary. (The “d,” by the way, stands
for “decimal”’—that is, base-10—numbers. You can replace the “d” with an “x” to output an
integer value in hexadecimal form.)

The letter “s” at the end of a format specifier can be used with any type of value. It
means that the value should be output in its default format, just as it would be in unformatted
output. A number, such as the “20” in %20s, can be added to specify the (minimum) number
of characters. The “s” stands for “string,” and it can be used for values of type String. It can
also be used for values of other types; in that case the value is converted into a String value in
the usual way.

The format specifiers for values of type double are more complicated. An “f”, as in %1.2f,
is used to output a number in “floating-point” form, that is with digits after a decimal point. In
%1.2f, the “2” specifies the number of digits to use after the decimal point. The “1” specifies
the (minimum) number of characters to output; a “1” in this position effectively means that
just as many characters as are necessary should be used. Similarly, %12.3f would specify a
floating-point format with 3 digits after the decimal point, right-justified in a field of length 12.

CHAPTER 2. NAMES AND THINGS 40

Very large and very small numbers should be written in exponential format, such as
6.00221415e23, representing “6.00221415 times 10 raised to the power 23.” A format speci-
fier such as %15.8e specifies an output in exponential form, with the “8” telling how many
digits to use after the decimal point. If you use “g” instead of “e”, the output will be in ex-
ponential form for very small values and very large values and in floating-point form for other
values. In %1.8g, the 8 gives the total number of digits in the answer, including both the digits
before the decimal point and the digits after the decimal point.

For numeric output, the format specifier can include a comma (“,”), which will cause the
digits of the number to be separated into groups, to make it easier to read big numbers. In
the United States, groups of three digits are separated by commas. For example, if x is one
billion, then System.out.printf ("%,d",x) will output 1,000,000,000. In other countries, the
separator character and the number of digits per group might be different. The comma should
come at the beginning of the format specifier, before the field width; for example: %,12.3f.
If you want the output to be left-justified instead of right justified, add a minus sign to the
beginning of the format specifier: for example, %-20s.

In addition to format specifiers, the format string in a printf statement can include other
characters. These extra characters are just copied to the output. This can be a convenient way
to insert values into the middle of an output string. For example, if x and y are variables of
type int, you could say

System.out.printf ("The product of %d and %d is %d", x, y, x*y);

When this statement is executed, the value of x is substituted for the first %d in the string, the
value of y for the second %d, and the value of the expression x*y for the third, so the output
would be something like “The product of 17 and 42 is 714” (quotation marks not included in
output!).

To output a percent sign, use the format specifier %% in the format string. You can use %n
to output a line feed. You can also use a backslash, \, as usual in strings to output special
characters such as tabs and double quote characters.

2.4.2 A First Text Input Example

For some unfathomable reason, Java has traditionally made it difficult to read data typed
in by the user of a program. You've already seen that output can be displayed to the user
using the subroutine System.out.print. This subroutine is part of a predefined object called
System.out. The purpose of this object is precisely to display output to the user. There is
a corresponding object called System.in that exists to read data input by the user, but it
provides only very primitive input facilities, and it requires some advanced Java programming
skills to use it effectively.

Java 5.0 finally made input a little easier with a new Scanner class. However, it requires
some knowledge of object-oriented programming to use this class, so it’s not ideal for use here
at the beginning of this course. Java 6 introduced the Console class for communicating with
the user, but Console has its own problems. (It is not always available, and it can only read
strings, not numbers.) Furthermore, in my opinion, Scanner and Console still don’t get things
quite right. Nevertheless, I will introduce Scanner briefly at the end of this section, in case you
want to start using it now. However, we start with my own version of text input.

Fortunately, it is possible to extend Java by creating new classes that provide subroutines
that are not available in the standard part of the language. As soon as a new class is available,
the subroutines that it contains can be used in exactly the same way as built-in routines. Along

CHAPTER 2. NAMES AND THINGS 41

these lines, I've written a class named Text/O that defines subroutines for reading values typed
by the user. The subroutines in this class make it possible to get input from the standard input
object, System.in, without knowing about the advanced aspects of Java that are needed to
use Scanner or to use System.in directly.

TextlO is defined in a “package” named textio. This means that when you look for the
file TextIO. java, you will find it inside a folder named textio. Furthermore, it means that a
program that uses Text/O must “import” it from the textio package. This is done with the
import directive

import textio.TextIO;

This directive must come before the “public class” that begins your program. Most of Java’s
standard classes are defined in packages and are imported into programs in the same way.

To use the Text/O class, you must make sure that the class is available to your program.
What this means depends on the Java programming environment that you are using. In general,
you just have to add the folder textio to the same folder that contains your main program. This
folder contains the file TextIO.java. See Section 2.6 for information about how to use Text/O.

The input routines in the Text/O class are static member functions. (Static member func-
tions were introduced in the previous section.) Let’s suppose that you want your program
to read an integer typed in by the user. The Text/O class contains a static member function
named getlnInt that you can use for this purpose. Since this function is contained in the
TextlO class, you have to refer to it in your program as TextIO.getlnInt. The function has
no parameters, so a complete call to the function takes the form “TextI0.getlnInt()”. This
function call represents the int value typed by the user, and you have to do something with
the returned value, such as assign it to a variable. For example, if userInput is a variable
of type int (created with a declaration statement “int userInput;”), then you could use the
assignment statement

userInput = TextIO.getlnInt();

When the computer executes this statement, it will wait for the user to type in an integer value.
The user must type a number and press return before the program can continue. The value
that the user typed will then be returned by the function, and it will be stored in the variable,
userInput. Here is a complete program that uses TextI0.getlnInt to read a number typed
by the user and then prints out the square of that number. Note the import directive on the
first line:

import textio.TextIO;

/**
* A program that reads an integer that is typed in by the
* user and computes and prints the square of that integer.
*/

public class PrintSquare {
public static void main(String[] args) {

int userInput; // The number input by the user.
int square; // The userInput, multiplied by itself.

System.out.print ("Please type a number: ");
userInput = TextIO.getlnInt();
square = userlInput * userInput;

http://math.hws.edu/eck/cs124/javanotes8/source/chapter2/textio
http://math.hws.edu/eck/cs124/javanotes8/source/chapter2/textio/TextIO.java

CHAPTER 2. NAMES AND THINGS 42

System.out.println();

System.out.println("The number that you entered was " + userInput);
System.out.println("The square of that number is " + square);
System.out.println();

} // end of main()

} //end of class PrintSquare

)

When you run this program, it will display the message “Please type a number:” and will pause
until you type a response, including a carriage return after the number. Note that it is good
style to output a question or some other prompt to the user before reading input. Otherwise,
the user will have no way of knowing exactly what the computer is waiting for, or even that it
is waiting for the user to do something.

2.4.3 Basic TextIO Input Functions

Text/O includes a variety of functions for inputting values of various types. Here are the
functions that you are most likely to use:

j = TextIO.getlnInt(); // Reads a value of type int.

y = TextIO.getlnDouble(); // Reads a value of type double.

a = TextIO.getlnBoolean(); // Reads a value of type boolean.

¢ = TextIO.getlnChar(); // Reads a value of type char.

w = TextIO.getlnWord(); // Reads one "word" as a value of type String.
s = TextI0.getln(); // Reads an entire input line as a String.

For these statements to be legal, the variables on the left side of each assignment statement
must already be declared and must be of the same type as that returned by the function on
the right side. Note carefully that these functions do not have parameters. The values that
they return come from outside the program, typed in by the user as the program is running.
To “capture” that data so that you can use it in your program, you have to assign the return
value of the function to a variable. You will then be able to refer to the user’s input value by
using the name of the variable.

When you call one of these functions, you are guaranteed that it will return a legal value of
the correct type. If the user types in an illegal value as input—for example, if you ask for an
int and the user types in a non-numeric character or a number that is outside the legal range
of values that can be stored in a variable of type int—then the computer will ask the user to
re-enter the value, and your program never sees the first, illegal value that the user entered. For
TextI0.getlnBoolean(), the user is allowed to type in any of the following: true, false, t, f, yes,
no, y, n, 1, or 0. Furthermore, they can use either upper or lower case letters. In any case, the
user’s input is interpreted as a true/false value. It’s convenient to use TextI0.getlnBoolean()
to read the user’s response to a Yes/No question.

You'll notice that there are two input functions that return Strings. The first, get1lnWord (),
returns a string consisting of non-blank characters only. When it is called, it skips over any
spaces and carriage returns typed in by the user. Then it reads non-blank characters until
it gets to the next space or carriage return. It returns a String consisting of all the non-
blank characters that it has read. The second input function, getln(), simply returns a string
consisting of all the characters typed in by the user, including spaces, up to the next carriage
return. It gets an entire line of input text. The carriage return itself is not returned as part of
the input string, but it is read and discarded by the computer. Note that the String returned

CHAPTER 2. NAMES AND THINGS 43

by TextI0.getln() might be the empty string, "", which contains no characters at all. You
will get this return value if the user simply presses return, without typing anything else first.

TextI0.getln() does not skip blanks or end-of-lines before reading a value. But the
input functions getlnInt(), getlnDouble(), getlnBoolean(), and getlnChar () behave like
getlnWord () in that they will skip past any blanks and carriage returns in the input before
reading a value. When one of these functions skips over an end-of-line, it outputs a ’?’ to let
the user know that more input is expected.

Furthermore, if the user types extra characters on the line after the input value, all the
extra characters will be discarded, along with the carriage return at the end of the
line. If the program executes another input function, the user will have to type in another line
of input, even if they had typed more than one value on the previous line. It might not sound
like a good idea to discard any of the user’s input, but it turns out to be the safest thing to do
in most programs.

x % ok

Using TextlO for input and output, we can now improve the program from Section 2.2 for
computing the value of an investment. We can have the user type in the initial value of the
investment and the interest rate. The result is a much more useful program—for one thing, it

makes sense to run it more than once! Note that this program uses formatted output to print
out monetary values in their correct format.

import textio.TextIO;

/%%

* This class implements a simple program that will compute

* the amount of interest that is earned on an investment over
* a period of one year. The initial amount of the investment
* and the interest rate are input by the user. The value of
* the investment at the end of the year is output. The

* rate must be input as a decimal, not a percentage (for

* example, 0.05 rather than 5).

*/
public class Interest2 {

public static void main(String[] args) {

double principal; // The value of the investment.
double rate; // The annual interest rate.
double interest; // The interest earned during the year.

System.out.print ("Enter the initial investment: ");
principal = TextI0.getlnDouble();

System.out.print ("Enter the annual interest rate (as a decimal): ");
rate = TextIO.getlnDouble();

interest = principal * rate; // Compute this year’s interest.
principal = principal + interest; // Add it to principal.

System.out.printf ("The amount of interest is $J%1.2f%n", interest);
System.out.printf ("The value after one year is $%1.2f%n", principal);

} // end of main()

} // end of class Interest?2

CHAPTER 2. NAMES AND THINGS 44

(You might be wondering why there is only one output routine, System.out . println, which
can output data values of any type, while there is a separate input routine for each data type.
For the output function, the computer can tell what type of value is being output by looking
at the parameter. However, the input routines don’t have parameters, so the different input
routines can only be distinguished by having different names.)

2.4.4 Introduction to File I/O

System.out sends its output to the output destination known as “standard output.” But stan-
dard output is just one possible output destination. For example, data can be written to a file
that is stored on the user’s hard drive. The advantage to this, of course, is that the data is saved
in the file even after the program ends, and the user can print the file, email it to someone else,
edit it with another program, and so on. Similarly, System.in has only one possible source for
input data.

TextlO has the ability to write data to files and to read data from files. Text/O includes
output functions TextIO0.put, TextIO.putln, and TextIO.putf. Ordinarily, these functions
work exactly like System.out.print, System.out.println, and System.out.printf and are
interchangeable with them. However, they can also be used to output text to files and to other
destinations.

When you write output using TextIO.put, TextIO.putln, or TextIO.putf, the output
is sent to the current output destination. By default, the current output destination is
standard output. However, Text/O has subroutines that can be used to change the current
output destination. To write to a file named “result.txt”, for example, you would use the
statement:

TextIO.writeFile("result.txt");

After this statement is executed, any output from Text/O output statements will be sent to the
file named “result.txt” instead of to standard output. The file will be created if it does not
already exist. Note that if a file with the same name already exists, its previous contents will
be erased without any warning!

When you call TextI0.writeFile, Text/O remembers the file and automatically sends any
output from TextIO.put or other output functions to that file. If you want to go back to
writing to standard output, you can call

TextI0.writeStandardOutput();

Here is a simple program that asks the user some questions and outputs the user’s responses to
a file named “profile.txt.” As an example, it uses Text/O for output to standard output as well
as to the file, but System.out could also have been used for the output to standard output.

import textio.TextIO;
public class CreateProfile {
public static void main(String[] args) {

String name; // The user’s name.

String email; // The user’s email address.
double salary; // the user’s yearly salary.
String favColor; // The user’s favorite color.

TextIO.putln("Good Afternoon! This program will create");
TextIO.putln("your profile file, if you will just answer");

CHAPTER 2. NAMES AND THINGS 45

TextIO.putln("a few simple questions.");
TextI0.putln();

/* Gather responses from the user. */

TextIO.put("What is your name? ")
name = TextIO0.getln();

TextIO.put("What is your email address? ");
email = TextIO0.getln();

TextIO.put("What is your yearly income? ");
salary = TextIO.getlnDouble();
TextIO.put("What is your favorite color? ");
favColor = TextIO.getln();

/* Write the user’s information to the file named profile.txt. */

TextI0.writeFile("profile.txt"); // subsequent output goes to file

TextIO.putln("Name: " + name);
TextIO0.putln("Email: " + email);
TextIO0.putln("Favorite Color: " + favColor);

TextIO.putf("Yearly Income: %,1.2f%n", salary);
/* Print a final message to standard output. */

TextI0.writeStandardOutput();
TextIO.putln("Thank you. Your profile has been written to profile.txt.");

3

In many cases, you want to let the user select the file that will be used for output. You
could ask the user to type in the file name, but that is error-prone, and users are more familiar
with selecting a file from a file dialog box. The statement

TextI0.writeUserSelectedFile();

will open a typical graphical-user-interface file selection dialog where the user can specify the
output file. This also has the advantage of alerting the user if they are about to replace
an existing file. It is possible for the user to cancel the dialog box without selecting a file.
TextIO.writeUserSelectedFile is a function that returns a boolean value. The return value
is true if the user selected a file, and is false if the user canceled the dialog box. Your program
can check the return value if it needs to know whether it is actually going to write to a file or
not.

I S 3

TextlO can also read from files, as an alternative to reading from standard input. You can
specify an input source for Text/O'’s various “get” functions. The default input source is standard
input. You can use the statement TextIO.readFile("data.txt") to read from a file named
“data.txt” instead, or you can let the user select the input file with a GUI-style dialog box by
saying TextI0.readUserSelectedFile(). After you have done this, any input will come from
the file instead of being typed by the user. You can go back to reading the user’s input with
TextI0.readStandardInput ().

When your program is reading from standard input, the user gets a chance to correct any
errors in the input. This is not possible when the program is reading from a file. If illegal data
is found when a program tries to read from a file, an error occurs that will crash the program.

CHAPTER 2. NAMES AND THINGS 46

(Later, we will see that it is possible to “catch” such errors and recover from them.) Errors can
also occur, though more rarely, when writing to files.

A complete understanding of input/output in Java requires a knowledge of object oriented
programming. We will return to the topic later, in Chapter 11. The file I/O capabilities in
the TextlO class are rather primitive by comparison. Nevertheless, they are sufficient for many
applications, and they will allow you to get some experience with files sooner rather than later.

2.4.5 Other TextIO Features

The Text/O input functions that we have seen so far can only read one value from a line of

input. Sometimes, however, you do want to read more than one value from the same line of

input. For example, you might want the user to be able to type something like “42 17”7 to input

the two numbers 42 and 17 on the same line. Text/O provides the following alternative input

functions to allow you to do this:

= TextI0.getInt(); // Reads a value of type int.

TextI0.getDouble(); // Reads a value of type double.

= TextIO.getBoolean(); // Reads a value of type boolean.

a

TextI0.getChar(); // Reads a value of type char.
TextI0.getWord(); // Reads one "word" as a value of type String.

=0 p <9 e
|

The names of these functions start with “get” instead of “getln”. “Getln” is short for “get line”
and should remind you that the functions whose names begin with “getln” will consume an
entire line of data. A function without the “In” will read an input value in the same way, but
will then save the rest of the input line in a chunk of internal memory called the input bujffer.
The next time the computer wants to read an input value, it will look in the input buffer before
prompting the user for input. This allows the computer to read several values from one line
of the user’s input. Strictly speaking, the computer actually reads only from the input buffer.
The first time the program tries to read input from the user, the computer will wait while the
user types in an entire line of input. Text/O stores that line in the input buffer until the data
on the line has been read or discarded (by one of the “getln” functions). The user only gets to
type when the buffer is empty.

Note, by the way, that although the Text/O input functions will skip past blank spaces and
carriage returns while looking for input, they will not skip past other characters. For example,
if you try to read two ints and the user types “42,17”, the computer will read the first number
correctly, but when it tries to read the second number, it will see the comma. It will regard this
as an error and will force the user to retype the number. If you want to input several numbers
from one line, you should make sure that the user knows to separate them with spaces, not
commas. Alternatively, if you want to require a comma between the numbers, use getChar ()
to read the comma before reading the second number.

There is another character input function, TextI0.getAnyChar (), which does not skip past
blanks or carriage returns. It simply reads and returns the next character typed by the user,
even if it’s a blank or carriage return. If the user typed a carriage return, then the char returned
by getAnyChar () is the special linefeed character '\n’. There is also a function, TextI0.peek(),
that lets you look ahead at the next character in the input without actually reading it. After
you “peek” at the next character, it will still be there when you read the next item from input.
This allows you to look ahead and see what’s coming up in the input, so that you can take
different actions depending on what’s there.

The TextlO class provides a number of other functions. To learn more about them, you can
look at the comments in the source code file, TextIO.java.

http://math.hws.edu/eck/cs124/javanotes8/source/chapter2/textio/TextIO.java

CHAPTER 2. NAMES AND THINGS 47

Clearly, the semantics of input is much more complicated than the semantics of output!
Fortunately, for the majority of applications, it’s pretty straightforward in practice. You only
need to follow the details if you want to do something fancy. In particular, I strongly advise
you to use the “getln” versions of the input routines, rather than the “get” versions, unless you
really want to read several items from the same line of input, precisely because the semantics
of the “getln” versions is much simpler.

2.4.6 Using Scanner for Input

TextlO makes it easy to get input from the user. However, since it is not a standard class, you
have to remember to make TextI0. java available to any program that uses it. Another option
for input is the Scanner class. One advantage of using Scanner is that it’s a standard part of
Java and so is always there when you want it.

It’s not that hard to use a Scanner for user input, and it has some nice features, but using
it requires some syntax that will not be introduced until Chapter 4 and Chapter 5. T’ll tell you
how to do it here, without explaining why it works. You won’t understand all the syntax at
this point. (Scanners will be covered in more detail in Subsection 11.1.5.)

First, since Scanner is defined in the package java.util, you should add the following import
directive to your program at the beginning of the source code file, before the “public class...”:

import java.util.Scanner;

Then include the following statement at the beginning of your main() routine:

Scanner stdin = new Scanner(System.in);

This creates a variable named stdin of type Scanner. (You can use a different name for the
variable if you want; “stdin” stands for “standard input.”) You can then use stdin in your
program to access a variety of subroutines for reading user input. For example, the function
stdin.nextInt () reads one value of type int from the user and returns it. It is almost the
same as TextI0.getInt () except for two things: If the value entered by the user is not a legal
int, then stdin.nextInt () will crash rather than prompt the user to re-enter the value. And
the integer entered by the user must be followed by a blank space or by an end-of-line, whereas
TextI0.getInt () will stop reading at any character that is not a digit.

There are corresponding methods for reading other types of data, including
stdin.nextDouble(), stdin.nextLong(), and stdin.nextBoolean(). (stdin.nextBoolean()
will only accept “true” or “false” as input.) These subroutines can read more than one value
from a line, so they are more similar to the “get” versions of Text/O subroutines rather than
the “getln” versions. The method stdin.nextLine() is equivalent to TextIO.getln(), and
stdin.next (), like TextI0.getWord (), returns a string of non-blank characters.

As a simple example, here is a version of the sample program Interest2.java that uses Scanner
instead of Text/O for user input:

tmport java.util.Scanner;
public class Interest2WithScanner {
public static void main(String[] args) {
Scanner stdin = new Scanner(System.in); // Create the Scanner.

double principal; // The value of the investment.
double rate; // The annual interest rate.
double interest; // The interest earned during the year.

http://math.hws.edu/eck/cs124/javanotes8/source/chapter2/Interest2.java

CHAPTER 2. NAMES AND THINGS 48

System.out.print ("Enter the initial investment: ");
principal = stdin.nextDouble();

System.out.print ("Enter the annual interest rate (as a decimal): ");
rate = stdin.nextDouble();

interest = principal * rate; // Compute this year’s interest.
principal = principal + interest; // Add it to principal.

System.out.printf ("The amount of interest is $J%1.2f%n", interest);
System.out.printf ("The value after one year is $1.2f%n", principal);

} // end of main()
} // end of class Interest2WithScanner

Note the inclusion of the two lines given above to import Scanner and create stdin.
Also note the substitution of stdin.nextDouble() for TextIO.getlnDouble(). (In fact,
stdin.nextDouble() is really equivalent to TextI0.getDouble() rather than to the “getln”
version, but this will not affect the behavior of the program as long as the user types just one
number on each line of input.)

I will continue to use Text/O for input for the time being, but I will give a few more examples
of using Scanner in the on-line solutions to the end-of-chapter exercises. There will be more
detailed coverage of Scanner later in the book.

2.5 Details of Expressions

T'HIS SECTION TAKES A CLOSER LOOK at expressions. Recall that an expression is a piece of
program code that represents or computes a value. An expression can be a literal, a variable,
a function call, or several of these things combined with operators such as + and >. The value
of an expression can be assigned to a variable, used as a parameter in a subroutine call, or
combined with other values into a more complicated expression. (The value can even, in some
cases, be ignored, if that’s what you want to do; this is more common than you might think.)
Expressions are an essential part of programming. So far, this book has dealt only informally
with expressions. This section tells you the more-or-less complete story (leaving out some of
the less commonly used operators).

The basic building blocks of expressions are literals (such as 674, 3.14, true, and ’X’),
variables, and function calls. Recall that a function is a subroutine that returns a value. You've
already seen some examples of functions, such as the input routines from the Text/O class and
the mathematical functions from the Math class.

The Math class also contains a couple of mathematical constants that are useful in
mathematical expressions: Math.PI represents m (the ratio of the circumference of a cir-
cle to its diameter), and Math.E represents e (the base of the natural logarithms). These
“constants” are actually member variables in Math of type double. They are only ap-
proximations for the mathematical constants, which would require an infinite number of
digits to specify exactly. The standard class Integer contains a couple of constants re-
lated to the int data type: Integer.MAX VALUE is the largest possible int, 2147483647, and
Integer .MIN_VALUE is the smallest int, -2147483648. Similarly, the class Double contains some
constants related to type double. Double.MAX VALUE is the largest value of type double, and
Double.MIN_VALUE is the smallest positive value. It also has constants to represent infinite
values, Double.POSITIVE_INFINITY and Double.NEGATIVE_INFINITY, and the special value

CHAPTER 2. NAMES AND THINGS 49

Double.NaN to represent an undefined value. For example, the value of Math.sqrt(-1) is
Double.NaNl.

Literals, variables, and function calls are simple expressions. More complex expressions
can be built up by using operators to combine simpler expressions. Operators include + for
adding two numbers, > for comparing two values, and so on. When several operators appear
in an expression, there is a question of precedence, which determines how the operators are
grouped for evaluation. For example, in the expression “A + B * C”, B*C is computed first
and then the result is added to A. We say that multiplication (*) has higher precedence
than addition (+). If the default precedence is not what you want, you can use parentheses to
explicitly specify the grouping you want. For example, you could use “(A + B) * C” if you
want to add A to B first and then multiply the result by C.

The rest of this section gives details of operators in Java. The number of operators in Java
is quite large. I will not cover them all here, but most of the important ones are here.

2.5.1 Arithmetic Operators

Arithmetic operators include addition, subtraction, multiplication, and division. They are
indicated by +, -, *, and /. These operations can be used on values of any numeric type: byte,
short, int, long, float, or double. (They can also be used with values of type char, which
are treated as integers in this context; a char is converted into its Unicode code number when
it is used with an arithmetic operator.) When the computer actually calculates one of these
operations, the two values that it combines must be of the same type. If your program tells
the computer to combine two values of different types, the computer will convert one of the
values from one type to another. For example, to compute 37.4 + 10, the computer will convert
the integer 10 to a real number 10.0 and will then compute 37.4 4+ 10.0. This is called a type
conversion. Ordinarily, you don’t have to worry about type conversion in expressions, because
the computer does it automatically.

When two numerical values are combined (after doing type conversion on one of them, if
necessary), the answer will be of the same type. If you multiply two ints, you get an int; if you
multiply two doubles, you get a double. This is what you would expect, but you have to be
very careful when you use the division operator /. When you divide two integers, the answer
will always be an integer; if the quotient has a fractional part, it is discarded. For example, the
value of 7/2 is 3, not 3.5. If N is an integer variable, then N/100 is an integer, and 1/N is equal
to zero for any N greater than one! This fact is a common source of programming errors. You
can force the computer to compute a real number as the answer by making one of the operands
real: For example, when the computer evaluates 1.0/N, it first converts N to a real number in
order to match the type of 1.0, so you get a real number as the answer.

Java also has an operator for computing the remainder when one number is divided by
another. This operator is indicated by %. If A and B are integers, then A % B represents the
remainder when A is divided by B. (However, for negative operands, % is not quite the same as
the usual mathematical “modulus” operator, since if one of A or B is negative, then the value
of A % B will be negative.) For example, 7 % 2 is 1, while 34577 % 100 is 77, and 50 % 8 is
2. A common use of % is to test whether a given integer is even or odd: N is even if N % 2 is
zero, and it is odd if N % 2 is 1. More generally, you can check whether an integer N is evenly
divisible by an integer M by checking whether N % M is zero.

The % operator also works with real numbers. In general, A % B is what is left over after
you remove as many copies of B as possible from A. For example, 7.52 % 0.5 is 0.02.

CHAPTER 2. NAMES AND THINGS 50

Finally, you might need the unary minus operator, which takes the negative of a number.
For example, -X has the same value as (-1)*X. For completeness, Java also has a unary plus
operator, as in +X, even though it doesn’t really do anything.

By the way, recall that the + operator can also be used to concatenate a value of any type
onto a String. When you use + to combine a string with a value of some other type, it is another
example of type conversion, since any type can be automatically converted into type String.

2.5.2 Increment and Decrement

You'll find that adding 1 to a variable is an extremely common operation in programming.
Subtracting 1 from a variable is also pretty common. You might perform the operation of
adding 1 to a variable with assignment statements such as:

counter = counter + 1;
goalsScored = goalsScored + 1;

The effect of the assignment statement x = x + 1 is to take the old value of the variable
x, compute the result of adding 1 to that value, and store the answer as the new value of
x. The same operation can be accomplished by writing x++ (or, if you prefer, ++x). This
actually changes the value of x, so that it has the same effect as writing “x = x + 1”. The two
statements above could be written

counter++;
goalsScored++;

Similarly, you could write x-- (or --x) to subtract 1 from x. That is, x-- performs the same
computation as x = x - 1. Adding 1 to a variable is called incrementing that variable,
and subtracting 1 is called decrementing. The operators ++ and -- are called the increment
operator and the decrement operator, respectively. These operators can be used on variables
belonging to any of the numerical types and also on variables of type char. (If ch is A’ then
ch++ changes the value of ch to ’B’.)

Usually, the operators ++ or —— are used in statements like “x++;” or “x--;”. These state-
ments are commands to change the value of x. However, it is also legal to use x++, ++x, x——,
or ——x as expressions, or as parts of larger expressions. That is, you can write things like:

[4

y = xt+;
y = X
TextI0.putln(--x);
z = (++x) * (y—-);

The statement “y = x++;” has the effects of adding 1 to the value of x and, in addition, assigning
some value to y. The value assigned to y is defined to be the old value of x, before the 1 is
added. Thus, if the value of x is 6, the statement “y = x++;” will change the value of x to 7,
but it will change the value of y to 6, because the value assigned to y is the old value of x. On
the other hand, the value of ++x is defined to be the new value of x, after the 1 is added. So if
x is 6, then the statement “y = ++x;” changes the values of both x and y to 7. The decrement
operator, ——, works in a similar way.

Note in particular that the statement x = x++; does not change the value of x! This is
because the value that is being assigned to x is the old value of x, the one that it had before the
statement was executed. The net result is that x is incremented but then immediately changed
back to its previous value! You also need to remember that x++ is not the same as x + 1. The
expression x++ changes the value of x; the expression x + 1 does not.

CHAPTER 2. NAMES AND THINGS o1

This can be confusing, and I have seen many bugs in student programs resulting from the
confusion. My advice is: Don’t be confused. Use ++ and -- only as stand-alone statements,
not as expressions. I will follow this advice in almost all examples in these notes.

2.5.3 Relational Operators

Java has boolean variables and boolean-valued expressions that can be used to express con-
ditions that can be either true or false. One way to form a boolean-valued expression is
to compare two values using a relational operator. Relational operators are used to test
whether two values are equal, whether one value is greater than another, and so forth. The

relational operators in Java are: ==, !=, <, > <= and >=. The meanings of these operators are:
A == Is A "equal to" B?
A '=B Is A "not equal to" B?
A<B Is A "less than" B?
A>B Is A "greater than" B?
A <=B Is A "less than or equal to" B?
A >=B Is A "greater than or equal to" B?

These operators can be used to compare values of any of the numeric types. They can also be
used to compare values of type char. For characters, < and > are defined according the numeric
Unicode values of the characters. (This might not always be what you want. It is not the same
as alphabetical order because all the upper case letters come before all the lower case letters.)

When using boolean expressions, you should remember that as far as the computer is con-
cerned, there is nothing special about boolean values. In the next chapter, you will see how to
use them in loop and branch statements. But you can also assign boolean-valued expressions
to boolean variables, just as you can assign numeric values to numeric variables. And functions
can return boolean values.

By the way, the operators == and != can be used to compare boolean values too. This is
occasionally useful. For example, can you figure out what this does:

boolean sameSign;
sameSign = ((x > 0) == (y > 0));

One thing that you cannot do with the relational operators <, >, <=, and >= is to use them
to compare values of type String. You can legally use == and != to compare Strings, but
because of peculiarities in the way objects behave, they might not give the results you want.
(The == operator checks whether two objects are stored in the same memory location, rather
than whether they contain the same value. Occasionally, for some objects, you do want to
make such a check—but rarely for strings. T’ll get back to this in a later chapter.) Instead,
you should compare strings using subroutines such as equals() and compareTo (), which were
described in Subsection 2.3.3.

Another place where == and '= don’t always work as you would expect is with Double.NaN,
the constant that represents an undefined value of type double. The value of x == Double.NaN
is defined to be false for any x, and x != Double.Nal is defined to be true in all cases. Those
values hold even when x is Double.NaN! To test whether a real value x is the undefined value
Double.NaN, use the boolean-valued function Double.isNaN(x).

2.5.4 Boolean Operators

In English, complicated conditions can be formed using the words “and”, “or”, and *“not.” For

example, “If there is a test and you did not study for it...”. “And”, “or”, and “not” are

CHAPTER 2. NAMES AND THINGS 592

boolean operators, and they exist in Java as well as in English.

In Java, the boolean operator “and” is represented by &&. The && operator is used to
combine two boolean values. The result is also a boolean value. The result is true if both
of the combined values are true, and the result is false if either of the combined values is
false. For example, “(x == 0) && (y == 0)” is true if and only if both x is equal to 0 and
y is equal to 0.

The boolean operator “or” is represented by ||. (That’s supposed to be two of the vertical
line characters, |.) The expression “A || B” is true if either A is true or B is true, or if both
are true. “A || B” is false only if both A and B are false.

The operators && and | | are said to be short-circuited versions of the boolean operators.
This means that the second operand of && or || is not necessarily evaluated. Consider the test

(x 1= 0) & (y/x > 1)

Suppose that the value of x is in fact zero. In that case, the division y/x is undefined math-
ematically. However, the computer will never perform the division, since when the computer
evaluates (x !'= 0), it finds that the result is false, and so it knows that ((x !'= 0) && any-
thing) has to be false. Therefore, it doesn’t bother to evaluate the second operand. The
evaluation has been short-circuited and the division by zero is avoided. (This may seem like a
technicality, and it is. But at times, it will make your programming life a little easier.)

The boolean operator “not” is a unary operator. In Java, it is indicated by ! and is written
in front of its single operand. For example, if test is a boolean variable, then

test = ! test;

will reverse the value of test, changing it from true to false, or from false to true.

2.5.5 Conditional Operator

Any good programming language has some nifty little features that aren’t really necessary but
that let you feel cool when you use them. Java has the conditional operator. It’s a ternary
operator—that is, it has three operands—and it comes in two pieces, 7 and :, that have to be
used together. It takes the form

(boolean-expression) 7 (expressionl) : (expression2)

The computer tests the value of (boolean-expression). If the value is true, it evaluates
(expressionl); otherwise, it evaluates (expression2). For example:

next = (N % 2 == 0) 7 (N/2) : (3*N+1);

will assign the value N/2 to next if N is even (that is, if N % 2 == 0 is true), and it will assign
the value (3*N+1) to next if N is odd. (The parentheses in this example are not required, but
they do make the expression easier to read.)

2.5.6 Assignment Operators and Type Conversion

You are already familiar with the assignment statement, which uses the symbol “=" to assign
the value of an expression to a variable. In fact, = is really an operator in the sense that an
assignment can itself be used as an expression or as part of a more complex expression. The
value of an assignment such as A=B is the same as the value that is assigned to A. So, if you
want to assign the value of B to A and test at the same time whether that value is zero, you
could say:

CHAPTER 2. NAMES AND THINGS 53

if ((A=B) == 0)...

Usually, I would say, don’t do things like that!

In general, the type of the expression on the right-hand side of an assignment statement
must be the same as the type of the variable on the left-hand side. However, in some cases,
the computer will automatically convert the value computed by the expression to match the
type of the variable. Consider the list of numeric types: byte, short, int, long, float, double.
A value of a type that occurs earlier in this list can be converted automatically to a value that
occurs later. For example:

int A;

double X;

short B;

A= 17;

X = A; // OK; A is converted to a double

B = A; // illegal; no automatic conversion
// from int to short

The idea is that conversion should only be done automatically when it can be done without
changing the semantics of the value. Any int can be converted to a double with the same
numeric value. However, there are int values that lie outside the legal range of shorts. There
is simply no way to represent the int 100000 as a short, for example, since the largest value of
type short is 32767.

In some cases, you might want to force a conversion that wouldn’t be done automatically.
For this, you can use what is called a type cast. A type cast is indicated by putting a type
name, in parentheses, in front of the value you want to convert. For example,

int A;

short B;

A = 17;

B = (short)A; // OK; A is explicitly type cast
// to a value of type short

You can do type casts from any numeric type to any other numeric type. However, you should
note that you might change the numeric value of a number by type-casting it. For example,
(short) 100000 is -31072. (The -31072 is obtained by taking the 4-byte int 100000 and throwing
away two of those bytes to obtain a short—you’ve lost the real information that was in those
two bytes.)

When you type-cast a real number to an integer, the fractional part is discarded. For
example, (int)7.9453 is 7. As another example of type casts, consider the problem of get-
ting a random integer between 1 and 6. The function Math.random() gives a real number
between 0.0 and 0.9999. .., and so 6*Math.random() is between 0.0 and 5.999.... The type-
cast operator, (int), can be used to convert this to an integer: (int) (6*Math.random()).
Thus, (int) (6*Math.random()) is one of the integers 0, 1, 2, 3, 4, and 5. To get a number
between 1 and 6, we can add 1: “(int) (6*Math.random()) + 1”. (The parentheses around
6*Math.random() are necessary because of precedence rules; without the parentheses, the type
cast operator would apply only to the 6.)

The type char is almost an integer type. You can assign char values to int variables, and you
can assign integer constants in the range 0 to 65535 to char variables. You can also use explicit
type-casts between char and the numeric types. For example, (char)97 is ’a’, (int)’+’ is
43, and (char)(CA’ + 2) is ’C".

CHAPTER 2. NAMES AND THINGS o4

Type conversion between String and other types cannot be done with type-casts. One way to
convert a value of any type into a string is to concatenate it with an empty string. For example,
"M+ 42 is the string "42". But a better way is to use the function String.value0Of (x), a static
member function in the String class. String.value0Of (x) returns the value of x, converted into
a string. For example, String.valueOf (42) is the string "42", and if ch is a char variable,
then String.valueOf (ch) is a string of length one containing the single character that is the
value of ch.

It is also possible to convert certain strings into values of other types. For example, the
string "10" should be convertible into the int value 10, and the string "17.42e-2" into the
double value 0.1742. In Java, these conversions are handled by built-in functions.

The standard class Integer contains a static member function for converting from String to
int. In particular, if str is any expression of type String, then Integer.parseInt(str) is a
function call that attempts to convert the value of str into a value of type int. For example, the
value of Integer.parseInt("10") is the int value 10. If the parameter to Integer.parselnt
does not represent a legal int value, then an error occurs.

Similarly, the standard class Double includes a function Double.parseDouble. If str is a
String, then the function call Double.parseDouble(str) tries to convert str into a value of
type double. An error occurs if str does not represent a legal double value.

x % ok
Getting back to assignment statements, Java has several variations on the assignment

operator, which exist to save typing. For example, “A += B” is defined to be the same as
“A = A + B”. Many of Java’s operators give rise to similar assignment operators. For example:

X -=Y; // same as: X =X - y;
X *=y; // same as: x =X * y;
x /=y; // same as: x=x/7y;
X h=y; // same as: x =x% y;

The combined assignment operator += even works with strings. Recall that when the + operator
is used with a string as one of the operands, it represents concatenation. Since str += x is
equivalent to str = str + x, when += is used with a string on the left-hand side, it appends
the value on the right-hand side onto the string. For example, if str has the value “tire”, then
the statement str += ’d’; changes the value of str to “tired”.

2.5.7 Precedence Rules

If you use several operators in one expression, and if you don’t use parentheses to explicitly
indicate the order of evaluation, then you have to worry about the precedence rules that deter-
mine the order of evaluation. (Advice: don’t confuse yourself or the reader of your program;
use parentheses liberally.)

Here is a listing of the operators discussed in this section, listed in order from highest
precedence (evaluated first) to lowest precedence (evaluated last):

Unary operators: ++, ——, !, unary -, unary +, type-cast
Multiplication and division: *, A

Addition and subtraction: +, -

Relational operators: < >, <=, >=

Equality and inequality: =, I=
Boolean and: &&
Boolean or: [

CHAPTER 2. NAMES AND THINGS 95

Conditional operator: ?:
Assignment operators: =, 4=, -=, *x=, [=, Y=

Operators on the same line have the same precedence. When operators of the same precedence
are strung together in the absence of parentheses, unary operators and assignment operators are
evaluated right-to-left, while the remaining operators are evaluated left-to-right. For example,
A*B/C means (A*B)/C, while A=B=C means A=(B=C). (Can you see how the expression A=B=C
might be useful, given that the value of B=C as an expression is the same as the value that is
assigned to B?)

2.6 Programming Environments

ALTHOUGH THE JAVA LANGUAGE is highly standardized, the procedures for creating, compil-
ing, and editing Java programs vary widely from one programming environment to another.
There are two basic approaches: a command line environment, where the user types com-
mands and the computer responds, and an integrated development environment (IDE),
where the user uses the keyboard and mouse to interact with a graphical user interface. While
there is essentially just one command line environment for Java programming, there are several
common IDEs; including Eclipse, NetBeans, IntelliJ IDEA, and BlueJ. I cannot give complete
or definitive information on Java programming environments in this section, but I will try to
give enough information to let you compile and run the examples from this textbook using the
command line, Eclipse, or BlueJ. (Readers are strongly encouraged to read, compile, and run
the examples. Source code for sample programs and solutions to end-of-chapter exercises can
be downloaded from the book’s web page, http://math.hws.edu/javanotes.)

One thing to keep in mind is that you do not have to pay any money to do Java programming
(aside from buying a computer, of course). Everything that you need can be downloaded for
free on the Internet.

This textbook can be used with Java 8 and later. As of the release of Version 8.1.3 of the
book in August 2021, the current version of Java is Java 16. Significant changes both in the
Java language and in the Oracle corporation’s policies concerning Java have been made since
the release of Java 8. Unfortunately, the changes have made it somewhat more difficult to
install Java and get it up and running. In this section, I will try to give you enough information
to make it possible to install Java and use it with this textbook.

One of the changes made to Java was to the release schedule. New versions of Java are
now released much more frequently than in the past, about twice a year, but only some of
the releases are “long-term support” (LTS) releases that will continue to receive bug fixes and
security updates over an extended period of time. Java 8 and Java 11 are long-term support
releases. The upcoming Java 17, due to be released in September 2021, will be another long-term
support release. In fact, only Java 8, 11, and 16 are currently officially supported (although for
the purposes of this textbook, using another version that is no longer receiving support is not
a real problem). As of August 2021, people are most likely to use Java 11 or Java 16. When
Java 17 is released, it will be the preferred version.

2.6.1 Getting JDK and JavaFX

The basic development system for Java programming is usually referred to as a JDK (Java
Development Kit). For this textbook, you need a JDK for Java 8 or later. Note that Java comes
in two versions: a Development Kit version (the JDK) and a Runtime Environment version (the

http://math.hws.edu/javanotes

CHAPTER 2. NAMES AND THINGS o6

JRE). A Runtime Environment can be used to run Java programs, but it does not allow you
to compile your own Java programs. A Development Kit includes the Runtime Environment
but also lets you compile programs. (Since the release of Java 11 it has become harder find a
separate JRE download, but you will still see the term used — sometimes to refer, in fact, to a
JDK.) A JDK will include the command line environment that you need to work with Java on
the command line. If you decide to use an IDE, you might still need to download a JDK first;
note, however, that both the Eclipse IDE and BlueJ now include a JDK, so you do not need to
download a separate JDK to use them.

Java was developed by Sun Microsystems, Inc., which was acquired by the Oracle corpora-
tion. It is possible to download a JDK directly from Oracle’s web site, but starting with Java 11,
the Oracle JDK is meant mostly for commercial use. For personal and educational use, it is
probably preferable to use OpenJDK, which has the same functionality as the version available
from Oracle and is distributed under a fully free, open-source license. Although OpenJDK
can be downloaded from https://jdk.java.net/, which is also owned by Oracle, I recommend
downloading from AdoptOpenJDK at this address:

https://adoptopenjdk.net/
This site has OpenJDKs for a wider range of platforms, and it provides installers for Mac OS
and Windows that make it easier to set up Java on those platforms. (The installer for Mac OS
is a .pkg file, and the installer for Windows is a .msi file.) The sample programs and exercises
in this textbook will work with JDK versions as old as Java 8.

If you download a JDK installer for Windows or Mac OS from AdoptOpenJDK, you can
just double-click the installer file to start the installation, if it does not start automatically. If
you use the default installation, the installer will set up your computer so that you can use the
javac and java commands on the command line.

The GUI programs in this book use a programming library known as JavaF X, which must
be downloaded separately from the OpenJDK. You will need to download JavaFX even if you
use Eclipse for all of your Java work. (BlueJ comes with JavaFX.) You can download the
JavaFX library from

https://gluonhq.com/products/javafx/
You should get the JavaFX “SDK”—mnot the “jmods”—for your operating system (Linux,
Mac OS, or Windows). You should get the version number that matches the version number of
the OpenJDK that you downloaded (but it should be OK as long as the major version numbers
match; for example, JavaFX 11.0.2 should work with JDK 11.0.9).

When you download the JavaFX SDK, it will be in the form of a compressed archive file.
You will need to extract the contents of the archive. Usually, simply double-clicking the icon of
the archive file will either extract the contents or open a program that you can use to extract
the contents. You will get a directory with a name something like javafr-sdk-11.0.2. You can
put the directory anywhere on your computer, but you will need to know where it is located.

(An OpenJDK can also be downloaded as a compressed archive, which you can decompress
and place anywhere on your computer. However, to use the javac and java commands, you will
either need to put the bin directory from the OpenJDK directory on your PATH environment
variable, or use full path names for the javac and java commands. The AdoptOpenJDK
installers for Windows and for MacOS will take care of this detail for you.)

Note that if you are using Linux, then a recent OpenJDK and JavaFX should be available in
the software repositories for your version of Linux, and all that you need to do is use your Linux
software installer tool to install them. (Exactly what that means depends on the version of
Linux that you are using. Search for packages with names containing “openjdk” and “openjfx”.)

CHAPTER 2. NAMES AND THINGS o7

You will still need to know where the JavaFX SDK directory is located; on my Linux computer,
it’s /usr/share/openjfx. It is also possible to download Linux versions from the AdoptOpenJDK
and JavaFX web sites.

2.6.2 Command Line Environment

Many modern computer users find the command line environment to be pretty alien and unin-
tuitive. It is certainly very different from the graphical user interfaces that most people are used
to. However, it takes only a little practice to learn the basics of the command line environment
and to become productive using it. It is useful to know how to use the command line, and it is
particularly important for computer science students, but you can skip this subsection and the
next if you plan to do all of your work with Java in an IDE.

To use a command line programming environment, you will have to open a window where
you can type in commands. In Windows, you can open such a command window by running a
program named cmd. In Mac OS, you want to run the Terminal program, which can be found
in the Utilities folder inside the Applications folder. In Linux, there are several possibilities,
including a very old program called xterm; but try looking for “Terminal” in your Applications
menu.

No matter what type of computer you are using, when you open a command window, it
will display a prompt of some sort. Type in a command at the prompt and press return. The
computer will carry out the command, displaying any output in the command window, and
will then redisplay the prompt so that you can type another command. One of the central
concepts in the command line environment is the current directory or working directory,
which contains files that can be used by the commands that you type. (The words “directory”
and “folder” mean the same thing.) Often, the name of the current directory is part of the
command prompt. You can get a list of the files in the current directory by typing in the
command dir (on Windows) or Is (on Linux and Mac OS). When the window first opens,
the current directory is your home directory, where your personal files are stored. You can
change the current directory using the ed command with the name of the directory that you
want to use. For example, if the current directory is your home directory, then you can change
into your Desktop directory by typing the command cd Desktop (and then pressing return).

You might want to create a directory (that is, a folder) to hold your Java work. For example,
you might create a directory named javawork in your home directory. You can do this using
your computer’s GUI; another way is to use the command line: Open a command window. If
you want to put your work directory in a different folder from your home directory, cd into
the directory where you want to put it. Then enter the command mkdir javawork to make
the directory. When you want to work on programming, open a command window and use the
c¢d command to change into your Java work directory. Of course, you can have more than one
working directory for your Java work; you can organize your files any way you like.

* koXk

The most basic commands for using Java on the command line are javac and java. The
javac command is used to compile Java source code, and java is used to run Java programs.
These commands, and other commands for working with Java, can be found in a directory
named bin inside the JDK directory. If you set things up correctly on your computer, it should
recognize these commands when you type them on the command line. Try typing the commands
java -version and javac -version. The output from these commands should tell you which
version of Java is being used. If you get a message such as “Command not found,” then Java

CHAPTER 2. NAMES AND THINGS o8

is not correctly configured.

Java should already be configured correctly on Linux, if you have installed Java from the
Linux software repositories. The same is true on Mac OS and Windows, if you have used an
installer from AdoptOpenJDK.

x kX

To test the javac command, place a copy of HelloWorld.java into your working directory.
(If you downloaded the Web site of this book, you can find it in the directory named chapter2
inside the directory named source; you can use your computer’s GUI to copy-and-paste this file
into your working directory. Alternatively, you can navigate to HelloWorld.java on the book’s
Web site and use the “Save As” command in your Web browser to save a copy of the file into
your working directory.) Type the command:

javac HelloWorld.java

This will compile HelloWorld. java and will create a bytecode file named HelloWorld.class
in the same directory. Note that if the command succeeds, you will not get any response from
the computer; it will just redisplay the command prompt to tell you it’s ready for another
command. You will then be able to run the program using the java command:

java HelloWorld

The computer should respond by outputting the message “Hello World!”. Note that although
the program is stored in a file named HelloWorld.class, the java command uses the name of
the class, HelloWorld, not the name of the file.

Many of the sample programs for this book use Text/O to read input from the user (see
Subsection 2.4.3). Since Text/O is not a standard part of Java, you must make it available to any
program that uses it. This means that your working directory should contain a folder named
textio, and inside that folder should be the file TextIO.java. You can copy TextIO.java from
this book’s source directory, or your can download it from the web site, but you should be sure
to place it inside a folder named textio in the same directory as the program that uses Text/O.

Once you have TextI0.java you can run a sample program such as Interest2.java to test
user input. First, compile the program with the command

javac Interest2.java

If successful, this will create the compiled file named Interest2.class. But you will also notice
that it creates the file TextI0.class inside the textio folder, if that file does not already exist.
More generally, the javac command will compile not just the file that you specify but also any
additional Java files that are needed. Once you have Interest2.class, you can run it using
the command

java Interest2

You will be asked to enter some information, and you will respond by typing your answers into
the command window, pressing return at the end of each line. When the program ends, you
will see the command prompt, and you can enter another command. (Note, by the way, that
“java TextI0” would not make sense, since TextIO does not have a main() routine, and so it
is not possible to execute it as a program.)

You can follow a similar procedure to run all of the examples in this book that do not use
JavaFX. For running JavaFX programs, see the next subsection below.

x kX

http://math.hws.edu/eck/cs124/javanotes8/source/chapter2/HelloWorld.java
http://math.hws.edu/eck/cs124/javanotes8/source/chapter2/HelloWorld.java
http://math.hws.edu/javanotes/source/index.html
http://math.hws.edu/eck/cs124/javanotes8/source/chapter2/textio/TextIO.java
http://math.hws.edu/eck/cs124/javanotes8/source/chapter2/Interest2.java

CHAPTER 2. NAMES AND THINGS 99

To create your own programs, you will need a text editor. A text editor is a computer
program that allows you to create and save documents that contain plain text. It is important
that the documents be saved as plain text, that is without any special encoding or formatting
information. Word processor documents are not appropriate, unless you can get your word
processor to save as plain text. A good text editor can make programming a lot more pleasant.
Linux comes with several text editors. On Windows, you can use notepad in a pinch, but you
will probably want something better. For Mac OS, you might download the BBEdit application,
which can be used for free. One possibility that will work on any platform is to use jedit, a
programmer’s text editor that is itself written in Java and that can be downloaded for free from
www.jedit.org. Another popular cross-platform programming editor is Atom, available from
atom.io.

To work on your programs, you can open a command line window and cd into the working
directory where you will store your source code files. Start up your text editor program, such
as by double-clicking its icon or selecting it from a Start menu. Type your code into the editor
window, or open an existing source code file that you want to modify. Save the file into your
working directory. Remember that the name of a Java source code file must end in “.java”, and
the rest of the file name must match the name of the class that is defined in the file. Once the
file is saved in your working directory, go to the command window and use the javac command
to compile it, as discussed above. If there are syntax errors in the code, they will be listed in the
command window. Each error message contains the line number in the file where the computer
found the error. Go back to the editor and try to fix one or more errors, save your changes,
and then try the javac command again. (It’s usually a good idea to just work on the first few
errors; sometimes fixing those will make other errors go away.) Remember that when the javac
command finally succeeds, you will get no message at all, or possibly just some “warnings”;
warnings do not stop a program from running. Then you can use the java command to run
your program, as described above. Once you’ve compiled the program, you can run it as many
times as you like without recompiling it.

That’s really all there is to it: Keep both editor and command-line window open. Edit,
save, and compile until you have eliminated all the syntax errors. (Always remember to save
the file before compiling it—the compiler only sees the saved file, not the version in the editor
window.) When you run the program, you might find that it has semantic errors that cause it
to run incorrectly. In that case, you have to go back to the edit/save/compile loop to try to
find and fix the problem.

2.6.3 JavaFX on the Command Line

JavaFX is a collection of Java classes that can be used for making GUI programs. In this book,
it is first used in Section 3.9 and is covered extensively in Chapter 6 and Chapter 13. It is
also used in example programs in several other chapters. JavaFX was a standard part of the
Oracle JDK for Java 8, but with OpenJDK and with any JDK for Java 11 and later, JavaFX
requires some special treatment. This subsection explains how to use JavaFX on the command
line with Java 11 or later. It assumes that you have already downloaded the JavaFX SDK,
as described above. Starting with Java 11, JavaFX is distributed as a set of “modules.” (See
Subsection 4.6.4) The modules are stored in .jar files in the lib subdirectory of the JavaFX
SDK. When using the javac and java commands on a program that uses JavaFX, you need
to tell the command where to find the JavaFX modules.

The modules are specified for the javac and java commands using two command options:
--module-path and --add-modules. The first option specifies the directory that contains the

http://www.jedit.org/

CHAPTER 2. NAMES AND THINGS 60

module .jar files, and the second says which modules you actually want to use. For the purposes
of this textbook, you can set the value of ——add-modules to ALL-MODULE-PATH, which makes
all of JavaFX available to your program. The value of --module-path is a path to the lib
directory that contains the JavaFX .jar files. For example, let’s say that the JavaFX directory
is named openjfr-sdk-11 and that it is in my home directory, /home/eck. Then the full path to
the lib directory is /home/eck/openjfx-sdk-11/1ib, and the javac command for compiling
JavaFX programs would be:

javac --module-path=/home/eck/openjfx-sdk-11/1ib --add-modules=ALL-MODULE-PATH

followed by the .java files that you want to compile. Exactly the same options would be used
with the java command to run JavaFX programs. The option --module-path can also be
abbreviated to -p, with no equals sign. So this can also be written

javac -p /home/eck/openjfx-sdk-11/1ib --add-modules=ALL-MODULE-PATH

If you don’t know the full path to the JavaFX SDK, open a command window and use the
cd command to move to the SDK’s lib directory. On Mac or Linux, enter the command pwd
to print out the full path of the working directory. On windows, use the command c¢d, with no
directory specified, to print out the path. Use the output as the value for the —~-module-path.
On windows, a typical java command for use with javafx might look something like this:

java -p C:\Users\eck\openjfx-sdk-11\1ib --add-modules=ALL-MODULE-PATH

If the path name includes a space, or certain other special characters, it must be enclosed in
quotation marks.

Of course, this is very verbose, and it would be nice not to have to retype it all the time.
On Mac OS or Linux, it is easy to define aliases, which are shortcuts for long commands. On
my computer, I used an alias to define a jfrc command for compiling JavaFX programs. In
the alias, I used the full path name of the javac command as well as the full path name of
the JavaFX [ib directory. This allowed me to use a JDK that was not officially installed on the
computer. The alias is defined as follows, except that this must all be typed on one line:

alias jfxc=’/home/eck/jdk-11.0.7/bin/javac
--module-path=/home/eck/javafx-sdk-11/1ib
--add-modules=ALL-MODULE-PATH’

Similarly, I defined an alias for running JavaFX programs (again, all on one line):

alias jfx=’/home/eck/jdk-11.0.7/bin/java
--module-path=/home/eck/javafx-sdk-11/1ib
—--add-modules=ALL-MODULE_PATH’

To make these alias definitions permanent on my Linux computer, I added them to a file
named .bashrc. On Mac OS, I would put them in a file named .zshrc for Mac OS 10.15 and
later or in a file named .bash_profile (for earlier versions of Mac OS). The file must be placed
in your home directory. The file might or might not already exist; if it doesn’t exist, you can
create it. The file is executed whenever you open a Terminal window. (In particular, changes
do not become effective until you open a new Terminal.) Note that the file name begins with a
period, which makes it a “hidden file.” That means that it won’t show up in a usual directory
listing or file browser. (On Linux, it’s usually easy to set a file browser window to show hidden
files; try looking in a “View” menu. On Magc, it’s not so easy. In any case, on the command
line, you can get a directory listing that includes hidden files using the command [s -a — with
a space after [s. If you have trouble working with a hidden file, one option is to rename it to be

CHAPTER 2. NAMES AND THINGS 61

a non-hidden file that you can edit, and then rename it back. The mv command can be used
to rename files. For example: muv .zshrc temp and muv temp .zshre.)

Unfortunately, Windows currently does not have an equivalent of a .bashrc or .zshrc for its
cmd command window. One option is to make a batch script file to run the command. For
compilation, you could create a file named jfrc.bat containing just one line similar to

javac -p C:\Users\eck\javafx-sdk-11\1ib --add-modules=ALL-MODULE-PATH 7x*

but, of course, using the appropriate JavaFX location for your own computer. The “%*” at the
end represents the inputs to the javac command. The file can be in the current directory or
somewhere on the system path, such as the JDK bin directory. Then you can use jfxc as a
command for compiling JavaFX programs:

jfxc MyJavaFXProgram. java

You can handle the java command with a similar .bat file.

2.6.4 Eclipse IDE

In an Integrated Development Environment, everything you need to create, compile, and run
programs is integrated into a single package, with a graphical user interface that will be familiar
to most computer users. There are a number of different IDEs for Java program development,
ranging from fairly simple wrappers around the JDK to highly complex applications with a
multitude of features. For a beginning programmer, there is a danger in using an IDE, since
the difficulty of learning to use the IDE, on top of the difficulty of learning to program, can be
daunting. However, for my own programming, I generally use the Eclipse IDE, and I introduce
my students to it after they have had some experience with the command line. T will discuss
Eclipse in some detail and a much simpler alternative, BlueJ, more briefly. IDEs have features
that are very useful even for a beginning programmer, although a beginner will want to ignore
many of their advanced features.

Unless you happen to be using Oracle’s JDK for Java 8, 9, or 10, using Eclipse for JavaFX
programs will require some extra configuration. The next subsection discusses using JavaFX
in Eclipse. This subsection tells you how to use it for programs that use only standard Java
classes.

You can download an Eclipse IDE from eclipse.org. When I install Eclipse, I get the “Eclipse
IDE for Java Developers” package (not the “installer”) from this web page:

https://www.eclipse.org/downloads/packages/
For Windows and Linux, the download is a compressed archive file. You can simply extract
the contents of the archive and place the resulting directory wherever you want it on your
computer. You will find the Eclipse application in that directory, and you can start Eclipse by
double-clicking the application icon. For Mac OS, the download is a .dmg file that contains the
Eclipse application. You can open the .dmg file and drag the application to any location that
you prefer (probably the Applications folder).

Eclipse is a free program. It is itself written in Java. Recent versions of Eclipse include a
copy of an OpenJDK (although Eclipse calls it a JRE), so you can use it without downloading a
separate JDK. The June 2021 version includes a Java 16 SDK. The upcoming September 2021
version is likely to use Java 17.

The first time you start Eclipse, you will be asked to specify a workspace, which is the
directory where your work will be stored. You can accept the default name, or provide one
of your own. You can use multiple workspaces and select the one that you want to use at

CHAPTER 2. NAMES AND THINGS 62

startup. When a new workspace is first opened, the Eclipse window will be filled by a large
“Welcome” screen that includes links to extensive documentation and tutorials. You should
close this screen, by clicking the “X” next to the word “Welcome”; you can get back to it later
by choosing “Welcome” from the “Help” menu.

The Eclipse GUI consists of one large window that is divided into several sections. Each
section contains one or more views. For example, a view can be a text editor, it can be a place
where a program can do I/O, or it can contain a list of your projects. If there are several views
in one section of the window, then there will be tabs at the top of the section to select the view
that is displayed in that section. This will happen, for example, if you have several editor views
open at the same time.

Each view displays a different type of information. The whole set of views in the window
is called a perspective. Eclipse uses different perspectives, that is, different sets of views of
different types of information, for different tasks. For compiling and running programs, the
only perspective that you will need is the “Java Perspective,” which is the default. As you
become more experienced, you might want to use the “Debug Perspective,” which has features
designed to help you find semantic errors in programs. There are small buttons in the Eclipse
toolbar that can be used to switch between perspectives.

The Java Perspective includes a large area in the center of the window that contains text
editor views. This is where you will create and edit your programs. To the left of this is the
Package Explorer view, which will contain a list of your Java projects and source code files. To
the right are one or more other views that you might or might not find useful; I usually close
them by clicking the small “X” next to the name of each one. Several other views that will
certainly be useful appear under different tabs in a section of the window below the editing
area. If you accidently close one of the important views, such as the Package Explorer, you can
get it back by selecting it from the “Show View” submenu of the “Window” menu. You can
also reset the whole window to its default contents by selecting “Reset Perspective” from the
“Window” menu.

* ok %k
To do any work in Eclipse, you need a project. To start a Java project, go to the “New”
submenu in the “File” menu, and select the “Java Project” command. In the window that pops

up, you will need to fill in a “Project Name,” which can be anything you like. There are two
other sections of the window that you might need to pay attention to:

CHAPTER 2. NAMES AND THINGS 63

JRE
Use an execution environment JRE: lavasE-16 -
© Use a project specific JRE: jre with JavaFXx -
Use default JRE 'jre’' and workspace compiler preferences Configure JREs
Project layout
Module

Creategodule—info.}ava File

If the project will use JavaFX, and if you have configured the workspace for JavaFX as described
in the next subsection, then you should make sure that the JRE configuration that you have
created for JavaFX is selected in the “JRE” section of the dialog box, as shown here. And
for any program from this textbook, you should uncheck the option labeled “Create module-
info.java file” in the “Module” section. (The “Module” section appears in the June 2021 version
of Eclipse but not in earlier versions. For earlier versions, you might be asked whether you want
to create module-info.java. For the programs in this book, you should always say no.) This
textbook does not use modular programs. Note that the workspace will remember these two
settings for the next time that you create a new project and that it is harmless to use a JRE
with JavaFX support even for a project that does not use JavaFX.

After entering a project name, and changing the options if necessary, click the “Finish”
button. Remember to say “Don’t Create” if Eclipse asks you whether you want to create
“module-info.java”. The project should appear in the “Package Explorer” view on the left side
of the Eclipse window. Click on the small triangle or plus sign next to the project name to
see the contents of the project. Assuming that you use the default settings, there should be
a directory named “src,” which is where your Java source code files will go. The project also
contains the “JRE System Library”. This is the collection of standard built-in classes that
come with Java; if you have configured the project for JavaFX, it will also include the JavaFX
classes.

To run any of the sample Java programs from this textbook, you need to copy the source
code file into your Eclipse Java project. Assuming that you have downloaded the source code
file onto your computer, you can copy-and-paste it into the Eclipse window. (Right-click the
file icon (or control-click on Mac OS); select “Copy” from the pop-up menu; then right-click
the project’s src folder in the Eclipse window, and select “Paste”. Be sure to paste it into the
src folder, not into the project itself; files outside the src folder are not treated as Java source
code files.) Alternatively, you can try dragging the file icon from a file browser window onto
the src folder in the Eclipse window.

To use the Text/O-based examples from this textbook, you must add the source code file
TextIO.java to your project. This file has to be in a “package” named textio. If you have
downloaded TextIO.java and placed it into a folder named “textio,” as described above, then

http://math.hws.edu/eck/cs124/javanotes8/source/chapter2/textio/TextIO.java

CHAPTER 2. NAMES AND THINGS 64

you can simply copy-and-paste the textio folder into the “sr¢” folder of your project. Alterna-
tively, you can create the textio package using the “New/Package” command from the “File”
menu. This will make a folder named “textio” in your project, inside the src folder, and you can
then copy-and-paste TextIO.java into that folder. In any case, package textio should appear
under “src¢” in your project, with TextI0.java inside it. (You can drag files from one location
to another in the Package Explorer view, if you accidently put a file in the wrong location.)

Once a Java program is in the project, you can open it in an editor by double-clicking the
file name in the “Package Explorer” view. To run the program, right-click in the editor window,
or on the file name in the Package Explorer view (or control-click in Mac OS). In the menu that
pops up, go to the “Run As” submenu, and select “Java Application”. The program will be
executed. If the program writes to standard output, the output will appear in the “Console”
view, in the area of the Eclipse window below the editing area. If the program uses Text/O
or Scanner for input, you will have to type the required input into the “Console” view—click
the “Console” view before you start typing so that the characters that you type will be
sent to the correct part of the window. (For an easier way to run a program, find and click
the small “Run” button in Eclipse’s tool bar. This will run either the program in the editor
window, the program selected in the Package Explorer view, or the program that was run most
recently, depending on context.) Note that when you run a program in Eclipse, it is compiled
automatically. There is no separate compilation step.

You can have more than one program in the same Eclipse project, or you can create addi-
tional projects to organize your work better. Remember to place a copy of TextlO.java, inside
a folder named textio, in any project that requires it.

N 3

To create a new Java program in Eclipse, you must create a new Java class. To do that,
right-click the Java project name in the “Project Explorer” view. Go to the “New” submenu
of the popup menu, and select “Class”. (Alternatively, there is a small icon in the toolbar at
the top of the Eclipse window that you can click to create a new Java class.) In the window
that opens, type in the name of the class that you want to create. The class name must be
a legal Java identifier. Note that you want the name of the class, not the name of the source
code file, so don’t add “.java” at the end of the name. The window also includes an input box
labeled “Package” where you can specify the name of a package to contain the class. Most
examples in this book use the “default package,” but you can create your own programs in any
package. To use the default package, the “Package” input box should be empty. Finally, click
the “Finish” button to create the class. The class should appear inside the “src” folder, in a
folder corresponding to its package. The new file should automatically open in the editing area
so that you can start typing your program.

Eclipse has several features that aid you as you type your code. It will underline any syntax
error with a jagged red line, and in some cases will place an error marker in the left border
of the edit window. If you hover the mouse cursor over the error marker or over the error
itself, a description of the error will appear. Note that you do not have to get rid of every
error immediately as you type; many errors will go away as you type in more of the program!
If an error marker displays a small “light bulb,” Eclipse is offering to try to fix the error for
you. Click the light bulb—or simply hover your mouse over the actual error—to get a list of
possible fixes, then click the fix that you want to apply. For example, if you use an undeclared
variable in your program, Eclipse will offer to declare it for you. You can actually use this
error-correcting feature to get Eclipse to write certain types of code for you! Unfortunately,
you’ll find that you won’t understand a lot of the proposed fixes until you learn more about

http://math.hws.edu/eck/cs124/javanotes8/source/chapter2/textio/TextIO.java

CHAPTER 2. NAMES AND THINGS 65

the Java language, and it is not a good idea to apply a fix that you don’t understand—often
that will just make things worse in the end.

Eclipse will also look for spelling errors in comments and will underline them with jagged
red lines. Hover your mouse over the error to get a list of possible correct spellings.

Another essential Eclipse feature is content assist. Content assist can be invoked by typing
Control-Space. It will offer possible completions of whatever you are typing at the moment. For
example, if you type part of an identifier and hit Control-Space, you will get a list of identifiers
that start with the characters that you have typed; use the up and down arrow keys to select one
of the items in the list, and press Return or Enter. (You can also click an item with the mouse
to select it, or hit Escape to dismiss the list.) If there is only one possible completion when
you hit Control-Space, it will be inserted automatically. By default, Content Assist will also
pop up automatically, after a short delay, when you type a period or certain other characters.
For example, if you type “TextI0.” and pause for just a fraction of a second, you will get a
list of all the subroutines in the Text/O class. Personally, I find this auto-activation annoying.
You can disable it in the Eclipse Preferences. (Look under Java / Editor / Content Assist, and
turn off the “Enable auto activation” option.) You can still call up Code Assist manually with
Control-Space.

Once you have an error-free program, you can run it as described above. If you find a
problem when you run it, it’s very easy to go back to the editor, make changes, and run it
again.

2.6.5 Using JavaFX in Eclipse

You are probably using a JDK that does not include JavaFX, which means that you need to
configure your Eclipse projects to use it. There are many ways to do that. My goal here is not
to present the most “correct” or general way to do it; I just want to make it possible to easily
work with basic JavaFX programs like the ones that come with this textbook. I will discuss a
one-time configuration of an Eclipse workspace that seems to work reliably for all the versions
of Eclipse in which I have tried it.

You need to get a JavaFX SDK from the JavaFX download site, as discussed above. You
want an SDK whose major version number is the same as the JDK version that is included in
Eclipse. For the June 2021 version of Eclipse, that would be JavaFX SDK 16.

To begin, open the Eclipse preferences, using the “Preferences” command (which is in the
“Windows” menu on Linux and Windows and in the “Eclipse” menu on Mac OS). Expand the
Java section in the list on the left, by clicking the small triangle or plus sign next to the word
“Java.” Click on “Installed JREs.” You will see a list of the Java environments that Eclipse
knows about. In a new workspace, there should be just one, showing the JRE that is included
in Eclipse. You can click on that JRE to select it and click the “Duplicate” button to make a
copy. You can then add JavaFX support to the copy. (You could also just “Edit” the original
JRE, or “Add” a completely new configuration. I recommend using “Duplicate”, but if you
add a new configuration, you would have the freedom to use a different JDK that you have
downloaded, along with a matching JavaFX.)

When you “Duplicate” an existing JRE, you should see a dialog box similar to the following.
The “JRE home” and “JRE name” will already be filled in, and there will be one entry under
“JRE system libraries”.

CHAPTER 2. NAMES AND THINGS 66

Edit JRE o0
JRE Definition =
Specify attributes for a JRE ;'*—3‘3
JRE home: | /homefeck/eclipse/plugins/ora.eclipsejustj.openjdk.hotspotjre.full.liny | | Directory... |
JRE name: | jre with JavaFx
Default VM arguments: | -p /home/eck/javafx-sdk-16/lib —add-modules=ALL-MODULE-PATH | | Variables.. |

JRE system libraries:

» g':l_é,r‘home,‘eck;‘eclipse;‘piugin5;‘0rg.eclipse.justj.openjdk.horspot.jre.l"ui!.iinux.xSﬁ_ﬁd_; Add External JARs... |
ot Mhome/ack/flavafx-sdk-16/lib/lavafx-swejar ;

&% /home/eck/javafx-sdk-16/lib/javafuweb jar Javadoc Location...
ot /home/eck/javafx-sdk-16/libflavafx.swing.ar B '
&t /home/eck/javafx-sdk-16/lib/javafx.mediajar _ Source Attachment... |
&¢ /home/eck/flavafx-sdk-16/lib/javafx.araphics.jar Z .
B3 [homefeck/javafx-sdk-16/lib/javafx.Fxml jar _External SnaRIB0NE.
it /home/eck/lavafx-sdk-16/lib/javafx.controlsjar RarAE
&t /home/eck/javafx-sdk-16/lib/lavafx.basejar

Up

|
® e N

You should change the “JRE name” to something that indicates that it supports JavaFX. This
is just so that you will recognize the name when you create a project, as discussed in the
previous subsection. But the main thing is to add the JavaFX configuration.

Remember that to use JavaFX, you need to make it available to your program both at
compile time and at run time. The first step in the configuration is to make it available at
compile time. To do that, you want to add the JavaFX .jar files to the JRE system libraries:
Click the “Add External JARs” button, and navigate to the lib directory in the JavaFX SDK
that you downloaded or installed. You should see the JavaFX .jar files. Select them all, and
click “OK”. They should appear in the “JRE system libraries” list.

The second step is to configure the JavaFX source files. This optional step will allow Eclipse
to find the documentation for JavaFX, which can be very useful when you are writing programs.
For this step, make sure that all of the JavaFX jar files are selected in the list of .jar files. Click
the “Source Attachment” button. In the “Source Attachment Configuration” dialog box, select
“External Location”, and click “External File”. Select the file src.zip from the JavaFX lib
directory, and click “OK”. That’s all there is to it.

Finally, you must make JavaFX available to your programs at run time. To do that, you
need to fill in the “Default VM arguments” input box by typing in the JavaFX command
line options for the java command. The input box contains options that will be added to the
java command every time you run a program in Eclipse using this JDK. You should type the
same options that you would use on the java command line, as discussed above. The value
of the -p (or --module-path) option is the location of the JavaFX [ib directory. It should be
exactly the same as the beginning of the paths for the JavaFX .jar files as shown in the “JRE
system libraries” list. The value for ——add-modules can be ALL-MODULE-PATH, as shown in the
illustration.

When everything is set up, click “Finish” and then click “Apply and Close” in the main
“Preferences” dialog box. When you create a new Java project in the workspace, make sure

CHAPTER 2. NAMES AND THINGS 67

that the JRE that you set up to use JavaFX is selected in the project creation dialog box.
Look in the “JRE” section of the dialog box, select “Use project-specific JRE,” and select the
appropriate JRE from the popup menu. You should then be able to use JavaFX in that project.
If not, check your JRE configuration. You can “Edit” it in the same Java preferences where
you set it up in the first place. If you can’t compile JavaFX programs, make sure that you
are using a JavaFX SDK with the same major version number as the built-in JDK in Eclipse
(JavaFX 16 for the June 2021 version of Eclipse). If you can compile JavaFX programs but not
run them, then the problem is likely to be with the “Default VM arguments”.

x* kX

(As a side note, it is possible to use the JDK that is now included with Eclipse on the
command line. That JDK is a directory inside the Eclipse installation, with a long, complex
name. The best way to find the name might be to open The “Installed JREs” section of
the Eclipse preferences, as described above, select the built-in JRE in the list of “Installed
JREs”, and click “Edit.” The name of the JDK directory will be in the “JRE home” section
of the dialog, and you can copy-and-paste it from there. You need to add /bin— or \bin on
Windows—to that directory name to get the name of the directory that contains the JDK
command line programs such as javac. You can add the full name of that bin directory to your
PATH environment variable, or you can use full path names for the javac and java commands.)

2.6.6 Blueld

Finally, I will mention BlueJ, a small IDE that is designed specifically for people who are learning
to program. It is much less complex than Eclipse, but it does have some features that make
it useful for education. BlueJ can be downloaded from bluej.org. There are installers available
for Windows, MacOS, and Windows. As of August 2021, the installers include OpenJDK 11
as well as JavaFX 11, so you will not need to do any additional downloading or configuration.
There is also a generic installer that requires you to download a JDK and JavaFX separately.
When you run the generic installer, BlueJ will ask you to input the locations of the JDK and
JavaFX. (The current version of the generic installer in July 2021 did not work for me with
OpenJDK 16 but did work with OpenJDK 15. It will certainly work with OpenJDK 11.)

In BluelJ, you can begin a project with the “New Project” command in the “Project” menu.
A BlueJ project is simply a folder. When you create a project, you will have to select a folder
name that does not already exist. The folder will be created and a window will be opened to
show the contents of the folder. Files are shown as icons in the BlueJ window. You can drag
Jjava files from the file system onto that window to add files to the project; they will be copied
into the project folder as well as shown in the window. You can also copy files directly into the
project folder, but BlueJ won’t see them until the next time you open the project. When you
restart BluelJ, it should show the project that you were working on most recently, but you can
open any project with a command from the “Project” menu.

There is a button in the project window for creating a new class. An icon for the class is
added to the window, and a .java source code file is created in the project folder. The file is not
automatically opened for editing. To edit a file, double-click its icon in the project window. An
editor will be opened in a separate window. (A newly created class will contain some default
code that you probably don’t want; you can erase it and add a main() routine instead.) The
BlueJ editor does not show errors as you type. Errors will be reported when you compile the
program. Also, it does not offer automatic fixes for errors. It has a less capable version of
Eclipse’s Content Assist, which seems only to work for getting a list of available subroutines in

CHAPTER 2. NAMES AND THINGS 68

a class or object; call up the list by hitting Control-Space after typing the period following the
name of a class or object.

An editor window contains a button for compiling the program in the window. There is
also a compile button in the project window, which compiles all the classes in the project.

To run a program, it must already be compiled. Right-click the icon of a compiled program.
In the menu that pops up, you will see “void main(String[] args)”. Select that option from
the menu to run the program. Just click “OK” in the dialog box that pops up. A separate
window will open for input/output.

One of the neatest features of BlueJ is that you can actually use it to run any subroutine,
not just main. If a class contains other subroutines, you will see them in the list that you get
by right-clicking its icon. A pop-up dialog allows you to enter any parameters required by the
routine, and if the routine is a function, you will get another dialog box after the routine has
been executed to tell you its return value. This allows easy testing of individual subroutines.
Furthermore, you can also use BlueJ to create new objects from a class. An icon for the object
will be added at the bottom of the project window, and you can right-click that icon to get
a list of subroutines in the object. This will, of course, not be useful to you until we get to
object-oriented programming in Chapter 5.

2.6.7 The Problem of Packages

Every class in Java is contained in something called a package. Classes that are not explicitly
put into a package are in the “default” package. All of Java’s standard classes are in named
packages. This includes even classes like String and System, which are in a package named
java.lang. Classes in java.lang are automatically imported into any Java file, but classes in
other packages must be imported using an import directive. My Text/O class is in a package
named textio, and it must be imported into a program that wants to use it. I will discuss
packages in greater detail in Section 4.6. For now, you just need to know some basic facts.

Although most of my examples are in the default package, the use of the default package is
in fact discouraged, according to official Java style guidelines. Nevertheless, I have chosen to
use it, since it seems easier for beginning programmers to avoid packages as much as possible,
at least at first. If Eclipse tries to put a class into a package, you can delete the package name
from the class-creation dialog to get it to use the default package instead. But if you do create
a class in a package, the source code starts with a line that specifies which package the class is
in. For example, if the class is in a package named test.pkg, then the first line of the source
code will be

package test.pkg;

For example, the source code for Text/O begins with “package textio;”. I put Text/O in a
package because a class that is in a non-default package cannot use a class from the default
package. That is, if Text/O were in the default package, then it could only be used by programs
that are also in the default package. (In fact, in earlier versions of this textbook, Text/O was
in the default package. I have moved it to package textio for Version 8 of the book.)

When packages are used in a command-line environment, some complications arise. For
example, if a program is in a package named test.pkg, then the source code file must be in a
subdirectory named “pkg” inside a directory named “test” that is in turn inside your main
Java working directory. Nevertheless, when you compile or execute the program, you should
be working in the main directory, not in the subdirectory. When you compile the source
code file, you have to include the name of the directory in the command: For example, for a

CHAPTER 2. NAMES AND THINGS 69

program in package test.pkg use “javac test/pkg/ClassName.java” on Linux or Mac OS, or
“javac test\pkg\ClassName. java”’ on Windows. The command for executing the program is
then “java test.pkg.ClassName”, with a period separating the package name from the class
name.

2.6.8 About jshell

I will mention one more command-line tool for working with Java: jshell. The jshell command
is a standard part of the JDK for Java 9 or later. If you have Java 9 or later, and if you can
use the javac and java commands on the command line, then you can also use jshell. The
purpose of jshell is to let you type in and execute Java code without the bother of creating
a .java file and writing a main program. To start jshell, just enter the command on a line
by itself. You will get a jshell prompt where you can enter either a Java statement or a Java
expression. If you enter a statement, it will be executed. If you enter an expression, its value
will be printed. You do not have to place a semicolon at the end of a line. Here is a short
example of a jshell session.

$ jshell
| Welcome to JShell -- Version 11.0.7
| For an introduction type: /help intro

jshell> System.out.println("Hello World")
Hello World

jshell> int x = 42
==> 42

jshell> x * x
$3 ==> 1764

jshell> /exit
| Goodbye

Using jshell can be a great way to learn Java and to experiment with its features. I won’t

give any more detailed information about it in this book, but you can learn more at
https://docs.oracle.com/en/java/javase/11/jshell /introduction-jshell.html

or you can use the /help command inside jshell to learn more about it.

EXERCISES 70

Exercises for Chapter 2

1. Write a program that will print your initials to standard output in letters that are nine (solution)
lines tall. Each big letter should be made up of a bunch of *’s. For example, if your initials
were “DJE”, then the output would look something like:

ok Kok kK sk sk ok ok ok ok ok sk ok ok sk ok sk sk ok ok sk ok ok ok ok
*x *% *% *x

*x * % *x *x

*x *x *x *x

*x *k *x ok ok ok ok ok K
*x *k *k *x *k

*x * % *x *% *x

*x *x k% okk *x

*ok ok Kk * Kok ok ok ok ok ok ok K

2. Write a program that simulates rolling a pair of dice. You can simulate rolling one die by (solution)
choosing one of the integers 1, 2, 3, 4, 5, or 6 at random. The number you pick represents
the number on the die after it is rolled. As pointed out in Section 2.5, the expression

(int) (Math.random()*6) + 1

does the computation to select a random integer between 1 and 6. You can assign this
value to a variable to represent one of the dice that are being rolled. Do this twice and
add the results together to get the total roll. Your program should report the number
showing on each die as well as the total roll. For example:

The first die comes up 3
The second die comes up 5
Your total roll is 8

3. Write a program that asks the user’s name, and then greets the user by name. Before (solution)
outputting the user’s name, convert it to upper case letters. For example, if the user’s
name is Fred, then the program should respond “Hello, FRED, nice to meet you!”.

4. Write a program that helps the user count his change. The program should ask how many (solution)
quarters the user has, then how many dimes, then how many nickels, then how many
pennies. Then the program should tell the user how much money he has, expressed in
dollars.

5. If you have N eggs, then you have N/12 dozen eggs, with N%12 eggs left over. (This is (solution)
essentially the definition of the / and % operators for integers.) Write a program that asks
the user how many eggs she has and then tells the user how many dozen eggs she has and
how many extra eggs are left over.
A gross of eggs is equal to 144 eggs. Extend your program so that it will tell the user
how many gross, how many dozen, and how many left over eggs she has. For example, if
the user says that she has 1342 eggs, then your program would respond with

Your number of eggs is 9 gross, 3 dozen, and 10

http://math.hws.edu/eck/cs124/javanotes8/c2/ex1-ans.html
http://math.hws.edu/eck/cs124/javanotes8/c2/ex2-ans.html
http://math.hws.edu/eck/cs124/javanotes8/c2/ex3-ans.html
http://math.hws.edu/eck/cs124/javanotes8/c2/ex4-ans.html
http://math.hws.edu/eck/cs124/javanotes8/c2/ex5-ans.html

EXERCISES 71

since 1342 is equal to 9%144 + 3*12 + 10.

6. This exercise asks you to write a program that tests some of the built-in subroutines for (solution)

working with Strings. The program should ask the user to enter their first name and their
last name, separated by a space. Read the user’s response using TextI0.getln(). Break
the input string up into two strings, one containing the first name and one containing the
last name. You can do that by using the index0f () subroutine to find the position of the
space, and then using substring() to extract each of the two names. Also output the
number of characters in each name, and output the user’s initials. (The initials are the
first letter of the first name together with the first letter of the last name.) A sample run
of the program should look something like this:

Please enter your first name and last name, separated by a space.
? Mary Smith

Your first name is Mary, which has 4 characters

Your last name is Smith, which has 5 characters

Your initials are MS

7. Suppose that a file named “testdata.txt” contains the following information: The first (solution)
line of the file is the name of a student. Each of the next three lines contains an integer.
The integers are the student’s scores on three exams. Write a program that will read
the information in the file and display (on standard output) a message that contains the
name of the student and the student’s average grade on the three exams. The average is
obtained by adding up the individual exam grades and then dividing by the number of
exams.

http://math.hws.edu/eck/cs124/javanotes8/c2/ex6-ans.html
http://math.hws.edu/eck/cs124/javanotes8/c2/ex7-ans.html

Quiz 72

Quiz on Chapter 2

(answers)

1. Briefly explain what is meant by the syntaz and the semantics of a programming language.
Give an example to illustrate the difference between a syntax error and a semantics error.

2. What does the computer do when it executes a variable declaration statement. Give an
example.

3. What is a type, as this term relates to programming?

4. One of the primitive types in Java is boolean. What is the boolean type? Where are
boolean values used? What are its possible values?

5. Give the meaning of each of the following Java operators:

a) ++
b) &&
c) 1=

6. Explain what is meant by an assignment statement, and give an example. What are
assignment statements used for?

7. What is meant by precedence of operators?
8. What is a literal?
9. In Java, classes have two fundamentally different purposes. What are they?

10. What is the difference between the statement “x = TextI0.getDouble();” and the state-
ment “x = TextI0.getlnDouble();”

11. Explain why the value of the expression 2 + 3 + "test" is the string "5test" while the
value of the expression "test" + 2 + 3 is the string "test23". What is the value of
"test" + 2 *x 37

12. Integrated Development Environments such as Eclipse often use syntax coloring, which
assigns various colors to the characters in a program to reflect the syntax of the language.
A student notices that Eclipse colors the word String differently from int, double, and
boolean. The student asks why String should be a different color, since all these words
are names of types. What’s the answer to the student’s question?

13. What is the purpose of an import directive, such as import textio.TextIO or import
java.util.Scanner?

14. Write a complete program that asks the user to enter the number of “widgets” they want
to buy and the cost per widget. The program should then output the total cost for all
the widgets. Use System.out.printf to print the cost, with two digits after the decimal
point. You do not need to include any comments in the program.

http://math.hws.edu/eck/cs124/javanotes8/c2/quiz_answers.html

Chapter 3

Programming in the Small II:
Control

T'HE BASIC BUILDING BLOCKS of programs—variables, expressions, assignment statements, and
subroutine call statements—were covered in the previous chapter. Starting with this chapter,
we look at how these building blocks can be put together to build complex programs with more
interesting behavior.

Since we are still working on the level of “programming in the small” in this chapter, we are
interested in the kind of complexity that can occur within a single subroutine. On this level,
complexity is provided by control structures. The two types of control structures, loops and
branches, can be used to repeat a sequence of statements over and over or to choose among two
or more possible courses of action. Java includes several control structures of each type, and
we will look at each of them in some detail.

Program complexity can be seen not just in control structures but also in data structures.
A data structure is an organized collection of data, chunked together so that it can be treated
as a unit. Section 3.8 in this chapter includes an introduction to one of the most common data
structures: arrays.

The chapter will also begin the study of program design. Given a problem, how can you
come up with a program to solve that problem? We’ll look at a partial answer to this question
in Section 3.2. Finally, Section 3.9 is a very brief first look at GUI programming.

3.1 Blocks, Loops, and Branches

THE ABILITY OF A COMPUTER TO PERFORM complex tasks is built on just a few ways of
combining simple commands into control structures. In Java, there are just six such structures
that are used to determine the normal flow of control in a program—and, in fact, just three
of them would be enough to write programs to perform any task. The six control structures
are: the block, the while loop, the do..while loop, the for loop, the if statement, and the
switch statement. Each of these structures is considered to be a single “statement,” but a
structured statement that can contain one or more other statements inside itself.

3.1.1 Blocks

The block is the simplest type of structured statement. Its purpose is simply to group a
sequence of statements into a single statement. The format of a block is:

73

CHAPTER 3. CONTROL 74

{
(statements)

3

That is, it consists of a sequence of statements enclosed between a pair of braces, “{” and “}”.
In fact, it is possible for a block to contain no statements at all; such a block is called an empty
block, and can actually be useful at times. An empty block consists of nothing but an empty
pair of braces. Block statements usually occur inside other statements, where their purpose is
to group together several statements into a unit. However, a block can be legally used wherever
a statement can occur. There is one place where a block is required: As you might have already
noticed in the case of the main subroutine of a program, the definition of a subroutine is a
block, since it is a sequence of statements enclosed inside a pair of braces.

I should probably note again at this point that Java is what is called a free-format language.
There are no syntax rules about how the language has to be arranged on a page. So, for example,
you could write an entire block on one line if you want. But as a matter of good programming
style, you should lay out your program on the page in a way that will make its structure as
clear as possible. In general, this means putting one statement per line and using indentation
to indicate statements that are contained inside control structures. This is the format that I
will use in my examples.

Here are two examples of blocks:

{
System.out.print("The answer is ");
System.out.println(ans);
}
{ // This block exchanges the values of x and y
int temp; // A temporary variable for use in this block.
temp = X; // Save a copy of the value of x in temp.
X =y; // Copy the value of y into x.
y = temp; // Copy the value of temp into y.

}

In the second example, a variable, temp, is declared inside the block. This is perfectly legal,
and it is good style to declare a variable inside a block if that variable is used nowhere else
but inside the block. A variable declared inside a block is completely inaccessible and invisible
from outside that block. When the computer executes the variable declaration statement, it
allocates memory to hold the value of the variable (at least conceptually). When the block
ends, that memory is discarded (that is, made available for reuse). The variable is said to be
local to the block. There is a general concept called the “scope” of an identifier. The scope of
an identifier is the part of the program in which that identifier is valid. The scope of a variable
defined inside a block is limited to that block, and more specifically to the part of the block
that comes after the declaration of the variable.

3.1.2 The Basic While Loop

The block statement by itself really doesn’t affect the flow of control in a program. The five
remaining control structures do. They can be divided into two classes: loop statements and
branching statements. You really just need one control structure from each category in order to
have a completely general-purpose programming language. More than that is just convenience.

CHAPTER 3. CONTROL 75

In this section, I'll introduce the while loop and the if statement. I'll give the full details of
these statements and of the other three control structures in later sections.

A while loop is used to repeat a given statement over and over. Of course, it’s not likely
that you would want to keep repeating it forever. That would be an infinite loop, which is
generally a bad thing. (There is an old story about computer pioneer Grace Murray Hopper,
who read instructions on a bottle of shampoo telling her to “lather, rinse, repeat.” As the
story goes, she claims that she tried to follow the directions, but she ran out of shampoo. (In
case you don’t get it, she was making a joke about the way that computers mindlessly follow
instructions.))

To be more specific, a while loop will repeat a statement over and over, but only so long
as a specified condition remains true. A while loop has the form:

while ((boolean-ezpression))
(statement)

Since the statement can be, and usually is, a block, most while loops have the form:

while ((boolean-ezpression)) {
(statements)

3

Some programmers think that the braces should always be included as a matter of style, even
when there is only one statement between them, but I don’t always follow that advice myself.

The semantics of the while statement go like this: When the computer comes to a while
statement, it evaluates the (boolean-expression), which yields either true or false as its value.
If the value is false, the computer skips over the rest of the while loop and proceeds to the
next command in the program. If the value of the expression is true, the computer executes
the (statement) or block of (statements) inside the loop. Then it returns to the beginning of
the while loop and repeats the process. That is, it re-evaluates the (boolean-expression), ends
the loop if the value is false, and continues it if the value is true. This will continue over and
over until the value of the expression is false when the computer evaluates it; if that never
happens, then there will be an infinite loop.

Here is an example of a while loop that simply prints out the numbers 1, 2, 3, 4, 5:

int number; // The number to be printed.

number = 1; // Start with 1.

while (number < 6) { // Keep going as long as number is < 6.
System.out.println(number) ;
number = number + 1; // Go on to the next number.

}

System.out.println("Done!");

The variable number is initialized with the value 1. So when the computer evaluates the
expression “number < 6”7 for the first time, it is asking whether 1 is less than 6, which is
true. The computer therefore proceeds to execute the two statements inside the loop. The
first statement prints out “1”. The second statement adds 1 to number and stores the result
back into the variable number; the value of number has been changed to 2. The computer has
reached the end of the loop, so it returns to the beginning and asks again whether number is
less than 6. Once again this is true, so the computer executes the loop again, this time printing
out 2 as the value of number and then changing the value of number to 3. It continues in this
way until eventually number becomes equal to 6. At that point, the expression “number < 6”
evaluates to false. So, the computer jumps past the end of the loop to the next statement

CHAPTER 3. CONTROL 76

and prints out the message “Done!”. Note that when the loop ends, the value of number is 6,
but the last value that was printed was 5.

By the way, you should remember that you’ll never see a while loop standing by itself
in a real program. It will always be inside a subroutine which is itself defined inside some
class. As an example of a while loop used inside a complete program, here is a little program
that computes the interest on an investment over several years. This is an improvement over
examples from the previous chapter that just reported the results for one year:

import textio.TextIO;
/%%

* This class implements a simple program that will compute the amount of
* 1interest that is earned on an investment over a period of 5 years. The
* initial amount of the investment and the interest rate are input by the
* user. The value of the investment at the end of each year is output.
*/

public class Interest3 {

public static void main(String[] args) {

double principal; // The value of the investment.
double rate; // The annual interest rate.

/* Get the initial investment and interest rate from the user. */

System.out.print ("Enter the initial investment: ");
principal = TextIO.getlnDouble();

System.out.println();

System.out.println("Enter the annual interest rate.");
System.out.print ("Enter a decimal, not a percentage: ");
rate = TextIO.getlnDouble();

System.out.println();

/* Simulate the investment for 5 years. */
int years; // Counts the number of years that have passed.

years = 0;

while (years < 5) {
double interest; // Interest for this year.
interest = principal * rate;
principal = principal + interest; // Add it to principal.
years = years + 1; // Count the current year.
System.out.print("The value of the investment after ");
System.out.print (years) ;
System.out.print(" years is $");
System.out.printf("%1.2f", principal);
System.out.println();

} // end of while loop

} // end of main()

} // end of class Interest3

You should study this program, and make sure that you understand what the computer does
step-by-step as it executes the while loop.

CHAPTER 3. CONTROL 7

3.1.3 The Basic If Statement

An if statement tells the computer to take one of two alternative courses of action, depending
on whether the value of a given boolean-valued expression is true or false. It is an example of
a “branching” or “decision” statement. An if statement has the form:

if ((boolean-expression))
(statement1)

else
(statement2)

When the computer executes an if statement, it evaluates the boolean expression. If the value
is true, the computer executes the first statement and skips the statement that follows the
“else”. If the value of the expression is false, then the computer skips the first statement and
executes the second one. Note that in any case, one and only one of the two statements inside
the if statement is executed. The two statements represent alternative courses of action; the
computer decides between these courses of action based on the value of the boolean expression.

In many cases, you want the computer to choose between doing something and not doing
it. You can do this with an if statement that omits the else part:

if ((boolean-expression))
(statement)

To execute this statement, the computer evaluates the expression. If the value is true, the
computer executes the (statement) that is contained inside the if statement; if the value is
false, the computer skips over that (statement). In either case, the computer then continues
with whatever follows the if statement in the program.

Sometimes, novice programmers confuse while statements with simple if statements (with
no else part), although their meanings are quite different. The (statement) in an if is executed
at most once, while the (statement) in a while can be executed any number of times. It can
be helpful to look at diagrams of the flow of control for while and simple if statements:

While Loop Flow of Control If Statement Flow of Control

No

Is condition true? Is condition true?

Yes Yes

Y Y

Do statement (Do statement ’

CHAPTER 3. CONTROL 78

In these diagrams, the arrows represent the flow of time as the statement is executed. Control
enters the diagram at the top and leaves at the bottom. Similarly, a flow control diagram for an
if..else statement makes it clear that exactly one of the two nested statements is executed:

If..Else Flow of Control

Yes

Is condition true?

Do statement 1 Do statement 2

x* kX

Of course, either or both of the (statements) in an if statement can be a block, and again
many programmers prefer to add the braces even when they contain just a single statement.
So an if statement often looks like:

if ((boolean-ezpression)) {
(statements)

}

else {
(statements)

}

or:

if ((boolean-ezpression)) {
(statements)

}

As an example, here is an if statement that exchanges the value of two variables, x and y,
but only if x is greater than y to begin with. After this if statement has been executed, we
can be sure that the value of x is definitely less than or equal to the value of y:

if (x>y) {

int temp; // A temporary variable for use in this block.
temp = X; // Save a copy of the value of x in temp.

X =7y; // Copy the value of y into x.

y = temp; // Copy the value of temp into y.

CHAPTER 3. CONTROL 79

Finally, here is an example of an if statement that includes an else part. See if you can
figure out what it does, and why it would be used:

if (years > 1) { // handle case for 2 or more years
System.out.print ("The value of the investment after ");
System.out.print (years) ;
System.out.print(" years is $");
}
else { // handle case for 1 year
System.out.print ("The value of the investment after 1 year is $");
} // end of if statement
System.out.printf("%1.2f", principal); // this is done in any case

I’ll have more to say about control structures later in this chapter. But you already know
the essentials. If you never learned anything more about control structures, you would already
know enough to perform any possible computing task. Simple looping and branching are all
you really need!

3.1.4 Definite Assignment

I will finish this introduction to control structures with a somewhat technical issue that you
might not fully understand the first time you encounter it. Consider the following two code
segments, which seem to be entirely equivalent:

int y; int y;
if (x < 0) { if (x < 0) {
y=1; y=1;
} }
else { if (x >=0) {
y =2 y=2
} }
System.out.println(y); System.out.println(y);

In the version on the left, y is assigned the value 1 if x < 0 and it is assigned the value 2
otherwise, that is, if x >= 0. Exactly the same is true of the version on the right. However, there
is a subtle difference. In fact, the Java compiler will report an error for the System.out.println
statement in the code on the right, while the code on the left is perfectly fine!

The problem is that in the code on the right, the computer can’t tell that the variable y has
definitely been assigned a value. When an if statement has no else part, the statement inside
the if might or might not be executed, depending on the value of the condition. The compiler
can’t tell whether it will be executed or not, since the condition will only be evaluated when
the program is running. For the code on the right above, as far as the compiler is concerned, it
is possible that neither statement, y = 1 or y = 2, will be evaluated, so it is possible that the
output statement is trying to print an undefined value. The compiler considers this to be an
error. The value of a variable can only be used if the compiler can verify that the variable will
have been assigned a value at that point when the program is running. This is called definite
assignment. (It doesn’t matter that you can tell that y will always be assigned a value in
this example. The question is whether the compiler can tell.)

Note that in the code on the left above, y is definitely assigned a value, since in an if..else
statement, one of the two alternatives will be executed no matter what the value of the condition
in the if. It is important that you understand that there is a difference between an if..else

CHAPTER 3. CONTROL 80

statement and a pair of plain if statements. Here is another pair of code segments that might
seem to do the same thing, but don’t. What’s the value of x after each code segment is executed?

int x; int x;

x = -1; x = -1;

if (x < 0) if (x < 0)
x =1; x =1;

else if (x >= 0)
X = 2; X = 2;

After the code on the left is executed, x is 1; after the code on the right, x is 2. If you don’t
believe this, work though the code step-by-step, doing exactly what the computer does when it
executes each step.

3.2 Algorithm Development

ProcramminG 18 pDiFricuLT (like many activities that are useful and worthwhile—and like
most of those activities, it can also be rewarding and a lot of fun). When you write a program,
you have to tell the computer every small detail of what to do. And you have to get everything
exactly right, since the computer will blindly follow your program exactly as written. How,
then, do people write any but the most simple programs? It’s not a big mystery, actually. It’s
a matter of learning to think in the right way.

A program is an expression of an idea. A programmer starts with a general idea of a task
for the computer to perform. Presumably, the programmer has some idea of how to perform
the task by hand, at least in general outline. The problem is to flesh out that outline into a
complete, unambiguous, step-by-step procedure for carrying out the task. Such a procedure is
called an “algorithm.” (Technically, an algorithm is an unambiguous, step-by-step procedure
that always terminates after a finite number of steps. We don’t want to count procedures that
might go on forever.) An algorithm is not the same as a program. A program is written in some
particular programming language. An algorithm is more like the idea behind the program, but
it’s the idea of the steps the program will take to perform its task, not just the idea of what the
task needs to accomplish in the end. When describing an algorithm, the steps don’t necessarily
have to be specified in complete detail, as long as the steps are unambiguous and it’s clear that
carrying out the steps will accomplish the assigned task. An algorithm can be expressed in
any language, including English. Of course, an algorithm can only be expressed as an actual
program if all the details have been filled in.

So, where do algorithms come from? Usually, they have to be developed, often with a lot of
thought and hard work. Skill at algorithm development is something that comes with practice,
but there are techniques and guidelines that can help. I'll talk here about some techniques and
guidelines that are relevant to “programming in the small,” and I will return to the subject
several times in later chapters.

3.2.1 Pseudocode and Stepwise Refinement

When programming in the small, you have a few basics to work with: variables, assignment
statements, and input/output routines. You might also have some subroutines, objects, or
other building blocks that have already been written by you or someone else. (Input/output
routines fall into this class.) You can build sequences of these basic instructions, and you can
also combine them into more complex control structures such as while loops and if statements.

CHAPTER 3. CONTROL 81

Suppose you have a task in mind that you want the computer to perform. One way to
proceed is to write a description of the task, and take that description as an outline of the
algorithm you want to develop. Then you can refine and elaborate that description, gradually
adding steps and detail, until you have a complete algorithm that can be translated directly
into programming language. This method is called stepwise refinement, and it is a type of
top-down design. As you proceed through the stages of stepwise refinement, you can write out
descriptions of your algorithm in pseudocode—informal instructions that imitate the structure
of programming languages without the complete detail and perfect syntax of actual program
code.

As an example, let’s see how one might develop the program from the previous section, which
computes the value of an investment over five years. The task that you want the program to
perform is: “Compute and display the value of an investment for each of the next five years,
where the initial investment and interest rate are to be specified by the user.” You might then
write—or more likely just think—that this can be expanded as:

Get the user’s input

Compute the value of the investment after 1 year
Display the value

Compute the value after 2 years
Display the value

Compute the value after 3 years
Display the value

Compute the value after 4 years
Display the value

Compute the value after 5 years
Display the value

This is correct, but rather repetitive. And seeing that repetition, you might notice an
opportunity to use a loop. A loop would take less typing. More important, it would be more
general: Essentially the same loop will work no matter how many years you want to process.
So, you might rewrite the above sequence of steps as:

Get the user’s input

while there are more years to process:
Compute the value after the next year
Display the value

Following this algorithm would certainly solve the problem, but for a computer we’ll have
to be more explicit about how to “Get the user’s input,” how to “Compute the value after the
next year,” and what it means to say “there are more years to process.” We can expand the
step, “Get the user’s input” into

Ask the user for the initial investment
Read the user’s response

Ask the user for the interest rate
Read the user’s response

To fill in the details of the step “Compute the value after the next year,” you have to
know how to do the computation yourself. (Maybe you need to ask your boss or professor for
clarification?) Let’s say you know that the value is computed by adding some interest to the
previous value. Then we can refine the while loop to:

CHAPTER 3. CONTROL

while there are more years to process:
Compute the interest
Add the interest to the value
Display the value

82

As for testing whether there are more years to process, the only way that we can do that is
by counting the years ourselves. This displays a very common pattern, and you should expect
to use something similar in a lot of programs: We have to start with zero years, add one each
time we process a year, and stop when we reach the desired number of years. This is sometimes

called a counting loop. So the while loop becomes:

years = 0
while years < 5:
years = years + 1
Compute the interest
Add the interest to the value
Display the value

We still have to know how to compute the interest. Let’s say that the interest is to be

computed by multiplying the interest rate by the current value of the investment.

Putting

this together with the part of the algorithm that gets the user’s inputs, we have the complete

algorithm:

Ask the user for the initial investment
Read the user’s response
Ask the user for the interest rate
Read the user’s response
years = 0
while years < 5:
years = years + 1
Compute interest = value * interest rate
Add the interest to the value
Display the value

Finally, we are at the point where we can translate pretty directly into proper programming-
language syntax. We still have to choose names for the variables, decide exactly what we want
to say to the user, and so forth. Having done this, we could express our algorithm in Java as:

double principal, rate, interest; // declare the variables
int years;
System.out.print ("Type initial investment: ");
principal = TextIO.getlnDouble();
System.out.print("Type interest rate: ");
rate = TextIO.getlnDouble() ;
years = 0;
while (years < 5) {
years = years + 1;
interest = principal * rate;
principal = principal + interest;
System.out.println(principal);
¥

This still needs to be wrapped inside a complete program, it still needs to be commented,

and it really needs to print out more information in a nicer format for the user.

But it’s

essentially the same program as the one in the previous section. (Note that the pseudocode

CHAPTER 3. CONTROL 83

algorithm used indentation to show which statements are inside the loop. In Java, indentation
is completely ignored by the computer, so you need a pair of braces to tell the computer which
statements are in the loop. If you leave out the braces, the only statement inside the loop would
be “years = years + 1;". The other statements would only be executed once, after the loop
ends. The nasty thing is that the computer won’t notice this error for you, like it would if you
left out the parentheses around “(years < 5)”. The parentheses are required by the syntax of
the while statement. The braces are only required semantically. The computer can recognize
syntax errors but not semantic errors.)

One thing you should have noticed here is that my original specification of the problem—
“Compute and display the value of an investment for each of the next five years”—was far from
being complete. Before you start writing a program, you should make sure you have a complete
specification of exactly what the program is supposed to do. In particular, you need to know
what information the program is going to input and output and what computation it is going
to perform. Here is what a reasonably complete specification of the problem might look like in
this example:

“Write a program that will compute and display the value of
an investment for each of the next five years. Each year, interest
is added to the value. The interest is computed by multiplying
the current value by a fixed interest rate. Assume that the initial
value and the rate of interest are to be input by the user when the
program is run.”

3.2.2 The 3N+1 Problem

Let’s do another example, working this time with a program that you haven’t already seen. The
assignment here is an abstract mathematical problem that is one of my favorite programming
exercises. This time, we’ll start with a more complete specification of the task to be performed:

“Given a positive integer, N, define the ’3N+1’ sequence start-
ing from N as follows: If N is an even number, then divide N by
two; but if N is odd, then multiply N by 3 and add 1. Continue
to generate numbers in this way until N becomes equal to 1. For
example, starting from N = 3, which is odd, we multiply by 3 and
add 1, giving N = 3*3+1 = 10. Then, since N is even, we divide
by 2, giving N = 10/2 = 5. We continue in this way, stopping
when we reach 1. The complete sequence is: 3, 10, 5, 16, 8, 4, 2,
1.

“Write a program that will read a positive integer from the
user and will print out the 3N+1 sequence starting from that
integer. The program should also count and print out the number
of terms in the sequence.”

A general outline of the algorithm for the program we want is:

Get a positive integer N from the user.
Compute, print, and count each number in the sequence.
Output the number of terms.

The bulk of the program is in the second step. We’ll need a loop, since we want to keep
computing numbers until we get 1. To put this in terms appropriate for a while loop, we need

CHAPTER 3. CONTROL 84

to know when to continue the loop rather than when to stop it: We want to continue as long
as the number is not 1. So, we can expand our pseudocode algorithm to:

Get a positive integer N from the user;
while N is not 1:

Compute N = next term;

Output N;

Count this term;
Output the number of terms;

In order to compute the next term, the computer must take different actions depending on
whether N is even or odd. We need an if statement to decide between the two cases:

Get a positive integer N from the user;
while N is not 1:
if N is even:

Compute N = N/2;
else

Compute N = 3 * N + 1;
Output N;

Count this term;
Output the number of terms;

We are almost there. The one problem that remains is counting. Counting means that you
start with zero, and every time you have something to count, you add one. We need a variable
to do the counting. The variable must be set to zero once, before the loop starts, and it must
be incremented within the loop. (Again, this is a common pattern that you should expect to
see over and over.) With the counter added, we get:

Get a positive integer N from the user;
Let counter = 0;
while N is not 1:

if N is even:

Compute N = N/2;
else

Compute N = 3 * N + 1;
Output N;

Add 1 to counter;
Output the counter;

We still have to worry about the very first step. How can we get a positive integer from the
user? If we just read in a number, it’s possible that the user might type in a negative number
or zero. If you follow what happens when the value of N is negative or zero, you'll see that the
program will go on forever, since the value of N will never become equal to 1. This is bad. In
this case, the problem is probably no big deal, but in general you should try to write programs
that are foolproof. One way to fix this is to keep reading in numbers until the user types in a
positive number:

Ask user to input a positive number;
Let N be the user’s response;
while N is not positive:
Print an error message;
Read another value for N;
Let counter = 0;
while N is not 1:

CHAPTER 3. CONTROL 85

if N is even:

Compute N = N/2;
else

Compute N = 3 * N + 1;
Output N;

Add 1 to counter;
Output the counter;

The first while loop will end only when N is a positive number, as required. (A common
beginning programmer’s error is to use an if statement instead of a while statement here: “If
N is not positive, ask the user to input another value.” The problem arises if the second number
input by the user is also non-positive. The if statement is only executed once, so the second
input number is never tested, and the program proceeds into an infinite loop. With the while
loop, after the second number is input, the computer jumps back to the beginning of the loop
and tests whether the second number is positive. If not, it asks the user for a third number,
and it will continue asking for numbers until the user enters an acceptable input. After the
while loop ends, we can be absolutely sure that N is a positive number.)

Here is a Java program implementing this algorithm. It uses the operators <= to mean “is
less than or equal to” and != to mean “is not equal to.” To test whether N is even, it uses
“N % 2 == 0”. All the operators used here were discussed in Section 2.5.

import textio.TextIO;

/**

* This program prints out a 3N+1 sequence starting from a positive
* integer specified by the user. It also counts the number of

* terms in the sequence, and prints out that number.

*/

public class ThreeN1 {

public static void main(String[] args) {

int N; // for computing terms in the sequence
int counter; // for counting the terms

System.out.print("Starting point for sequence: ");
N = TextIO.getlnInt();
while (N <= 0) {
System.out.print(
"The starting point must be positive. Please try again: ");
N = TextIO.getlnInt();
3
// At this point, we know that N > 0

counter = 0;
while (N != 1) {
if (W% 2==0)
N=N/2;
else
N=3xN+1;
System.out.println(N);
counter = counter + 1;

3

System.out.println();
System.out.print ("There were ");

CHAPTER 3. CONTROL 86

System.out.print (counter) ;
System.out.println(" terms in the sequence.");

} // end of main()
} // end of class ThreeN1

Two final notes on this program: First, you might have noticed that the first term of the
sequence—the value of N input by the user—is not printed or counted by this program. Is
this an error? It’s hard to say. Was the specification of the program careful enough to decide?
This is the type of thing that might send you back to the boss/professor for clarification. The
problem (if it is one!) can be fixed easily enough. Just replace the line “counter = 0” before
the while loop with the two lines:

System.out.println(N); // print out initial term
counter = 1; // and count it

Second, there is the question of why this problem might be interesting. Well, it’s interesting
to mathematicians and computer scientists because of a simple question about the problem that
they haven’t been able to answer: Will the process of computing the 3N+1 sequence finish after
a finite number of steps for all possible starting values of N7 Although individual sequences are
easy to compute, no one has been able to answer the general question. To put this another
way, no one knows whether the process of computing 3N+1 sequences can properly be called
an algorithm, since an algorithm is required to terminate after a finite number of steps! (Note:
This discussion really applies to integers, not to values of type int! That is, it assumes that the
value of N can take on arbitrarily large integer values, which is not true for a variable of type
int in a Java program. When the value of N in the program becomes too large to be represented
as a 32-bit int, the values output by the program are no longer mathematically correct. So
the Java program does not compute the correct 3N+1 sequence if N becomes too large. See
Exercise 8.2.)

3.2.3 Coding, Testing, Debugging

It would be nice if, having developed an algorithm for your program, you could relax, press a
button, and get a perfectly working program. Unfortunately, the process of turning an algorithm
into Java source code doesn’t always go smoothly. And when you do get to the stage of a working
program, it’s often only working in the sense that it does something. Unfortunately not what
you want it to do.

After program design comes coding: translating the design into a program written in Java
or some other language. Usually, no matter how careful you are, a few syntax errors will creep
in from somewhere, and the Java compiler will reject your program with some kind of error
message. Unfortunately, while a compiler will always detect syntax errors, it’s not very good
about telling you exactly what’s wrong. Sometimes, it’s not even good about telling you where
the real error is. A spelling error or missing “{” on line 45 might cause the compiler to choke
on line 105. You can avoid lots of errors by making sure that you really understand the syntax
rules of the language and by following some basic programming guidelines. For example, 1
never type a “{” without typing the matching “}”. Then I go back and fill in the statements
between the braces. A missing or extra brace can be one of the hardest errors to find in a large
program. Always, always indent your program nicely. If you change the program, change the
indentation to match. It’s worth the trouble. Use a consistent naming scheme, so you don’t
have to struggle to remember whether you called that variable interestrate or interestRate.

CHAPTER 3. CONTROL 87

In general, when the compiler gives multiple error messages, don’t try to fix the second error
message from the compiler until you've fixed the first one. Once the compiler hits an error in
your program, it can get confused, and the rest of the error messages might just be guesses.
Maybe the best advice is: Take the time to understand the error before you try to fix it.
Programming is not an experimental science.

When your program compiles without error, you are still not done. You have to test the
program to make sure it works correctly. Remember that the goal is not to get the right output
for the two sample inputs that the professor gave in class. The goal is a program that will
work correctly for all reasonable inputs. Ideally, when faced with an unreasonable input, it
should respond by gently chiding the user rather than by crashing. Test your program on a
wide variety of inputs. Try to find a set of inputs that will test the full range of functionality
that you've coded into your program. As you begin writing larger programs, write them in
stages and test each stage along the way. You might even have to write some extra code to
do the testing—for example to call a subroutine that you’ve just written. You don’t want to
be faced, if you can avoid it, with 500 newly written lines of code that have an error in there
somewhere.

The point of testing is to find bugs—semantic errors that show up as incorrect behavior
rather than as compilation errors. And the sad fact is that you will probably find them. Again,
you can minimize bugs by careful design and careful coding, but no one has found a way to
avoid them altogether. Omnce you’ve detected a bug, it’s time for debugging. You have to
track down the cause of the bug in the program’s source code and eliminate it. Debugging is a
skill that, like other aspects of programming, requires practice to master. So don’t be afraid of
bugs. Learn from them. One essential debugging skill is the ability to read source code—the
ability to put aside preconceptions about what you think it does and to follow it the way the
computer does—mechanically, step-by-step—to see what it really does. This is hard. I can still
remember the time I spent hours looking for a bug only to find that a line of code that I had
looked at ten times had a “1” where it should have had an “i”, or the time when I wrote a
subroutine named WindowClosing which would have done exactly what I wanted except that
the computer was looking for windowClosing (with a lower case “w”). Sometimes it can help
to have someone who doesn’t share your preconceptions look at your code.

Often, it’s a problem just to find the part of the program that contains the error. Most
programming environments come with a debugger, which is a program that can help you find
bugs. Typically, your program can be run under the control of the debugger. The debugger
allows you to set “breakpoints” in your program. A breakpoint is a point in the program where
the debugger will pause the program so you can look at the values of the program’s variables.
The idea is to track down exactly when things start to go wrong during the program’s execution.
The debugger will also let you execute your program one line at a time, so that you can watch
what happens in detail once you know the general area in the program where the bug is lurking.

I will confess that I only occasionally use debuggers myself. A more traditional approach to
debugging is to insert debugging statements into your program. These are output statements
that print out information about the state of the program. Typically, a debugging statement
would say something like

System.out.println("At start of while loop, N = " + N);

You need to be able to tell from the output where in your program the output is coming from,
and you want to know the value of important variables. Sometimes, you will find that the
computer isn’t even getting to a part of the program that you think it should be executing.
Remember that the goal is to find the first point in the program where the state is not what

CHAPTER 3. CONTROL 88

you expect it to be. That’s where the bug is.

And finally, remember the golden rule of debugging: If you are absolutely sure that every-
thing in your program is right, and if it still doesn’t work, then one of the things that you are
absolutely sure of is wrong.

3.3 The while and do..while Statements

STATEMENTS IN JAVA CAN be either simple statements or compound statements. Simple
statements, such as assignment statements and subroutine call statements, are the basic building
blocks of a program. Compound statements, such as while loops and if statements, are used to
organize simple statements into complex structures, which are called control structures because
they control the order in which the statements are executed. The next five sections explore
the details of control structures that are available in Java, starting with the while statement
and the do..while statement in this section. At the same time, we’ll look at examples of
programming with each control structure and apply the techniques for designing algorithms
that were introduced in the previous section.

3.3.1 The while Statement

The while statement was already introduced in Section 3.1. A while loop has the form

while ((boolean-ezpression))
(statement)

The (statement) can, of course, be a block statement consisting of several statements grouped
together between a pair of braces. This statement is called the body of the loop. The body
of the loop is repeated as long as the (boolean-expression) is true. This boolean expression is
called the continuation condition, or more simply the test, of the loop. There are a few
points that might need some clarification. What happens if the condition is false in the first
place, before the body of the loop is executed even once? In that case, the body of the loop is
never executed at all. The body of a while loop can be executed any number of times, including
zero. What happens if the condition is true, but it becomes false somewhere in the middle of
the loop body? Does the loop end as soon as this happens? It doesn’t, because the computer
continues executing the body of the loop until it gets to the end. Only then does it jump back
to the beginning of the loop and test the condition, and only then can the loop end.

Let’s look at a typical problem that can be solved using a while loop: finding the average
of a set of positive integers entered by the user. The average is the sum of the integers, divided
by the number of integers. The program will ask the user to enter one integer at a time. It
will keep count of the number of integers entered, and it will keep a running total of all the
numbers it has read so far. Here is a pseudocode algorithm for the program:

Let sum = 0 // The sum of the integers entered by the user.
Let count = 0 // The number of integers entered by the user.
while there are more integers to process:

Read an integer

Add it to the sum

Count it
Divide sum by count to get the average
Print out the average

CHAPTER 3. CONTROL 89

But how can we test whether there are more integers to process? A typical solution is to
tell the user to type in zero after all the data have been entered. This will work because we
are assuming that all the data are positive numbers, so zero is not a legal data value. The zero
is not itself part of the data to be averaged. It’s just there to mark the end of the real data.
A data value used in this way is sometimes called a sentinel value. So now the test in the
while loop becomes “while the input integer is not zero”. But there is another problem! The
first time the test is evaluated, before the body of the loop has ever been executed, no integer
has yet been read. There is no “input integer” yet, so testing whether the input integer is zero
doesn’t make sense. So, we have to do something before the while loop to make sure that the
test makes sense. Setting things up so that the test in a while loop makes sense the first time
it is executed is called priming the loop. In this case, we can simply read the first integer
before the beginning of the loop. Here is a revised algorithm:

Let sum = 0
Let count = 0
Read an integer
while the integer is not zero:
Add the integer to the sum
Count it
Read an integer
Divide sum by count to get the average
Print out the average

Notice that I've rearranged the body of the loop. Since an integer is read before the loop, the
loop has to begin by processing that integer. At the end of the loop, the computer reads a new
integer. The computer then jumps back to the beginning of the loop and tests the integer that
it has just read. Note that when the computer finally reads the sentinel value, the loop ends
before the sentinel value is processed. It is not added to the sum, and it is not counted. This
is the way it’s supposed to work. The sentinel is not part of the data. The original algorithm,
even if it could have been made to work without priming, was incorrect since it would have
summed and counted all the integers, including the sentinel. (Since the sentinel is zero, the sum
would still be correct, but the count would be off by one. Such so-called off-by-one errors
are very common. Counting turns out to be harder than it looks!)

We can easily turn the algorithm into a complete program. Note that the program cannot
use the statement “average = sum/count;” to compute the average. Since sum and count
are both variables of type int, the value of sum/count is an integer. The average should be
a real number. We've seen this problem before: we have to convert one of the int values to
a double to force the computer to compute the quotient as a real number. This can be done
by type-casting one of the variables to type double. The type cast “(double)sum” converts
the value of sum to a real number, so in the program the average is computed as “average =
((double)sum) / count;’. Another solution in this case would have been to declare sum to
be a variable of type double in the first place.

One other issue is addressed by the program: If the user enters zero as the first input value,
there are no data to process. We can test for this case by checking whether count is still equal
to zero after the while loop. This might seem like a minor point, but a careful programmer
should cover all the bases.

Here is the full source code for the program (with comments added, of course!):

import textio.TextIO;

/%%

CHAPTER 3. CONTROL 90

This program reads a sequence of positive integers input
by the user, and it will print out the average of those
integers. The user is prompted to enter one integer at a
time. The user must enter a O to mark the end of the
data. (The zero is not counted as part of the data to

be averaged.) The program does not check whether the
user’s input is positive, so it will actually add up

* X X X X X X *

both positive and negative input values.
*/

public class ComputeAverage {
public static void main(String[] args) {

int inputNumber; // One of the integers input by the user.

int sum; // The sum of the positive integers.
int count; // The number of positive integers.
double average; // The average of the positive integers.

/* Initialize the summation and counting variables. */

sum = 0;
count = 0;

/* Read and process the user’s input. */

System.out.print ("Enter your first positive integer: ");
inputNumber = TextIO.getlnInt();

while (inputNumber != 0) {
sum += inputNumber; // Add inputNumber to running sum.
count++; // Count the input by adding 1 to count.
System.out.print ("Enter your next positive integer, or O to end: ");
inputNumber = TextIO.getlnInt();

}

/* Display the result. */

if (count == 0) {
System.out.println("You didn’t enter any data!");

}
else {
average = ((double)sum) / count;
System.out.println();
System.out.println("You entered " + count + " positive integers.");
System.out.printf ("Their average is %1.3f.\n", average);
}

} // end main()

} // end class ComputeAverage

3.3.2 The do..while Statement

Sometimes it is more convenient to test the continuation condition at the end of a loop, instead
of at the beginning, as is done in the while loop. The do..while statement is very similar
to the while statement, except that the word “while,” along with the condition that it tests,

CHAPTER 3. CONTROL 91

has been moved to the end. The word “do” is added to mark the beginning of the loop. A
do..while statement has the form

do
(statement)
while ((boolean-ezpression));

or, since, as usual, the (statement) can be a block,

do {
(statements)
} while ((boolean-expression));

7.7

Note the semicolon, ’;’, at the very end. This semicolon is part of the statement, just as
the semicolon at the end of an assignment statement or declaration is part of the statement.
Omitting it is a syntax error. (More generally, every statement in Java ends either with a
semicolon or a right brace, '}’.)

To execute a do loop, the computer first executes the body of the loop—that is, the statement
or statements inside the loop—and then it evaluates the boolean expression. If the value of
the expression is true, the computer returns to the beginning of the do loop and repeats the
process; if the value is false, it ends the loop and continues with the next part of the program.
Since the condition is not tested until the end of the loop, the body of a do loop is always
executed at least once.

For example, consider the following pseudocode for a game-playing program. The do loop
makes sense here instead of a while loop because with the do loop, you know there will be at
least one game. Also, the test that is used at the end of the loop wouldn’t even make sense at
the beginning:

do {
Play a Game
Ask user if he wants to play another game

Read the user’s response
} while (the user’s response is yes);

Let’s convert this into proper Java code. Since I don’t want to talk about game playing at the
moment, let’s say that we have a class named Checkers, and that the Checkers class contains
a static member subroutine named playGame() that plays one game of checkers against the
user. Then, the pseudocode “Play a game” can be expressed as the subroutine call statement
“Checkers.playGame();”. We need a variable to store the user’s response. The Text/O class
makes it convenient to use a boolean variable to store the answer to a yes/no question. The
input function TextIO.getlnBoolean() allows the user to enter the value as “yes” or “no”
(among other acceptable responses). “Yes” is considered to be true, and “no” is considered to
be false. So, the algorithm can be coded as

boolean wantsToContinue; // True if user wants to play again.
do {
Checkers.playGame() ;
System.out.print("Do you want to play again? ");
wantsToContinue = TextIO.getlnBoolean();
} while (wantsToContinue == true);

When the value of the boolean variable is set to false, it is a signal that the loop should end.
When a boolean variable is used in this way—as a signal that is set in one part of the program

CHAPTER 3. CONTROL 92

and tested in another part—it is sometimes called a flag or flag variable (in the sense of a
signal flag).

By the way, a more-than-usually-pedantic programmer would sneer at the test
“while (wantsToContinue == true)”. This test is exactly equivalent to “while
(wantsToContinue)”. Testing whether “wantsToContinue == true” is true amounts to the
same thing as testing whether “wantsToContinue” is true. A little less offensive is an expression
of the form “flag == false”, where flag is a boolean variable. The value of “flag == false”
is exactly the same as the value of “!flag”, where ! is the boolean negation operator. So
you can write “while (!flag)” instead of “while (flag == false)”, and you can write
“if (!flag)” instead of “if (flag == false)”.

Although a do..while statement is sometimes more convenient than a while statement,
having two kinds of loops does not make the language more powerful. Any problem that can be
solved using do..while loops can also be solved using only while statements, and vice versa.
In fact, if (doSomething) represents any block of program code, then

do {
(doSomething)
} while ((boolean-ezpression));

has exactly the same effect as

(doSomething)

while ((boolean-ezpression)) {
(doSomething)

}

Similarly,

while ((boolean-ezpression)) {
(doSomething)
+

can be replaced by

if ((boolean-ezpression)) {
do {
(doSomething)
} while ((boolean-expression));

}

without changing the meaning of the program in any way.

3.3.3 break and continue

The syntax of the while and do..while loops allows you to test the continuation condition at
either the beginning of a loop or at the end. Sometimes, it is more natural to have the test
in the middle of the loop, or to have several tests at different places in the same loop. Java
provides a general method for breaking out of the middle of any loop. It’s called the break
statement, which takes the form

break;

When the computer executes a break statement in a loop, it will immediately jump out
of the loop. It then continues on to whatever follows the loop in the program. Consider for
example:

CHAPTER 3. CONTROL 93

while (true) { // looks like it will run forever!
System.out.print("Enter a positive number: ");
N = TextIO.getlnInt();
if (N > 0) // the input value is 0K, so jump out of loop
break;
System.out.println("Your answer must be > 0.");

}

// continue here after break

If the number entered by the user is greater than zero, the break statement will be executed
and the computer will jump out of the loop. Otherwise, the computer will print out “Your
answer must be > 0.” and will jump back to the start of the loop to read another input value.

The first line of this loop, “while (true)” might look a bit strange, but it’s perfectly
legitimate. The condition in a while loop can be any boolean-valued expression. The computer
evaluates this expression and checks whether the value is true or false. The boolean literal
“true” is just a boolean expression that always evaluates to true. So “while (true)” can be
used to write an infinite loop, or one that will be terminated by a break statement.

A break statement terminates the loop that immediately encloses the break statement. It
is possible to have nested loops, where one loop statement is contained inside another. If you
use a break statement inside a nested loop, it will only break out of that loop, not out of
the loop that contains the nested loop. There is something called a labeled break statement
that allows you to specify which loop you want to break. This is not very common, so I will
go over it quickly. Labels work like this: You can put a label in front of any loop. A label
consists of a simple identifier followed by a colon. For example, a while with a label might
look like “mainloop: while...”. Inside this loop you can use the labeled break statement
“break mainloop;” to break out of the labeled loop. For example, here is a code segment that
checks whether two strings, s1 and s2, have a character in common. If a common character is
found, the value of the flag variable nothingInCommon is set to false, and a labeled break is
used to end the processing at that point:

boolean nothingInCommon;
nothingInCommon = true; // Assume sl and s2 have no chars in common.
int i,j; // Variables for iterating through the chars in sl and s2.

i=0;
bigloop: while (i < sil.length()) {
j=0;
while (j < s2.length()) {
if (sl.charAt(i) == s2.charAt(j)) { // sl and s2 have a common char...
nothingInCommon = false; // so nothingInCommon is actually false.
break bigloop; // break out of BOTH loops
}
j++; // Go on to the next char in s2.
}

i++; //Go on to the next char in si.

* kX

The continue statement is related to break, but less commonly used. A continue state-
ment tells the computer to skip the rest of the current iteration of the loop. However, instead
of jumping out of the loop altogether, it jumps back to the beginning of the loop and continues
with the next iteration (including evaluating the loop’s continuation condition to see whether

CHAPTER 3. CONTROL 94

any further iterations are required). As with break, when a continue is in a nested loop, it
will continue the loop that directly contains it; a “labeled continue” can be used to continue
the containing loop instead.

break and continue can be used in while loops and do..while loops. They can also be
used in for loops, which are covered in the next section. In Section 3.6, we’ll see that break can
also be used to break out of a switch statement. A break can occur inside an if statement,
but only if the if statement is nested inside a loop or inside a switch statement. In that case,
it does not mean to break out of the if. Instead, it breaks out of the loop or switch statement
that contains the if statement. The same consideration applies to continue statements inside
ifs.

3.4 The for Statement

WE TURN IN THIS SECTION to another type of loop, the for statement. Any for loop is
equivalent to some while loop, so the language doesn’t get any additional power by having for
statements. But for a certain type of problem, a for loop can be easier to construct and easier
to read than the corresponding while loop. It’s quite possible that in real programs, for loops
actually outnumber while loops (and I know of at least one person who only uses for loops).

3.4.1 For Loops

The for statement makes a common type of while loop easier to write. Many while loops have
the general form:
(initialization)
while ((continuation-condition)) {
(statements)
(update)
}

For example, consider this example, copied from an example in Section 3.2:

years = 0; // initialize the variable years
while (years < 5) { // condition for continuing loop

interest = principal * rate; //
principal += interest; // do three statements
System.out.println(principal); //

years++; // update the value of the variable, years

3

This loop can be written as the following equivalent for statement:

for (years = 0; years < 5; years++) {
interest = principal * rate;
principal += interest;
System.out.println(principal);

}

The initialization, continuation condition, and updating have all been combined in the first line
of the for loop. This keeps everything involved in the “control” of the loop in one place, which
helps make the loop easier to read and understand. The for loop is executed in exactly the
same way as the original code: The initialization part is executed once, before the loop begins.

CHAPTER 3. CONTROL 95

The continuation condition is executed before each execution of the loop (including the first
execution), and the loop ends when this condition is false. The update part is executed at
the end of each execution of the loop, just before jumping back to check the condition.
The formal syntax of the for statement is as follows:
for ((initialization); (continuation-condition); (update))
(statement)

or, using a block statement:

for ((initialization); (continuation-condition); (update)) {
(statements)

3

The (continuation-condition) must be a boolean-valued expression. The (initialization) is usu-
ally a declaration or an assignment statement, but it can be any expression that would be
allowed as a statement in a program. The (update) can be any simple statement, but is usually
an increment, a decrement, or an assignment statement. Any of the three parts can be empty.
If the continuation condition is empty, it is treated as if it were “true,” so the loop will be
repeated forever or until it ends for some other reason, such as a break statement. (Some
people like to begin an infinite loop with “for (;;)” instead of “while (true)”.) Here’s a
flow control diagram for a for statement:

For Loop Flow of Control

Initialize

,.)Ils condition true? No
\

-

Yes

| Do statement

\
update

Usually, the initialization part of a for statement assigns a value to some variable, and the
update changes the value of that variable with an assignment statement or with an increment
or decrement operation. The value of the variable is tested in the continuation condition, and
the loop ends when this condition evaluates to false. A variable used in this way is called a
loop control variable. In the example given above, the loop control variable was years.

Certainly, the most common type of for loop is the counting loop, where a loop control
variable takes on all integer values between some minimum and some maximum value. A
counting loop has the form

i

CHAPTER 3. CONTROL 96

for ((variable) = (min); (variable) <= (maz); (variable)++) {
(statements)

}

where (min) and (mazx) are integer-valued expressions (usually constants). The (variable) takes
on the values (min), (min)+1, (min)+2, ..., (maz). The value of the loop control variable is
often used in the body of the loop. The for loop at the beginning of this section is a counting
loop in which the loop control variable, years, takes on the values 1, 2, 3, 4, 5. Here is an even
simpler example, in which the numbers 1, 2, ..., 10 are displayed on standard output:
for (N=1; N<=10 ; N++)
System.out.println(N);

For various reasons, Java programmers like to start counting at 0 instead of 1, and they tend
to use a “<” in the condition, rather than a “<=". The following variation of the above loop
prints out the ten numbers 0, 1, 2, ..., 9:

for (N =10 ; N <10 ; N++)
System.out.println(N);

Using < instead of <= in the test, or vice versa, is a common source of off-by-one errors in
programs. You should always stop and think, Do I want the final value to be processed or not?
It’s easy to count down from 10 to 1 instead of counting up. Just start with 10, decrement
the loop control variable instead of incrementing it, and continue as long as the variable is
greater than or equal to one.
for (N=10 ; N> 1; N--)
System.out.println(N);

Now, in fact, the official syntax of a for statement actually allows both the initialization
part and the update part to consist of several expressions, separated by commas. So we can
even count up from 1 to 10 and count down from 10 to 1 at the same time!

for (i=1, j=10; i <= 10; i++, j—-) {
System.out.printf("%5d", i); // Output i in a 5-character wide column.
System.out.printf("%5d", j); // Output j in a 5-character column.
System.out.println(); // and end the line.

}

As a final introductory example, let’s say that we want to use a for loop that prints out
just the even numbers between 2 and 20, that is: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20. There are
several ways to do this. Just to show how even a very simple problem can be solved in many
ways, here are four different solutions (three of which would get full credit):

(1) // There are 10 numbers to print.
// Use a for loop to count 1, 2,
// ..., 10. The numbers we want
// to print are 2x1, 2%2, ... 2%10.

for (N = 1; N <= 10; N++) {
System.out.println(2N);
}

(2) // Use a for loop that counts
// 2, 4, ..., 20 directly by
// adding 2 to N each time through

CHAPTER 3. CONTROL 97

// the loop.

for (N =2; N <= 20; N

=N+2){
System.out.println(N);

3

(3) // Count off all the numbers
// 2, 3, 4, ..., 19, 20, but
// only print out the numbers
// that are even.

for (N = 2; N <= 20; N++) {
if (N % 2==0) // is N even?
System.out.println(N);

(4) // Irritate the professor with
// a solution that follows the
// letter of this silly assignment
// while making fun of it.

for (N =1; N <=1; N++) {
System.out.println("2 4 6 8 10 12 14 16 18 20");
}

Perhaps it is worth stressing one more time that a for statement, like any statement except
for a variable declaration, never occurs on its own in a real program. A statement must be
inside the main routine of a program or inside some other subroutine. And that subroutine
must be defined inside a class. I should also remind you that every variable must be declared
before it can be used, and that includes the loop control variable in a for statement. In all
the examples that you have seen so far in this section, the loop control variables should be
declared to be of type int. It is not required that a loop control variable be an integer. Here,
for example, is a for loop in which the variable, ch, is of type char, using the fact that the ++
operator can be applied to characters as well as to numbers:

// Print out the alphabet on one line of output.
char ch; // The loop control variable;
// one of the letters to be printed.
for (¢ch = ’A’; <ch <= ’Z’; ch++)
System.out.print(ch);
System.out.println();

3.4.2 Example: Counting Divisors

Let’s look at a less trivial problem that can be solved with a for loop. If N and D are positive
integers, we say that D is a divisor of N if the remainder when D is divided into N is zero.
(Equivalently, we could say that N is an even multiple of D.) In terms of Java programming, D
is a divisor of N if N % D is zero.

Let’s write a program that inputs a positive integer, N, from the user and computes how
many different divisors N has. The numbers that could possibly be divisors of N are 1, 2, ..., N.
To compute the number of divisors of N, we can just test each possible divisor of N and count

CHAPTER 3. CONTROL 98

the ones that actually do divide N evenly. (This is a correct solution, but is certainly not the
most efficient way to perform this task.) In pseudocode, the algorithm takes the form

Get a positive integer, N, from the user
Let divisorCount = 0
for each number, testDivisor, in the range from 1 to N:
if testDivisor is a divisor of N:
Count it by adding 1 to divisorCount
Output the count

This algorithm displays a common programming pattern that is used when some, but not all,
of a sequence of items are to be processed. The general pattern is

for each item in the sequence:
if the item passes the test:
process it

The for loop in our divisor-counting algorithm can be translated into Java code as

for (testDivisor = 1; testDivisor <= N; testDivisor++) {
if (N % testDivisor == 0)
divisorCount++;

3

On a modern computer, this loop can be executed very quickly. It is not impossible to run
it even for the largest legal int value, 2147483647. (If you wanted to run it for even larger
values, you could use variables of type long rather than int.) However, it does take a significant
amount of time for very large numbers. So when I implemented this algorithm, I decided to
output a dot every time the computer has tested ten million possible divisors. In the improved
version of the program, there are two types of counting going on. We have to count the number
of divisors and we also have to count the number of possible divisors that have been tested.
So the program needs two counters. When the second counter reaches 10000000, the program

outputs a ’.” and resets the counter to zero so that we can start counting the next group of ten
million. Reverting to pseudocode, the algorithm now looks like

Get a positive integer, N, from the user
Let divisorCount = O // Number of divisors found.
Let numberTested = 0 // Number of possible divisors tested
// since the last period was output.
for each number, testDivisor, in the range from 1 to N:
if testDivisor is a divisor of N:
Count it by adding 1 to divisorCount
Add 1 to numberTested
if numberTested is 10000000:
print out a ’.’
Reset numberTested to O
Output the count

Finally, we can translate the algorithm into a complete Java program:
import textio.TextIO;

/%%

* This program reads a positive integer from the user.
* It counts how many divisors that number has, and

* then it prints the result.

*/

CHAPTER 3. CONTROL 99

public class CountDivisors {
public static void main(String[] args) {

int N; // A positive integer entered by the user.
// Divisors of this number will be counted.

int testDivisor; // A number between 1 and N that is a
// possible divisor of N.

int divisorCount; // Number of divisors of N that have been found.

int numberTested; // Used to count how many possible divisors
// of N have been tested. When the number
// reaches 10000000, a period is output and
// the value of numberTested is reset to zero.

/* Get a positive integer from the user. */

while (true) {
System.out.print ("Enter a positive integer: ");
N = TextIO.getlnInt();

if (N > 0)
break;
System.out.println("That number is not positive. Please try again.");
}
/* Count the divisors, printing a "." after every 10000000 tests. */

divisorCount = 0;
numberTested 0;

for (testDivisor = 1; testDivisor <= N; testDivisor++) {
if (N % testDivisor == 0)
divisorCount++;
numberTested++;
if (numberTested == 10000000) {
System.out.print(’.’);
numberTested = 0;

}
/* Display the result. */

System.out.println();
System.out.println("The number of divisors of " + N
+ " is " + divisorCount);

} // end main()

} // end class CountDivisors

3.4.3 Nested for Loops

Control structures in Java are statements that contain other, simpler statements. In particular,
control structures can contain control structures. You've already seen several examples of
if statements inside loops, and one example of a while loop inside another while, but any

CHAPTER 3. CONTROL 100

combination of one control structure inside another is possible. We say that one structure is
nested inside another. You can even have multiple levels of nesting, such as a while loop
inside an if statement inside another while loop. The syntax of Java does not set a limit on
the number of levels of nesting. As a practical matter, though, it’s difficult to understand a
program that has more than a few levels of nesting.

Nested for loops arise naturally in many algorithms, and it is important to understand how
they work. Let’s look at a couple of examples. First, consider the problem of printing out a
multiplication table like this one:

1 2 3 4 5 6 7 8 9 10 11 12
2 4 6 8 10 12 14 16 18 20 22 24
3 6 9 12 15 18 21 24 27 30 33 36
4 8 12 16 20 24 28 32 36 40 44 48
5 10 15 20 25 30 35 40 45 50 55 60
6 12 18 24 30 36 42 48 54 60 66 72
7 14 21 28 35 42 49 56 63 70 77 84
8 16 24 32 40 48 56 64 72 80 88 96
9 18 27 36 45 54 63 72 81 90 99 108
10 20 30 40 50 60 70 80 90 100 110 120
11 22 33 44 55 66 77 88 99 110 121 132

12 24 36 48 60 72 84 96 108 120 132 144

The data in the table are arranged into 12 rows and 12 columns. The process of printing them
out can be expressed in a pseudocode algorithm as

for each rowNumber = 1, 2, 3, ..., 12:
Print the first twelve multiples of rowNumber on one line
Output a carriage return

The first step in the for loop can itself be expressed as a for loop. We can expand “Print the
first twelve multiples of rowNumber on one line” as:

for N =1, 2, 3, ..., 12:
Print N * rowNumber

so a refined algorithm for printing the table has one for loop nested inside another:

for each rowNumber = 1, 2, 3, ..., 12:
for N =1, 2, 3, ..., 12:
Print N * rowNumber
Output a carriage return

We want to print the output in neat columns, with each output number taking up four spaces.
This can be done using formatted output with format specifier %4d. Assuming that rowNumber
and N have been declared to be variables of type int, the algorithm can be expressed in Java as

for (rowNumber = 1; rowNumber <= 12; rowNumber++) {
for (N =1; N <= 12; N++) {
// print in 4-character columns
System.out.printf("%4d", N * rowNumber); // No carriage return !
}

System.out.println(); // Add a carriage return at end of the line.

CHAPTER 3. CONTROL 101

This section has been weighed down with lots of examples of numerical processing. For our
next example, let’s do some text processing. Consider the problem of finding which of the 26
letters of the alphabet occur in a given string. For example, the letters that occur in “Hello
World” are D, E, H, L, O, R, and W. More specifically, we will write a program that will list all
the letters contained in a string and will also count the number of different letters. The string
will be input by the user. Let’s start with a pseudocode algorithm for the program.

Ask the user to input a string
Read the response into a variable, str
Let count = 0 (for counting the number of different letters)
for each letter of the alphabet:
if the letter occurs in str:

Print the letter

Add 1 to count
Output the count

Since we want to process the entire line of text that is entered by the user, we’ll use
TextIO.getln() to read it. The line of the algorithm that reads “for each letter of the al-
phabet” can be expressed as “for (letter=’A’; letter<=’Z’; letter++)”. But the if
statement inside the for loop needs still more thought before we can write the program. How
do we check whether the given letter, letter, occurs in str? One idea is to look at each
character in the string in turn, and check whether that character is equal to letter. We can
get the i-th character of str with the function call str.charAt (i), where i ranges from 0 to
str.length() - 1.

One more difficulty: A letter such as ’A’ can occur in str in either upper or lower case, A’
or ’a’. We have to check for both of these. But we can avoid this difficulty by converting str
to upper case before processing it. Then, we only have to check for the upper case letter. We
can now flesh out the algorithm fully:

Ask the user to input a string
Read the response into a variable, str
Convert str to upper case
Let count = 0
for letter = ’A’, ’B’, ..., ’Z’:
for i =0, 1, ..., str.length()-1:
if letter == str.charAt(i):
Print letter
Add 1 to count
break // jump out of the loop, to avoid counting letter twice
Output the count

Note the use of break in the nested for loop. It is required to avoid printing or counting a given
letter more than once (in the case where it occurs more than once in the string). The break
statement breaks out of the inner for loop, but not the outer for loop. Upon executing the
break, the computer continues the outer loop with the next value of letter. You should try
to figure out exactly what count would be at the end of this program, if the break statement
were omitted. Here is the complete program:

import textio.TextIO;

/**

* This program reads a line of text entered by the user.
* It prints a list of the letters that occur in the text,
* and it reports how many different letters were found.

CHAPTER 3. CONTROL 102

*/
public class ListLetters {

public static void main(String[] args) {

String str; // Line of text entered by the user.
int count; // Number of different letters found in str.
char letter; // A letter of the alphabet.

System.out.println("Please type in a line of text.");
str = TextIO.getln();

str = str.toUpperCase();

count = 0;
System.out.println("Your input contains the following letters:");
System.out.println();
System.out.print(" ");
for (letter = ’A’; letter <= ’Z’; letter++) {
int i; // Position of a character in str.
for (1 =0; i < str.length(); i++) {
if (letter == str.charAt(i)) {
System.out.print(letter);
System.out.print(’ ’);
count++;
break;

}

System.out.println();
System.out.println();
System.out.println("There were " + count + " different letters.");

} // end main()

} // end class ListLetters

In fact, there is actually an easier way to determine whether a given letter occurs in a string,
str. The built-in function str.index0f (letter) will return -1 if letter does not occur in
the string. It returns a number greater than or equal to zero if it does occur. So, we could
check whether letter occurs in str simply by checking “if (str.index0f (letter) >= 0)”.
If we used this technique in the above program, we wouldn’t need a nested for loop. This gives
you a preview of how subroutines can be used to deal with complexity.

3.5 The if Statement

THE FIRST OF THE TWO BRANCHING STATEMENTS in Java is the if statement, which you
have already seen in Section 3.1. It takes the form
if ((boolean-expression))
(statement-1)

else
(statement-2)

CHAPTER 3. CONTROL 103

As usual, the statements inside an if statement can be blocks. The if statement represents
a two-way branch. The else part of an if statement—consisting of the word “else” and the
statement that follows it—can be omitted.

3.5.1 The Dangling else Problem

Now, an if statement is, in particular, a statement. This means that either (statement-1)
or (statement-2) in the above if statement can itself be an if statement. A problem arises,
however, if (statement-1) is an if statement that has no else part. This special case is
effectively forbidden by the syntax of Java. Suppose, for example, that you type

if (x>0)
if (y > 0)
System.out.println("First case");
else
System.out.println("Second case");

Now, remember that the way you’ve indented this doesn’t mean anything at all to the computer.
You might think that the else part is the second half of your “if (x > 0)” statement, but
the rule that the computer follows attaches the else to “if (y > 0)”, which is closer. That
is, the computer reads your statement as if it were formatted:

if (x>0)
if (y > 0)
System.out.println("First case");
else
System.out.println("Second case");

You can force the computer to use the other interpretation by enclosing the nested if in a
block:

if (x>0) A
if (y > 0)
System.out.println("First case");
}
else
System.out.println("Second case");

These two if statements have different meanings: In the case when x <= 0, the first statement
doesn’t print anything, but the second statement prints “Second case”.

3.5.2 Multiway Branching

Much more interesting than this technicality is the case where (statement-2), the else part
of the if statement, is itself an if statement. The statement would look like this (perhaps
without the final else part):

if ((boolean-expression-1))
(statement-1)
else
if ({boolean-expression-2))
(statement-2)
else
(statement-3)

CHAPTER 3. CONTROL 104

However, since the computer doesn’t care how a program is laid out on the page, this is almost
always written in the format:
if ((boolean-expression-1))
(statement-1)
else if ((boolean-ezpression-2))
(statement-2)

else
(statement-3)

You should think of this as a single statement representing a three-way branch. When the
computer executes this, one and only one of the three statements—(statement-1), (statement-
2), or (statement-3)—will be executed. The computer starts by evaluating (boolean-expression-
1). If it is true, the computer executes (statement-1) and then jumps all the way to the end of
the outer if statement, skipping the other two (statements). If (boolean-expression-1) is false,
the computer skips (statement-1) and executes the second, nested if statement. To do this,
it tests the value of (boolean-expression-2) and uses it to decide between (statement-2) and
(statement-3).

Here is an example that will print out one of three different messages, depending on the
value of a variable named temperature:

if (temperature < 50)
System.out.println("It’s cold.");
else if (temperature < 80)
System.out.println("It’s nice.");
else
System.out.println("It’s hot.");

If temperature is, say, 42, the first test is true. The computer prints out the message “It’s
cold”, and skips the rest—without even evaluating the second condition. For a temperature of
75, the first test is false, so the computer goes on to the second test. This test is true, so
the computer prints “It’s nice” and skips the rest. If the temperature is 173, both of the tests
evaluate to false, so the computer says “It’s hot” (unless its circuits have been fried by the
heat, that is).
You can go on stringing together “else-if’s” to make multiway branches with any number
of cases:
if ((test-1))
(statement-1)
else if ((test-2))
(statement-2)
else if ((test-3))
(statement-3)

: // (more cases)

else if ((test-N))
(statement-N)
else
(statement-(N+1))

The computer evaluates the tests, which are boolean expressions, one after the other until it
comes to one that is true. It executes the associated statement and skips the rest. If none
of the boolean expressions evaluate to true, then the statement in the else part is executed.

CHAPTER 3. CONTROL 105

This statement is called a multiway branch because one and only one of the statements will be
executed. The final else part can be omitted. In that case, if all the boolean expressions are
false, none of the statements are executed. Of course, each of the statements can be a block,
consisting of a number of statements enclosed between { and }. Admittedly, there is lot of
syntax here; as you study and practice, you’ll become comfortable with it. It might be useful
to look at a flow control diagram for the general “if..else if” statement shown above:

Is test-1 true?

Is test-2 true?

Do statement-1

Is test-3 true?

Do statement-2

Do statement-3

Is test-N true?
Do statement-N Do statement-(N+1)

)

3.5.3 If Statement Examples

As an example of using if statements, let’s suppose that x, y, and z are variables of type int,
and that each variable has already been assigned a value. Consider the problem of printing out
the values of the three variables in increasing order. For example, if the values are 42, 17, and
20, then the output should be in the order 17, 20, 42.

One way to approach this is to ask, where does x belong in the list? It comes first if it’s
less than both y and z. It comes last if it’s greater than both y and z. Otherwise, it comes in
the middle. We can express this with a 3-way if statement, but we still have to worry about
the order in which y and z should be printed. In pseudocode,

if (x <y &k x<2z) {

output x, followed by y and z in their correct order
¥
else if (x > y && x > z) {

output y and z in their correct order, followed by x
¥
else {

output x in between y and z in their correct order

}

CHAPTER 3. CONTROL

106

Determining the relative order of y and z requires another if statement, so this becomes

if (x <y && x < 2z2){ // x comes first
if (y < 2)
System.out.println(x + " " + y + " " + z);
else
System.out.println(x + " " + z + " " + y);
}
else if (x > y && x > z) { // x comes last
if (y < 2)
System.out.println(y + " " + z + " " + x);
else
System.out.println(z + " " + y + " " + x);
}
else { // x in the middle
if (y < 2)
System.out.println(y + " " + x + " " + 2);
else
System.out.println(z + " " + x + " " + y);
}

You might check that this code will work correctly even if some of the values are the same. If
the values of two variables are the same, it doesn’t matter which order you print them in.
Note, by the way, that even though you can say in English “if x is less than y and z,” you
can’t say in Java “if (x < y && z)”. The && operator can only be used between boolean
values, so you have to make separate tests, x<y and x<z, and then combine the two tests with

&&.

There is an alternative approach to this problem that begins by asking, “which order should
x and y be printed in?” Once that’s known, you only have to decide where to stick in z. This

line of thought leads to different Java code:

if (x <y) { // x comes before y
if (z<x) // z comes first

System.out.println(z + " " + x
else if (z >y) // z comes last
System.out.println(x + " " + y
else // z is in the middle
System.out.println(x + " " + 2z
3
else { // y comes before x
if (z<y) // z comes first
System.out.println(z + " " + y
else if (z >x) // z comes last
System.out.println(y + " " + x
else // z is in the middle
System.out.println(y + " " + z
}

+

+

+

V)

z);

y);

x);
z);

X);

Once again, we see how the same problem can be solved in many different ways. The two
approaches to this problem have not exhausted all the possibilities. For example, you might
start by testing whether x is greater than y. If so, you could swap their values. Once you've
done that, you know that x should be printed before y.

x* kX

CHAPTER 3. CONTROL 107

Finally, let’s write a complete program that uses an if statement in an interesting way. I
want a program that will convert measurements of length from one unit of measurement to
another, such as miles to yards or inches to feet. So far, the problem is extremely under-
specified. Let’s say that the program will only deal with measurements in inches, feet, yards,
and miles. It would be easy to extend it later to deal with other units. The user will type in
a measurement in one of these units, such as “17 feet” or “2.73 miles”. The output will show
the length in terms of each of the four units of measure. (This is easier than asking the user
which units to use in the output.) An outline of the process is

Read the user’s input measurement and units of measure
Express the measurement in inches, feet, yards, and miles
Display the four results

The program can read both parts of the user’s input from the same line by using
TextI0.getDouble() to read the numerical measurement and TextIO.getlnWord() to read
the unit of measure. The conversion into different units of measure can be simplified by first
converting the user’s input into inches. From there, the number of inches can easily be con-
verted into feet, yards, and miles. Before converting into inches, we have to test the input to
determine which unit of measure the user has specified:

Let measurement = TextIO.getDouble()
Let units = TextIO.getlnWord()
if the units are inches
Let inches = measurement
else if the units are feet

Let inches = measurement * 12 // 12 inches per foot
else if the units are yards
Let inches = measurement * 36 // 36 inches per yard

else if the units are miles
Let inches = measurement * 12 * 5280 // 5280 feet per mile
else
The units are illegal!
Print an error message and stop processing
Let feet = inches / 12.0
Let yards = inches / 36.0
Let miles = inches / (12.0 * 5280.0)
Display the results

Since units is a String, we can use units.equals("inches") to check whether the spec-
ified unit of measure is “inches”. However, it would be nice to allow the units to be spec-
ified as “inch” or abbreviated to “in”. To allow these three possibilities, we can check if
(units.equals("inches") || units.equals("inch") || units.equals("in")). It would
also be nice to allow upper case letters, as in “Inches” or “IN”. We can do this by converting
units to lower case before testing it or by substituting the function units.equalsIgnoreCase
for units.equals.

In my final program, I decided to make things more interesting by allowing the user to
repeat the process of entering a measurement and seeing the results of the conversion for each
measurement. The program will end only when the user inputs 0. To program that, I just had
to wrap the above algorithm inside a while loop, and make sure that the loop ends when the
user inputs a 0. Here’s the complete program:

import textio.TextIO;

CHAPTER 3. CONTROL 108

/%%

This program will convert measurements expressed in inches,
feet, yards, or miles into each of the possible units of
measure. The measurement is input by the user, followed by
the unit of measure. For example: "17 feet", "1 inch", or
"2.73 mi". Abbreviations in, ft, yd, and mi are accepted.
The program will continue to read and convert measurements
until the user enters an input of O.

* X X X ¥ X *x

*/
public class LengthConverter {

public static void main(String[] args) {

double measurement; // Numerical measurement, input by user.
String units; // The unit of measure for the input, also
// specified by the user.

double inches, feet, yards, miles; // Measurement expressed in
// each possible unit of
// measure.

System.out.println("Enter measurements in inches, feet, yards, or miles.");
System.out.println("For example: 1 inch 17 feet 2.73 miles");
System.out.println("You can use abbreviations: in ft yd mi");
System.out.println("I will convert your input into the other units");
System.out.println("of measure.");

System.out.println();

while (true) {
/* Get the user’s input, and convert units to lower case. */

System.out.print ("Enter your measurement, or O to end: ");
measurement = TextI0.getDouble();
if (measurement == 0)
break; // Terminate the while loop.
units = TextIO.getlnWord();
units = units.tolLowerCase(); // convert units to lower case

/* Convert the input measurement to inches. */

if (units.equals("inch") || units.equals("inches")
|| units.equals("in")) {
inches = measurement;

}
else if (units.equals("foot") || units.equals("feet")
[l units.equals("ft")) {
inches = measurement * 12;
}
else if (units.equals("yard") || units.equals("yards")
|| units.equals("yd")) {
inches = measurement * 36;
¥
else if (units.equals("mile") || units.equals("miles")

|| units.equals("mi")) {
inches = measurement * 12 * 5280;

CHAPTER 3. CONTROL 109

else {
System.out.println("Sorry, but I don’t understand \""
+ units + "\".");
continue; // back to start of while loop

}

/* Convert measurement in inches to feet, yards, and miles. */

feet = inches / 12;
yards = inches / 36;
miles = inches / (12%5280);

/* Output measurement in terms of each unit of measure. */

System.out.println();
System.out.println("That’s equivalent to:");
System.out.printf("%14.5g inchesn", inches);
System.out.printf("%14.5g feet’n", feet);
System.out.printf("%14.5g yardsn", yards);
System.out.printf("%14.5g milesn", miles);
System.out.println();

} // end while

System.out.println();
System.out.println("OK! Bye for now.");

} // end main()

} // end class LengthConverter

(Note that this program uses formatted output with the “g” format specifier. In this pro-
gram, we have no control over how large or how small the numbers might be. It could easily
make sense for the user to enter very large or very small measurements. The “g” format will
print a real number in exponential form if it is very large or very small, and in the usual decimal
form otherwise. Remember that in the format specification %14.5g, the 5 is the total number
of significant digits that are to be printed, so we will always get the same number of significant
digits in the output, no matter what the size of the number. If we had used an “f” format
specifier such as %14.5f, the output would be in decimal form with 5 digits after the decimal
point. This would print the number 0.000000000745482 as 0.00000, with no significant digits
at alll With the “g” format specifier, the output would be 7.4549e-10.)

3.5.4 The Empty Statement

As a final note in this section, I will mention one more type of statement in Java: the empty
statement. This is a statement that consists simply of a semicolon and which tells the computer
to do nothing. The existence of the empty statement makes the following legal, even though
you would not ordinarily see a semicolon after a } :

if (x < 0) {

X = -X;
};
The semicolon is legal after the }, but the computer considers it to be an empty statement,

not part of the if statement. Occasionally, you might find yourself using the empty statement
when what you mean is, in fact, “do nothing.” For example, the rather contrived if statement

CHAPTER 3. CONTROL 110

if (done)
; // Empty statement
else
System.out.println("Not done yet.");

does nothing when the boolean variable done is true, and prints out “Not done yet” when
it is false. You can’t just leave out the semicolon in this example, since Java syntax requires
an actual statement between the if and the else. I prefer, though, to use an empty block,
consisting of { and } with nothing between, for such cases.

Occasionally, stray empty statements can cause annoying, hard-to-find errors in a program.
For example, the following program segment prints out “Hello” just once, not ten times:

for (i = 0; i < 10; i++);
System.out.println("Hello");

Why? Because the “;” at the end of the first line is a statement, and it is this empty statement
that is executed ten times. The System.out.println statement is not really inside the for
statement at all, so it is executed just once, after the for loop has completed. The for loop
just does nothing, ten times!

3.6 The switch Statement

THE SECOND BRANCHING STATEMENT in Java is the switch statement, which is introduced
in this section. The switch statement is used far less often than the if statement, but it is
sometimes useful for expressing a certain type of multiway branch.

3.6.1 The Basic switch Statement

A switch statement allows you to test the value of an expression and, depending on that value,
to jump directly to some location within the switch statement. Only expressions of certain
types can be used. The value of the expression can be one of the primitive integer types int,
short, or byte. It can be the primitive char type. It can be String. Or it can be an enum type
(see Subsection 2.3.4 for an introduction to enums). In particular, note that the expression
cannot be a double or float value.

The positions within a switch statement to which it can jump are marked with case labels
that take the form: “case (constant):”. The (constant) here is a literal of the same type as
the expression in the switch. A case label marks the position the computer jumps to when
the expression evaluates to the given (constant) value. You can also use the label “default:”
in a switch statement; this provides a default jump point that is used when the value of the
expression is not listed in any case label.

A switch statement, as it is most often used, has the form:

switch ((ezpression)) {
case (constant-1):
(statements-1)
break;
case (constant-2):
(statements-2)
break;

// (more cases)

CHAPTER 3. CONTROL 111

case (constant-N):
(statements-N)
break;
default: // optional default case
(statements—(N+1))
} // end of switch statement

This has exactly the same effect as the following multiway if statement, but the switch
statement can be more efficient because the computer can evaluate one expression and jump
directly to the correct case, whereas in the if statement, the computer must evaluate up to N
expressions before it knows which set of statements to execute:

if ((ezpression) == (constant-1)) { // but use .equals for String!!
(statements-1)

}

else if ((expression) == (constant-2)) {
(statements-2)

}

else if ((expression) == (constant-N)) {
(statements-N)

¥

else {
(statements—(N+1))

}

The break statements in the switch are not actually required by the syntax of the switch
statement. The effect of a break is to make the computer jump past the end of the switch state-
ment, skipping over all the remaining cases. If you leave out the break statement, the computer
will just forge ahead after completing one case and will execute the statements associated with
the next case label. This is rarely what you want, but it is legal. (I will note here—although
you won’t understand it until you get to the next chapter—that inside a subroutine, the break
statement is sometimes replaced by a return statement, which terminates the subroutine as
well as the switch.)

Note that you can leave out one of the groups of statements entirely (including the break).
You then have two case labels in a row, containing two different constants. This just means
that the computer will jump to the same place and perform the same action for each of the two
constants.

Here is an example of a switch statement. This is not a useful example, but it should be
easy for you to follow. Note, by the way, that the constants in the case labels don’t have to be
in any particular order, but they must all be different:

switch (N) { // (Assume N is an integer variable.)
case 1:
System.out.println("The number is 1.");
break;
case 2:
case 4:
case 8:
System.out.println("The number is 2, 4, or 8.");
System.out.println("(That’s a power of 2!)");

CHAPTER 3. CONTROL

break;
case 3:
case 6:
case 9:

System.
System.

break;
case 5:

System.

break;

default:
System.

}

out.println("The number is 3, 6, or 9.");
out.println("(That’s a multiple of 3!)");

out.println("The number is 5.");

out.println("The number is 7 or is outside the range 1 to 9.");

112

The switch statement is pretty primitive as control structures go, and it’s easy to make mis-
takes when you use it. Java takes all its control structures directly from the older programming
languages C and C++. The switch statement is certainly one place where the designers of Java
should have introduced some improvements.

3.6.2 Menus and switch Statements

One application of switch statements is in processing menus. A menu is a list of options.
The user selects one of the options. The computer has to respond to each possible choice in a
different way. If the options are numbered 1, 2, ..., then the number of the chosen option can
be used in a switch statement to select the proper response.

In a command-line program, the menu can be presented as a numbered list of options, and
the user can choose an option by typing in its number. Here is an example that could be used
in a variation of the LengthConverter example from the previous section:

int optionNumber;

// Option number from menu, selected by user.

double measurement; // A numerical measurement, input by the user.

double inches;

//
//

The unit of measurement depends on which
option the user has selected.
// The same measurement, converted into inches.

/* Display menu and get user’s selected option number. */

System.
System.
System.
System.
System.
System.
System.
System.

out
out
out
out
out
out
out
out

S w N -

.println("What unit of measurement does your input use?");
.println();
.println("
.println("
.println("
.println("
.println();
.println("Enter the number of your choice: ");
optionNumber = TextIO.getlnInt();

inches");
feet");

yards") ;
miles");

/* Read user’s measurement and convert to inches. */

switch (optionNumber) {

case 1:
System.out.println("Enter the number of inches: ");
measurement = TextI0.getlnDouble();

inches = measurement;

break;

CHAPTER 3. CONTROL

case 2:
System.out.println("Enter the number of feet: ");
measurement = TextIO.getlnDouble();
inches = measurement * 12;
break;

case 3:
System.out.println("Enter the number of yards: ");
measurement = TextIO.getlnDouble();
inches = measurement * 36;
break;

case 4:
System.out.println("Enter the number of miles: ");
measurement = TextIO.getlnDouble();
inches = measurement * 12 * 5280;
break;

default:
System.out.println("Error! TIllegal option number! I quit!");
System.exit(1);

} // end switch

/* Now go on to convert inches to feet, yards, and miles... */

This example could instead be written using a String in the switch statement:

String units; // Unit of measurement, entered by user.
double measurement; // A numerical measurement, input by the user.
double inches; // The same measurement, converted into inches.

/* Read the user’s unit of measurement. */

System.out.println("What unit of measurement does your input use?");

113

System.out.print("Legal responses: inches, feet, yards, or miles : ");

units = TextIO.getln().toLowerCase();
/* Read user’s measurement and convert to inches. */

System.out.print ("Enter the number of " + units + ": ");
measurement = TextI0.getlnDouble();

switch (units) {
case "inches":
inches = measurement;
break;
case "feet":
inches = measurement * 12;
break;
case "yards":
inches = measurement * 36;
break;
case "miles":
inches = measurement * 12 * 5280;
break;
default:
System.out.println("Wait a minute! Illegal unit of measure!
System.exit(1);
} // end switch

I quit!");

CHAPTER 3. CONTROL 114

3.6.3 Enums in switch Statements

The type of the expression in a switch can be an enumerated type. In that case, the constants
in the case labels must be values from the enumerated type. For example, suppose that the
type of the expression is the enumerated type Season defined by

enum Season { SPRING, SUMMER, FALL, WINTER }

and that the expression in a switch statement is an expression of type Season. The constants
in the case label must be chosen from among the values Season.SPRING, Season.SUMMER,
Season.FALL, or Season.WINTER. However, there is a quirk in the syntax: when an enum
constant is used in a case label, only the simple name, such as “SPRING” is used, not the full
name, such as “Season.SPRING”. Of course, the computer already knows that the value in the
case label must belong to the enumerated type, since it can tell that from the type of expression
used, so there is really no need to specify the type name in the constant. For example, assuming
that currentSeason is a variable of type Season, then we could have the switch statement:

switch (currentSeason) {

case WINTER: // (NOT Season.WINTER !)
System.out.println("December, January, February");
break;

case SPRING:
System.out.println("March, April, May");
break;
case SUMMER:
System.out.println("June, July, August");
break;
case FALL:
System.out.println("September, October, November");
break;

3.6.4 Definite Assignment and switch Statements

As a somewhat more realistic example, the following switch statement makes a ran-
dom choice among three possible alternatives. Recall that the value of the expression
(int) (3*Math.random()) is one of the integers 0, 1, or 2, selected at random with equal
probability, so the switch statement below will assign one of the values "Rock", "Paper",
"Scissors" to computerMove, with probability 1/3 for each case:

switch ((int) (3*Math.random())) {

case O:
computerMove
break;

case 1:
computerMove = "Paper";
break;

case 2:
computerMove = "Scissors";
break;

"Rock";

}

Now, this switch statement is perfectly OK, but suppose that we use it in the following code
segment:

CHAPTER 3. CONTROL 115

String computerMove;
switch ((int) (3*Math.random())) {
case O:
computerMove = "Rock";
break;
case 1:
computerMove = "Paper";
break;
case 2:
computerMove = "Scissors";
break;

3

System.out.println("The computer’s move is " + computerMove); // ERROR!

Now there is a subtle error on the last line! The problem here is due to definite assignment,
the idea that the Java compiler must be able to determine that a variable has definitely been
assigned a value before its value is used. Definite assignment was introduced in Subsection 3.1.4.
In this example, it’s true that the three cases in the switch cover all the possibilities, but the
compiler is not smart enough to figure that out; it just sees that there is an integer-valued
expression in the switch but not all possible integer values are covered by the given cases.

A simple solution is to replace the final case in the switch statement with default. With
a default case, all possible values of the expression in the switch are certainly covered, and
the compiler knows that computerMove is definitely assigned a value:

String computerMove;
switch ((int) (3*Math.random())) {
case O:
computerMove = "Rock";
break;
case 1:
computerMove = "Paper";
break;
default:
computerMove = "Scissors";
break;

}

System.out.println("The computer’s move is " + computerMove); // OK!

3.6.5 A New switch Statement Syntax

A new version of the switch statement has been added to the Java language in Java 14.
The new version uses —> in place of a colon after a case, and the code in a case is a single
statement, possibly a block statement consisting of several statements enclosed in braces. No
break statement is required, although one can be used to end a case early. This avoids the
common error of having control accidently fall through from one case to the next because of an
omitted break. Furthermore, instead of allowing just one value per case label, a case can take
several values separated by commas. Using the new syntax, the first example in this section
can be written as follows:

switch (N) { // (Assume N is an integer variable.)
case 1 -> System.out.println("The number is 1.");
case 2, 4, 8 -> {

CHAPTER 3. CONTROL 116

System.out.println("The number is 2, 4, or 8.");
System.out.println("(That’s a power of 2!)");
3
case 3, 6, 9 -> {
System.out.println("The number is 3, 6, or 9.");
System.out.println("(That’s a multiple of 3!)");
}

case 5 -> System.out.println("The number is 5.");
default ->
System.out.println("The number is 7 or is outside the range 1 to 9.");

}

This seems to me to be a big improvement. But the original switch syntax is still available.

Along with the improved switch statement, a new “switch expression” has been introduced.
Like any expression, a switch expression computes and returns a single value. The syntax is
similar to a switch statement, but instead of a statement in each case, there is an expression.
For example,

String computerMove = switch ((int) (3*Math.random())) {
case 1 -> "Rock";
case 2 —> "Paper";
default -> "Scissors";

};

A switch expression must always compute a value and therefore will almost always have
a default case. The expression in a case can be replaced by a block containing several
statements; the value for that case should then be specified by a yield statement (such as
“yield 42;”) rather than a return or break statement.

3.7 Introduction to Exceptions and try..catch

IN ADDITION TO THE CONTROL structures that determine the normal flow of control in a
program, Java has a way to deal with “exceptional” cases that throw the flow of control off its
normal track. When an error occurs during the execution of a program, the default behavior
is to terminate the program and to print an error message. However, Java makes it possible to
“catch” such errors and program a response different from simply letting the program crash.
This is done with the try..catch statement. In this section, we will take a preliminary and
incomplete look the try..catch statement, leaving out a lot of the rather complex syntax of
this statement. Error handling is a complex topic, which we will return to in Section 8.3, and
we will cover the full syntax of try..catch at that time.

3.7.1 Exceptions

The term exception is used to refer to the type of event that one might want to handle with
a try..catch. An exception is an exception to the normal flow of control in the program.
The term is used in preference to “error” because in some cases, an exception might not be
considered to be an error at all. You can sometimes think of an exception as just another way
to organize a program.

Exceptions in Java are represented as objects of type Exception. Actual exceptions are
usually defined by subclasses of Exception. Different subclasses represent different types of

CHAPTER 3. CONTROL 117

exceptions. We will look at only two types of exception in this section: NumberFormatException
and lllegalArgumentException.

A NumberFormatException can occur when an attempt is made to convert a string
into a number. Such conversions are done by the functions Integer.parselnt
and Double.parseDouble. (See Subsection 2.5.7.) Consider the function call
Integer.parselnt(str) where str is a variable of type String. If the value of str is the
string "42", then the function call will correctly convert the string into the int 42. However,
if the value of str is, say, "fred", the function call will fail because "fred" is not a legal
string representation of an int value. In this case, an exception of type NumberFormatException
occurs. If nothing is done to handle the exception, the program will crash.

An lllegalArgumentException can occur when an illegal value is passed as a parameter to a
subroutine. For example, if a subroutine requires that a parameter be greater than or equal to
zero, an lllegalArgumentException might occur when a negative value is passed to the subroutine.
How to respond to the illegal value is up to the person who wrote the subroutine, so we
can’t simply say that every illegal parameter value will result in an /llegalArgumentException.
However, it is a common response.

3.7.2 try..catch

When an exception occurs, we say that the exception is “thrown.” For example, we say that
Integer.parselnt(str) throws an exception of type NumberFormatException when the value
of str is illegal. When an exception is thrown, it is possible to “catch” the exception and
prevent it from crashing the program. This is done with a try..catch statement. In simplified
form, the syntax for a try..catch statement can be:
try {
(statements-1)
}
catch ((ezception-class-name) (variable-name)) {
(statements-2)

3

The (exception-class-name) could be NumberFormatException, IllegalArgumentException, or
some other exception class. When the computer executes this try..catch statement, it ex-
ecutes (statements-1), the statements inside the try part. If no exception occurs during the
execution of (statements-1), then the computer just skips over the catch part and proceeds
with the rest of the program. However, if an exception of type (ezception-class-name) occurs
during the execution of (statements-1), the computer immediately jumps from the point where
the exception occurs to the catch part and executes (statements-2), skipping any remaining
statements in (statements-1). Note that only one type of exception is caught; if some other
type of exception occurs during the execution of (statements-1), it will crash the program as
usual.

During the execution of (statements-2), the (variable-name) represents the exception object,
so that you can, for example, print it out. The exception object contains information about
the cause of the exception. This includes an error message, which will be displayed if you print
out the exception object.

After the end of the catch part, the computer proceeds with the rest of the program; the
exception has been caught and handled and does not crash the program.

By the way, note that the braces, { and }, are part of the syntax of the try..catch
statement. They are required even if there is only one statement between the braces. This is

CHAPTER 3. CONTROL 118

different from the other statements we have seen, where the braces around a single statement
are optional.

As an example, suppose that str is a variable of type String whose value might or might
not represent a legal real number. Then we could say:

double x;

try {
x = Double.parseDouble(str);
System.out.println("The number is " + x);

}

catch (NumberFormatException e) {
System.out.println("Not a legal number.");
x = Double.NaN;

}

If an error is thrown by the call to Double.parseDouble(str), then the output statement in
the try part is skipped, and the statement in the catch part is executed. (In this example,
I set x to be the value Double.NaN when an exception occurs. Double.NaN is the special
“not-a-number” value for type double.)

It’s not always a good idea to catch exceptions and continue with the program. Often that
can just lead to an even bigger mess later on, and it might be better just to let the exception
crash the program at the point where it occurs. However, sometimes it’s possible to recover
from an error.

Suppose, for example, we want a program that will find the average of a sequence of real
numbers entered by the user, and we want the user to signal the end of the sequence by entering
a blank line. (This is similar to the sample program ComputeAverage.java from Section 3.3, but
in that program the user entered a zero to signal end-of-input.) If we use TextI0.getlnInt ()
to read the user’s input, we will have no way of detecting the blank line, since that function
simply skips over blank lines. A solution is to use TextIO.getln() to read the user’s input.
This allows us to detect a blank input line, and we can convert non-blank inputs to numbers
using Double.parseDouble. And we can use try..catch to avoid crashing the program when
the user’s input is not a legal number. Here’s the program:

import textio.TextIO;
public class ComputeAverage2 {

public static void main(String[] args) {
String str; // The user’s input.
double number; // The input converted into a number.
double total; // The total of all numbers entered.

double avg; // The average of the numbers.
int count; // The number of numbers entered.
total = 0;

count = 0;

System.out.println("Enter your numbers, press return to end.");
while (true) {

System.out.print("? ");

str = TextIO.getln();

if (str.equals("")) {

break; // Exit the loop, since the input line was blank.
b
try {

http://math.hws.edu/eck/cs124/javanotes8/source/chapter3/ComputeAverage.java

CHAPTER 3. CONTROL 119

number = Double.parseDouble(str);
// If an error occurs, the next 2 lines are skipped!
total = total + number;
count = count + 1;
}
catch (NumberFormatException e) {
System.out.println("Not a legal number! Try again.");
3
}
avg = total/count;
System.out.printf ("The average of %d numbers is %1.6g%n", count, avg);

3.7.3 Exceptions in TextIO

When TextIO reads a numeric value from the user, it makes sure that the user’s response is
legal, using a technique similar to the while loop and try..catch in the previous example.
However, TextI0 can read data from other sources besides the user. (See Subsection 2.4.4.)
When it is reading from a file, there is no reasonable way for TextIO to recover from an illegal
value in the input, so it responds by throwing an exception. To keep things simple, TextI0 only
throws exceptions of type IlllegalArgumentException, no matter what type of error it encounters.
For example, an exception will occur if an attempt is made to read from a file after all the data
in the file has already been read. In TextI0, the exception is of type lllegalArgumentException. If
you have a better response to file errors than to let the program crash, you can use a try. .catch
to catch exceptions of type lllegalArgumentException.

As an example, we will look at yet another number-averaging program. In this case, we will
read the numbers from a file. Assume that the file contains nothing but real numbers, and we
want a program that will read the numbers and find their sum and their average. Since it is
unknown how many numbers are in the file, there is the question of when to stop reading. One
approach is simply to try to keep reading indefinitely. When the end of the file is reached, an
exception occurs. This exception is not really an error—it’s just a way of detecting the end of
the data, so we can catch the exception and finish up the program. We can read the data in a
while (true) loop and break out of the loop when an exception occurs. This is an example of
the somewhat unusual technique of using an exception as part of the expected flow of control
in a program.

To read from the file, we need to know the file’s name. To make the program more general,
we can let the user enter the file name, instead of hard-coding a fixed file name in the program.
However, it is possible that the user will enter the name of a file that does not exist. When
we use TextIO.readfile to open a file that does not exist, an exception of type lllegalArgu-
mentException occurs. We can catch this exception and ask the user to enter a different file
name. Here is a complete program that uses all these ideas:

import textio.TextIO;

* This program reads numbers from a file. It computes the sum and
* the average of the numbers that it reads. The file should contain
* nothing but numbers of type double; if this is not the case, the

* output will be the sum and average of however many numbers were

CHAPTER 3. CONTROL 120

* successfully read from the file. The name of the file will be
* input by the user.
*/

public class AverageNumbersFromFile {
public static void main(String[] args) {

while (true) {

String fileName; // The name of the file, to be input by the user.

System.out.print ("Enter the name of the file: ");

fileName = TextIO.getln();

try {
TextIO.readFile(fileName); // Try to open the file for input.
break; // If that succeeds, break out of the loop.

¥

catch (IllegalArgumentException e) {
System.out.println("Can’t read from the file \"" + fileName + "\".");
System.out.println("Please try again.\n");

}
/* At this point, TextIO is reading from the file. */

double number; // A number read from the data file.

double sum; // The sum of all the numbers read so far.
int count; // The number of numbers that were read.
sum = 0;

count = O;

try {
while (true) { // Loop ends when an exception occurs.
number = TextIO0.getDouble();
count++; // This is skipped when the exception occurs
sum += number;
X
}
catch (IllegalArgumentException e) {
// We expect this to occur when the end-of-file is encountered.
// We don’t consider this to be an error, so there is nothing to do
// in this catch clause. Just proceed with the rest of the program.

}
// At this point, we’ve read the entire file.

System.out.println();
System.out.println("Number of data values read: " + count);
System.out.println("The sum of the data values: " + sum);
if (count == 0)
System.out.println("Can’t compute an average of 0 values.");
else
System.out.println("The average of the values: " + (sum/count));

CHAPTER 3. CONTROL 121

3.8 Introduction to Arrays

IN PREVIOUS SECTIONS OF THIS CHAPTER, we have already covered all of Java’s control struc-
tures. But before moving on to the next chapter, we will take preliminary looks at two additional
topics that are at least somewhat related to control structures.

This section is an introduction to arrays. Arrays are a basic and very commonly used
data structure, and array processing is often an exercise in using control structures. The next
section will introduce computer graphics and will allow you to apply what you know about
control structures in another context.

3.8.1 Creating and Using Arrays

A data structure consists of a number of data items chunked together so that they can be
treated as a unit. An array is a data structure in which the items are arranged as a numbered
sequence, so that each individual item can be referred to by its position number. In Java—but
not in some other programming languages—all the items must be of the same type, and the
numbering always starts at zero. You will need to learn several new terms to talk about arrays:
The number of items in an array is called the length of the array. The type of the individual
items in an array is called the base type of the array. And the position number of an item in
an array is called the index of that item.

Suppose that you want to write a program that will process the names of, say, one thousand
people. You will need a way to deal with all that data. Before you knew about arrays, you might
have thought that the program would need a thousand variables to hold the thousand names,
and if you wanted to print out all the names, you would need a thousand print statements.
Clearly, that would be ridiculous! In reality, you can put all the names into an array. The array
is represented by a single variable, but it holds the entire list of names. The length of the array
would be 1000, since there are 1000 individual names. The base type of the array would be
String since the items in the array are strings. The first name would be at index 0 in the array,
the second name at index 1, and so on, up to the thousandth name at index 999.

The base type of an array can be any Java type, but for now, we will stick to arrays whose
base type is String or one of the eight primitive types. If the base type of an array is int, it
is referred to as an “array of ints.” An array with base type String is referred to as an “array
of Strings.” However, an array is not, properly speaking, a list of integers or strings or other
values. It is better thought of as a list of variables of type int, or a list of variables of type
String, or of some other type. As always, there is some potential for confusion between the two
uses of a variable: as a name for a memory location and as a name for the value stored in that
memory location. Fach position in an array acts as a variable. Each position can hold a value
of a specified type (the base type of the array), just as a variable can hold a value. The value
can be changed at any time, just as the value of a variable can be changed. The items in an
array—really, the individual variables that make up the array—are more often referred to as
the elements of the array.

As I mentioned above, when you use an array in a program, you can use a variable to refer
to the array as a whole. But you often need to refer to the individual elements of the array. The
name for an element of an array is based on the name for the array and the index number of
the element. The syntax for referring to an element looks, for example, like this: namelist [7].
Here, namelist is the variable that names the array as a whole, and namelist[7] refers to
the element at index 7 in that array. That is, to refer to an element of an array, you use the
array name, followed by element index enclosed in square brackets. An element name of this

CHAPTER 3. CONTROL 122

form can be used like any other variable: You can assign a value to it, print it out, use it in an
expression, and so on.

An array also contains a kind of variable representing its length. For example, you can refer
to the length of the array namelist as namelist.length. However, you cannot assign a value
to namelist.length, since the length of an array cannot be changed.

Before you can use a variable to refer to an array, that variable must be declared, and it
must have a type. For an array of Strings, for example, the type for the array variable would
be String[], and for an array of ints, it would be int[]. In general, an array type consists of the
base type of the array followed by a pair of empty square brackets. Array types can be used to
declare variables; for example,

String[] namelist;
int[] A;
double[] prices;

and variables declared in this way can refer to arrays. However, declaring a variable does not
make the actual array. Like all variables, an array variable has to be assigned a value before
it can be used. In this case, the value is an array. Arrays have to be created using a special
syntax. (The syntax is related to the fact that arrays in Java are actually objects, but that
doesn’t need to concern us here.) Arrays are created with an operator named new. Here are
some examples:

namelist = new String[1000];

A = new int[5];

prices = new double[100];
The general syntax is

(array-variable) = new (base-type)[(array-length)l;
The length of the array can be given as either an integer or an integer-valued expression. For
example, after the assignment statement “A = new int[5];”, A is an array containing the five

integer elements A[0], A[1], A[2], A[3], and A[4]. Also, A.length would have the value 5.
It’s useful to have a picture in mind:

The statement

A The array contains five
A = new int[5]; . elements, which are
creates an array Alength:[(5) referred to as

that holds five AlOl:| O A[O], A[1], A[2], A[3], A[4].
elements of type AlLl: 0 Each element is a variable
int. Ais a name Al2]: 0 of type int. The array also
for the whole array. AL3]: 0 contains A.length, whose
Al4l: 0 value cannot be changed.

When you create an array of int, each element of the array is automatically initialized to
zero. Any array of numbers is filled with zeros when it is created. An array of boolean is filled
with the value false. And an array of char is filled with the character that has Unicode code
number zero. (For an array of String, the initial value is null, a special value used for objects
that we won'’t encounter officially until Section 5.1.)

CHAPTER 3. CONTROL 123

3.8.2 Arrays and For Loops

A lot of the real power of arrays comes from the fact that the index of an element can be given
by an integer variable or even an integer-valued expression. For example, if 1list is an array
and i is a variable of type int, then you can use list[i] and even list[2*i+1] as variable
names. The meaning of 1list[i] depends on the value of i. This becomes especially useful
when we want to process all the elements of an array, since that can be done with a for loop.
For example, to print out all the items in an array, list, we can just write

int i; // the array index

for (i = 0; i < list.length; i++) {
System.out.println(list[i]);

}

The first time through the loop, i is 0, and list[i] refers to 1ist[0]. So, it is the value
stored in the variable 1ist[0] that is printed. The second time through the loop, i is 1,
and the value stored in 1ist[1] is printed. If the length of the list is 5, then the loop ends
after printing the value of 1ist[4], when i becomes equal to 5 and the continuation condition
“i < list.length” is no longer true. This is a typical example of using a loop to process an
array.

Let’s look at a few more examples. Suppose that A is an array of double, and we want to
find the average of all the elements of the array. We can use a for loop to add up the numbers,
and then divide by the length of the array to get the average:

double total; // The sum of the numbers in the array.
double average; // The average of the numbers.
int i; // The array index.
total = 0;
for (i =0; i < A.length; i++) {
total = total + A[i]; // Add element number i to the total.
}
average = total / A.length; // A.length is the number of items

Another typical problem is to find the largest number in the array A. The strategy is to
go through the array, keeping track of the largest number found so far. We’ll store the largest
number found so far in a variable called max. As we look through the array, whenever we find
a number larger than the current value of max, we change the value of max to that larger value.
After the whole array has been processed, max is the largest item in the array overall. The only
question is, what should the original value of max be? One possibility is to start with max equal
to A[0], and then to look through the rest of the array, starting from A[1], for larger items:

double max; // The largest number seen so far.
max = A[O]; // At first, the largest number seen is A[0].
int i;
for (1 =1; i < A.length; i++) {

if (A[i] > max) {

max = A[i];

}

}

// at this point, max is the largest item in A

Sometimes, you only want to process some elements of the array. In that case, you can use
an if statement inside the for loop to decide whether or not to process a given element. Let’s
look at the problem of averaging the elements of an array, but this time, suppose that we only

CHAPTER 3. CONTROL 124

want to average the non-zero elements. In this case, the number of items that we add up can
be less than the length of the array, so we will need to keep a count of the number of items
added to the sum:

double total; // The sum of the non-zero numbers in the array.
int count; // The number of non-zero numbers.

double average; // The average of the non-zero numbers.

int i;

total = 0;

count = 0;

for (1 =0; i < A.length; i++) {

if (A[L] t=0) {
total = total + A[i]; // Add element to the total
count = count + 1; // and count it.
X
X
if (count == 0) {
System.out.println("There were no non-zero elements.");

}
else {
average = total / count; // Divide by number of items
System.out.printf ("Average of Jd elements is %1.5g¥%n",
count, average);
}

3.8.3 Random Access

So far, my examples of array processing have used sequential access. That is, the elements of
the array were processed one after the other in the sequence in which they occur in the array.
But one of the big advantages of arrays is that they allow random access. That is, every
element of the array is equally accessible at any given time.

As an example, let’s look at a well-known problem called the birthday problem: Suppose
that there are N people in a room. What’s the chance that there are two people in the room
who have the same birthday? (That is, they were born on the same day in the same month,
but not necessarily in the same year.) Most people severely underestimate the probability. We
will actually look at a different version of the question: Suppose you choose people at random
and check their birthdays. How many people will you check before you find one who has the
same birthday as someone you’ve already checked? Of course, the answer in a particular case
depends on random factors, but we can simulate the experiment with a computer program and
run the program several times to get an idea of how many people need to be checked on average.

To simulate the experiment, we need to keep track of each birthday that we find. There are
365 different possible birthdays. (We’ll ignore leap years.) For each possible birthday, we need
to keep track of whether or not we have already found a person who has that birthday. The
answer to this question is a boolean value, true or false. To hold the data for all 365 possible
birthdays, we can use an array of 365 boolean values:

boolean[] used;
used = new boolean[365];

For this problem, the days of the year are numbered from 0 to 364. The value of used[i] is
true if someone has been selected whose birthday is day number i. Initially, all the values in the
array are false. (Remember that this is done automatically when the array is created.) When

CHAPTER 3. CONTROL 125

we select someone whose birthday is day number i, we first check whether used[i] is true.
If it is true, then this is the second person with that birthday. We are done. On the other
hand, if used[i] is false, we set used[i] to be true to record the fact that we’ve encountered
someone with that birthday, and we go on to the next person. Here is a program that carries
out the simulated experiment (of course, in the program, there are no simulated people, only
simulated birthdays):

/**

* Simulate choosing people at random and checking the day of the year they

* were born on. If the birthday is the same as one that was seen previously,
* stop, and output the number of people who were checked.

*/
public class BirthdayProblem {

public static void main(String[] args) {

boolean[] used; // For recording the possible birthdays
// that have been seen so far. A value
// of true in used[i] means that a person
// whose birthday is the i-th day of the
// year has been found.

int count; // The number of people who have been checked.
used = new boolean[365]; // Initially, all entries are false.
count = 0;

while (true) {
// Select a birthday at random, from O to 364.
// If the birthday has already been used, quit.
// Otherwise, record the birthday as used.

int birthday; // The selected birthday.
birthday = (int) (Math.random()*365) ;
count++;

System.out.printf ("Person %d has birthday number %d%n", count, birthday);

if (used[birthday]) {
// This day was found before; it’s a duplicate. We are done.
break;

}
used [birthday] = true;
} // end while

System.out.println();
System.out.println("A duplicate birthday was found after "
+ count + " tries.");

}
} // end class BirthdayProblem

You should study the program to understand how it works and how it uses the array. Also, try
it out! You will probably find that a duplicate birthday tends to occur sooner than you expect.

CHAPTER 3. CONTROL 126

3.8.4 Partially Full Arrays

Consider an application where the number of items that we want to store in an array changes
as the program runs. Since the size of the array can’t be changed, a separate counter variable
must be used to keep track of how many spaces in the array are in use. (Of course, every space
in the array has to contain something; the question is, how many spaces contain useful or valid
items?)

Consider, for example, a program that reads positive integers entered by the user and stores
them for later processing. The program stops reading when the user inputs a number that is
less than or equal to zero. The input numbers can be kept in an array, numbers, of type int[].
Let’s say that no more than 100 numbers will be input. Then the size of the array can be fixed
at 100. But the program must keep track of how many numbers have actually been read and
stored in the array. For this, it can use an integer variable. Each time a number is stored in
the array, we have to count it; that is, value of the counter variable must be incremented by
one. One question is, when we add a new item to the array, where do we put it? Well, if the
number of items is count, then they would be stored in the array in positions number 0, 1, ...,
(count-1). The next open spot would be position number count, so that’s where we should put
the new item.

As a rather silly example, let’s write a program that will read the numbers input by the
user and then print them in the reverse of the order in which they were entered. Assume that
an input value equal to zero marks the end of the data. (This is, at least, a processing task
that requires that the numbers be saved in an array. Note that many types of processing, such
as finding the sum or average or maximum of the numbers, can be done without saving the
individual numbers.)

import textio.TextIO;
public class ReverseInputNumbers {
public static void main(String[] args) {

int[] numbers; // An array for storing the input values.

int count; // The number of numbers saved in the array.
int num; // One of the numbers input by the user.

int i; // for-loop variable.

numbers = new int[100]; // Space for 100 ints.

count = 0; // No numbers have been saved yet.
System.out.println("Enter up to 100 positive integers; enter O to end.");

while (true) { // Get the numbers and put them in the array.
System.out.print("? ");
num = TextIO0.getlnInt();
if (num <= 0) {
// Zero marks the end of input; we have all the numbers.
break;
}
numbers [count] = num; // Put num in position count.
count++; // Count the number

¥
System.out.println("\nYour numbers in reverse order are:\n");

for (i =count - 1; i >=0; i-——-) {

CHAPTER 3. CONTROL 127

System.out.println(numbers([i]);

}
} // end main();
} // end class ReverselnputNumbers

It is especially important to note how the variable count plays a dual role. It is the number
of items that have been entered into the array. But it is also the index of the next available
spot in the array.

When the time comes to print out the numbers in the array, the last occupied spot in the
array is location count - 1, so the for loop prints out values starting from location count - 1
and going down to 0. This is also a nice example of processing the elements of an array in reverse
order.

* kX

You might wonder what would happen in this program if the user tries to input more than
100 numbers. The result would be an error that would crash the program. When the user enters
the 101-st number, the program tries to store that number in an array element number [100].
However, there is no such array element. There are only 100 items in the array, and the
index of the last item is 99. The attempt to use number [100] generates an exception of type
ArraylndexOutOfBoundsException. Exceptions of this type are a common source of run-time
errors in programs that use arrays.

3.8.5 Two-dimensional Arrays

The arrays that we have considered so far are “one-dimensional.” This means that the array
consists of a sequence of elements that can be thought of as being laid out along a line. It
is also possible to have two-dimensional arrays, where the elements can be laid out in a
rectangular grid. We consider them only briefly here, but will return to the topic in Section 7.5.

In a two-dimensional, or “2D,” array, the elements can be arranged in rows and columns.
Here, for example, is a 2D array of int that has five rows and seven columns:

0 1 2 3 4 5 6

131 7 |33 |54]-5]-11]92
-3 10 8 |42 |18] 0 | 67
44 [78 190 | 79 | -5 | 72 | 22
43 | -6 | 17 |100f 1 |-12] 12
2 0 |58 |58]|36]21 |87

=W N = O

This 5-by-7 grid contains a total of 35 elements. The rows in a 2D array are numbered 0, 1, 2,

.., up to the number of rows minus one. Similarly, the columns are numbered from zero up
to the number of columns minus one. Each individual element in the array can be picked out
by specifying its row number and its column number. (The illustration shown here is not what
the array actually looks like in the computer’s memory, but it does show the logical structure
of the array.)

In Java, the syntax for two-dimensional arrays is similar to the syntax for one-dimensional
arrays, except that an extra index is involved, since picking out an element requires both a row
number and a column number. For example, if A is a 2D array of int, then A[3] [2] would be
the element in row 3, column 2. That would pick out the number 17 in the array shown above.

CHAPTER 3. CONTROL 128

The type for A would be given as int[][], with two pairs of empty brackets. To declare the array
variable and create the array, you could say,

int[1[1 A;
A = new int[5][7];

The second line creates a 2D array with 5 rows and 7 columns. Two-dimensional arrays are
often processed using nested for loops. For example, the following code segment will print out
the elements of A in neat columns:

int row, col; // loop-control-variables for accessing rows and columns in A
for (row = 0; row < 5; row++) {
for (col = 0; col < 7; col++) {
System.out.printf("%7d", Alrow][col]);
3
System.out.println();

}

The base type of a 2D array can be anything, so you can have arrays of type double[][],
String[][], and so on.

There are some natural uses for 2D arrays. For example, a 2D array can be used to store the
contents of the board in a game such as chess or checkers. And an example in Subsection 4.7.3
uses a 2D array to hold the colors of a grid of colored squares. But sometimes two-dimensional
arrays are used in problems in which the grid is not so visually obvious. Consider a company
that owns 25 stores. Suppose that the company has data about the profit earned at each store
for each month in the year 2018. If the stores are numbered from 0 to 24, and if the twelve
months from January 2018 through December 2018 are numbered from 0 to 11, then the profit
data could be stored in an array, profit, created as follows:

double[][] profit;
profit = new double[25][12];

profit[3] [2] would be the amount of profit earned at store number 3 in March, and more
generally, profit [storeNum] [monthNum] would be the amount of profit earned in store number
storeNum in month number monthNum (where the numbering, remember, starts from zero).
Let’s assume that the profit array has already been filled with data. This data can be
processed in a lot of interesting ways. For example, the total profit for the company—for the
whole year from all its stores—can be calculated by adding up all the entries in the array:

double totalProfit; // Company’s total profit in 2018.
int store, month; // variables for looping through the stores and the months
totalProfit = 0;
for (store = 0; store < 25; store++) {
for (month = O; month < 12; month++)
totalProfit += profit[store] [month];
}

Sometimes it is necessary to process a single row or a single column of an array, not the
entire array. For example, to compute the total profit earned by the company in December,
that is, in month number 11, you could use the loop:

double decemberProfit;
int storeNum;

decemberProfit
for (storeNum

0.0;
0; storeNum < 25; storeNum++) {

CHAPTER 3. CONTROL 129

decemberProfit += profit[storeNum] [11];
}

Two-dimensional arrays are sometimes useful, but they are much less common than one-
dimensional arrays. Java actually allows arrays of even higher dimension, but they are only
rarely encountered in practice.

3.9 Introduction to GUI Programming

For THE PAST TWO CHAPTERS, you’ve been learning the sort of programming that is done
inside a single subroutine, “programming in the small.” In the rest of this book, we’ll be more
concerned with the larger scale structure of programs, but the material that you’ve already
learned will be an important foundation for everything to come. In this section, we see how
techniques that you have learned so far can be applied in the context of graphical user interface
programming. GUI programs here, and in the rest of this book, are written using JavaFX, a
collection of classes that form a “toolkit” for writing GUI programs. All of the classes mentioned
in this section are part of JavaFX, and they must be imported into any program that uses them.
See Section 2.6 for information about compiling and running programs that use JavaFX.

When you run a GUI program, it opens one or more windows on your computer screen. As
a programmer, you can have complete control over what appears in the window and how the
user can interact with it. For our first encounter, we look at one simple example: the ability
of a program to display simple shapes like rectangles and lines in the window, with no user
interaction. For now, the main point is to take a look at how programming-in-the-small can be
used in other contexts besides text-based, command-line-style programs. You will see that a
knowledge of programming-in-the-small applies to writing the guts of any subroutine, not just
main().

3.9.1 Drawing Shapes

To understand computer graphics, you need to know a little about pixels and coordinate sys-
tems. The computer screen is made up of small squares called pizels, arranged in rows and
columns, usually about 100 pixels per inch. (Many screen now have many more physical pixels
per inch. On these “high-resolution” screens, a JavaFX “pixel” might refer to a physical pixel,
but it is more likely to refer to a “logical pixel,” which is a unit of measure somewhere close to
1/100 inch.)

The computer controls the color of the pixels, and drawing is done by changing the colors
of individual pixels. Each pixel has a pair of integer coordinates, often called z and y, that
specify the pixel’s horizontal and vertical position. When drawing to a rectangular area on
the screen, the coordinates of the pixel in the upper left corner of the rectangle are (0,0). The
z coordinate increases from left to right, and the y coordinate increases from top to bottom.
Shapes are specified using pixels. For example, a rectangle is specified by the z and y coordinates
of its upper left corner and by its width and height measured in pixels. Here’s a picture of a
rectangular drawing area, showing the ranges of x and y coordinates. The “width” and “height”
in this picture give the size of the drawing area, in pixels:

CHAPTER 3. CONTROL 130

0 width
| |
1 L]

<
<

X

0=
oo
Hello World /

height Y

Assuming that the drawing area is 800-by-500 pixels, the rectangle in the upper left of the
picture would have, approximately, width 200, height 150, and upper left corner at coordinates
(50,50).

X Kk ok

Drawing in Java is done using a graphics context. A graphics context is an object. As an
object, it can include subroutines and data. Among the subroutines in a graphics context are
routines for drawing basic shapes such as lines, rectangles, ovals, and text. (When text appears
on the screen, the characters have to be drawn there by the computer, just like the computer
draws any other shapes.) Among the data in a graphics context are the color and font that
are currently selected for drawing. (A font determines the style and size of characters.) One
other piece of data in a graphics context is the “drawing surface” on which the drawing is done.
Different graphics context objects can draw to different drawing surfaces. For us, the drawing
surface will be the content area of a window, not including its border or title bar.

There are two ways to draw a shape in JavaFX: You can fill the shape, meaning you can
set the color of each of the pixels inside the shape. Or you can stroke the shape, meaning that
you set the color of the pixels that lie along the border of the shape. Some shapes, such as a
line, can only be stroked. A graphics context actually keeps track of two separate colors, one
used for filling shapes and one used for stroking shapes. Stroking a shape is like dragging a
pen along the border of the shape. The properties of that pen (such as its size and whether it
produces a solid line or a dashed line) are properties of the graphics context.

A graphics context is represented by a variable. The type for the variable is GraphicsContext
(just like the type for a string variable is String). The variable is often named g, but the name
of the variable is of course up to the programmer. Here are a few of the subroutines that are
available in a graphics context ¢g. Note that all numerical parameter values can be of type
double.

e g.setFill(c) is called to set the color to be used for filling shapes. The parameter,
c is an object belonging to a class named Color. There are many constants represent-
ing standard colors that can be used as the parameter in this subroutine. The stan-
dard colors range from common colors such as Color.BLACK, Color.WHITE, Color.RED,
Color.GREEN, Color.BLUE, and Color.YELLOW, to more exotic color names such as
Color.CORNFLOWERBLUE. (Later, we will see that it is also possible to create new colors.)
For example, if you want to fill shapes with red, you would say “g.setFill(Color.RED);”.
The specified color is used for all subsequent fill operations up until the next time
g.setFill() is called. Note that previously drawn shapes are not affected!

e g.setStroke(c) is called to set the color to be used for stroking shapes. It works similarly
to g.setFill.

CHAPTER 3. CONTROL 131

e g.setLineWidth (w) sets the size of the pen that will be used for subsequent stroke oper-
ations, where w is measured in pixels.

e g.strokeLine(x1,y1,x2,y2) draws a line from the point with coordinates (x1,y1) to
the point with coordinates (x2,y2). The width of the line is 1, unless a different line
width has been set by calling g.setLineWidth(), and the color is black unless a different
color has been set by calling g.setStroke().

e g.strokeRect(x,y,w,h) draws the outline of a rectangle with vertical and horizontal
sides. This subroutine draws the outline of the rectangle whose top-left corner is x pixels
from the left edge of the drawing area and y pixels down from the top. The horizontal
width of the rectangle is w pixels, and the vertical height is h pixels. Color and line width
are set by calling g.setStroke() and g.setLineWidth().

e g.fillRect(x,y,w,h) is similar to g.strokeRect () except that it fills in the inside of
the rectangle instead of drawing an outline, and it uses the color set by g.setFill().

e g.strokeOval(x,y,w,h) draws the outline of an oval. The oval just fits inside the rect-
angle that would be drawn by g.strokeRect(x,y,w,h). To get a circle, use the same
values for w and for h.

e g.fillOval(x,y,w,h) is similar to g.strokeOval() except that it fills in the inside of
the oval instead of drawing an outline.

This is enough information to draw some pictures using Java graphics. To start with
something simple, let’s say that we want to draw a set of ten parallel lines, something like this:

Let’s say that the lines are 200 pixels long and that the distance from each line to the next
is 10 pixels, and let’s put the start of the first line at the pixel with coordinates (100,50). To
draw one line, we just have to call g.strokeLine(x1,y1,x2,y2) with appropriate values for
the parameters. Now, all the lines start at z-coordinate 100, so we can use the constant 100 as
the value for x1. Since the lines are 200 pixels long, we can use the constant 300 as the value
for x2. The y-coordinates of the lines are different, but we can see that both endpoints of a
line have the same y-coordinates, so we can use a single variable as the value for y1 and for
y2. Using y as the name of that variable, the command for drawing one of the lines becomes
g.strokeLine(100,y,300,y). The value of y is 50 for the top line and increases by 10 each
time we move down from one line to the next. We just need to make sure that y takes on the
correct sequence of values. We can use a for loop that counts from 1 to 10:

int y; // y-coordinate for the line
int i; // loop control variable
y = 60; // y starts at 50 for the first line
for (i =1; i <= 10; i++) {
g.strokeLine(100, y, 300, y);
y =y + 10; // increase y by 10 before drawing the next line.

CHAPTER 3. CONTROL 132

Alternatively, we could use y itself as the loop control variable, noting that the value of y for
the last line is 140:
int y;
for (y =50; y <= 140; y =y + 10)
g.strokeLine(100, y, 300, y);

If we wanted the lines to be blue, we could do that by calling g.setStroke(Color.BLUE)
before drawing them. If we just draw the lines without setting the color, they will be black.
If we wanted the lines to be 3 pixels wide, we could call g.setLineWidth(3) before drawing
the lines.

For something a little more complicated, let’s draw a large number of randomly colored,
randomly positioned, filled circles. Since we only know a few colors, I will randomly select the
color to be red, green, blue, or yellow. That can be done with a simple switch statement, similar
to the ones in Subsection 3.6.4:

switch ((int) (4*Math.random())) {

case 0O:
g.setFill(Color.RED);
break;

case 1:
g.setFill(Color.GREEN);
break;

case 2:
g.setFill(Color.BLUE);
break;

case 3:
g.setFill(Color.YELLOW);
break;

3

I will choose the center points of the circles at random. Let’s say that the width of the
drawing area is given by a variable, width. Then we want a random value in the range 0 to
width-1 for the horizontal position of the center. Similarly, the vertical position of the center
will be a random value in the range 0 to height-1. That leaves the size of the circle to be
determined; I will make the radius of each circle equal to 50 pixels. We can draw the circle with
a statement of the form g.fill0val(x,y,w,h). However, in this command, x and y are not
the coordinates of the center of the circle; they are the upper left corner of a rectangle drawn
around the circle. To get values for x and y, we have to move back from the center of the circle
by 50 pixels, an amount equal to the radius of the circle. The parameters w and h give the
width and height of the rectangle, which have to be twice the radius, or 100 pixels in this case.
Taking all this into account, here is a code segment for drawing a random circle:

centerX = (int) (width*Math.random());
centerY = (int) (height*Math.random());
g.fillOval(centerX - 50, centerY - 50, 100, 100);

This code comes after the color-setting code given above. In the end, I found that the picture
looks better if I also draw a black outline around each filled circle, so I added this code at the
end:

g.setStroke(Color.BLACK);
g.strokeOval(centerX - 50, centerY - 50, 100, 100);

CHAPTER 3. CONTROL 133

Finally, to get a large number of circles, I put all of the above code into a for loop that runs
for 500 executions. Here’s a typical drawing from the program, shown at reduced size:

3.9.2 Drawing in a Program

Now, as you know, you can’t just have a bunch of Java code standing by itself. The code
has to be inside a subroutine definition that is itself inside a class definition. In fact, for my
circle-drawing program, the complete subroutine for drawing the picture looks like this:

public void drawPicture(GraphicsContext g, int width, int height) {

g.setFill(Color .WHITE);
g.fillRect (0, O, width, height); // First, fill with a background color.

// As an example, draw a large number of colored disks.
// To get a different picture, erase this code, and substitute your own.

int centerX; // The x-coord of the center of a disk.

int centerY; // The y-coord of the center of a disk.

int colorChoice; // Used to select a random color.

int count; // Loop control variable for counting disks

for (count = 0; count < 500; count++) {

centerX = (int) (width*Math.random());
centerY = (int) (height*Math.random());

colorChoice = (int) (4*Math.random());

switch (colorChoice) {

case O:
g.setFill(Color.RED);
break;

case 1:
g.setFill(Color.GREEN) ;
break;

case 2:
g.setFill(Color.BLUE) ;
break;

case 3:
g.setFill(Color.YELLOW) ;
break;

3

g.fill0Oval(centerX - 50, centerY - 50, 100, 100);

CHAPTER 3. CONTROL 134

g.setStroke (Color.BLACK) ;
g.strokeOval(centerX - 50, centerY - 50, 100, 100);
}

} // end drawPicture()

This is the first subroutine definition that you have seen, other than main(), but you will
learn all about defining subroutines in the next chapter. The first line of the definition makes
available certain values that are used in the subroutine: the graphics context g and the width
and height of the drawing area. These values come from outside the subroutine, but the
subroutine can use them. The point here is that to draw something, you just have to fill in the
inside of the subroutine, just as you write a program by filling in the inside of main().

The subroutine definition still has to go inside a class that defines the program. In this case,
the class is named SimpleGraphicsStarter, and the complete program is available in the sample
source code file SimpleGraphicsStarter.java. You can run that program to see the drawing. You
can use this sample program as a starting point for drawing your own pictures.

There’s a lot in the program that you won’t understand. To make your own drawing, all you
have to do is erase the inside of the drawPicture() routine in the source code and substitute
your own drawing code. You don’t need to understand the rest.

(By the way, you might notice that the main() subroutine uses the word static in its
definition, but drawPicture() does not. This has to do with the fact that drawPicture is a
subroutine in an object rather than in a class. The difference between static and non-static
subroutines is important but not something that we need to worry about for the time being. It
will become important for us in Chapter 5.)

3.9.3 Animation

We can extend the idea of drawing pictures to making animations. A computer animation is
simply a sequence of individual pictures, displayed quickly one after the other. If the change
from each picture to the next is small, the user will perceive the sequence of images as a
continuous animation. Each picture in the animation is called a frame. The sample program
SimpleAnimationStarter.java can be used as a starting point for writing animations. It contains
a subroutine named drawFrame () that draws one frame in an animation. You can create an
animation by filling in the definition of this subroutine. In addition to the graphics context
and the width and height of the drawing area, you can use the value of two other variables in
your code: frameNumber and elapsedSeconds. The drawFrame subroutine will automatically
be called about 60 times per second. The variable frameNumber takes on the values 0, 1, 2,
3, ...in successive calls to the subroutine, and the value of elapsedSeconds is the number of
seconds that the animation has been running. By using either of these variables in your code,
you can draw a different picture each time drawFrame() is called, and the user will see the
series of pictures as an animation.

As an example of animation, we look at drawing a set of nested rectangles. The rectangles
will shrink towards the center of the drawing, giving an illusion of infinite motion. One frame
from the animation looks like this:

http://math.hws.edu/eck/cs124/javanotes8/source/chapter3/SimpleGraphicsStarter.java
http://math.hws.edu/eck/cs124/javanotes8/source/chapter3/SimpleAnimationStarter.java

CHAPTER 3. CONTROL 135

Consider how to draw a picture like this one. The rectangles can be drawn with a while
loop, which draws the rectangles starting from the one on the outside and moving in. Think
about what variables will be needed and how they change from one iteration of the while loop to
the next. Each time through the loop, the rectangle that is drawn is smaller than the previous
one and is moved down and over a bit. The difference between two rectangles is in their sizes
and in the coordinates of their upper left corners. We need variables to represent the width
and height of the rectangle, which I call rectWidth and rectHeight. The x and y-coordinates
of the upper left corner are the same, and they can be represented by the same variable. I call
that variable inset, since it is the amount by which the edges of the rectangle are inset from
the edges of the drawing area. The width and height decrease from one rectangle to the next,
while the inset increases. The while loop ends when either the width or the height becomes
less than or equal to zero. In general outline, the algorithm for drawing one frame is

Fill the drawing area with white

Set the amount of inset for the first rectangle

Set the width and height for the first rectangle

Set the stroke color to black

while the width and height are both greater than zero:
draw a rectangle (using the g.strokeRect subroutine)
increase the inset (to move the next rectangle over and down)
decrease the width and height (to make the next rectangle smaller)

In my program, each rectangle is 15 pixels away from the rectangle that surrounds it, so the
inset is increased by 15 each time through the while loop. The rectangle shrinks by 15 pixels
on the left and by 15 pixels on the right, so the width of the rectangle shrinks by 30 before
drawing the next rectangle. The height also shrinks by 30 pixels each time through the loop.
The pseudocode is then easy to translate into Java, except that we need to know what
initial values to use for the inset, width, and height of the first rectangle. To figure that out,
we have to think about the fact that the picture is animated, so that what we draw will depend
in some way on the frame number. From one frame to the next frame of the animation, the
top-left corner of the outer rectangle moves over and down; that is, the inset for the outer
rectangle increases from one frame to the next. We can make this happen by setting the inset
for frame number 0 to 0, the inset for frame number 1 to 1, and so on. But that can’t go on
forever, or eventually all the rectangles would disappear. In fact, when the animation gets to
frame 15, a new rectangle should appear at the outside of the drawing area—but it’s not really
a “new rectangle,” it’s just that the inset for the outer rectangle goes back to zero. So, as the

CHAPTER 3. CONTROL 136

animation proceeds, the inset should go through the sequence of values 0, 1, 2, ..., 14 over and
over. We can accomplish that very easily by setting

inset = frameNumber % 15;

Finally, note that the first rectangle fills the drawing area except for a border of size inset
around the outside of the rectangle. This means that the width of the rectangle is the width
of the drawing area minus two times the inset, and similarly for the height. Here, then is the
drawFrame () subroutine for the moving rectangle example:

public void drawFrame(GraphicsContext g, int frameNumber,
double elapsedSeconds, int width, int height) {

g.setFill(Color.WHITE) ;
g.fillRect(0,0,width,height); // Fill drawing area with white.

double inset; // Gap between edges of drawing area and outer rectangle.
double rectWidth, rectHeight; // The size of one of the rectangles.
g.setStroke(Color.BLACK); // Draw the rectangle outlines in black.

inset = frameNumber % 15 + 0.5; // (The 0.5 is a technicality that gives
// a sharper picture.)

rectWidth = width - 2*inset;
rectHeight = height - 2x*inset;

while (rectWidth >= 0 && rectHeight >= 0) {
g.strokeRect (inset, inset, rectWidth, rectHeight);
inset += 15; // rectangles are 15 pixels apart
rectWidth -= 30;
rectHeight -= 30;

3

You can find the full source code for the program is in the sample program MovingRects.java.
Take a look! It’s a neat effect. For another example of animation, see the sample program
RandomCircles.java. That program adds one random colored disk to the picture in each frame;
it illustrates the fact that the image from one frame is not automatically erased before the next
frame is drawn.

http://math.hws.edu/eck/cs124/javanotes8/source/chapter3/MovingRects.java
http://math.hws.edu/eck/cs124/javanotes8/source/chapter3/RandomCircles.java

EXERCISES 137

Exercises for Chapter 3

1. How many times do you have to roll a pair of dice before they come up snake eyes? You (solution)
could do the experiment by rolling the dice by hand. Write a computer program that
simulates the experiment. The program should report the number of rolls that it makes
before the dice come up snake eyes. (Note: “Snake eyes” means that both dice show a
value of 1.) Exercise 2.2 explained how to simulate rolling a pair of dice.

2. Which integer between 1 and 10000 has the largest number of divisors, and how many (solution)
divisors does it have? Write a program to find the answers and print out the results. It is
possible that several integers in this range have the same, maximum number of divisors.
Your program only has to print out one of them. An example in Subsection 3.4.2 discussed
divisors. The source code for that example is CountDivisors.java.
You might need some hints about how to find a maximum value. The basic idea is
to go through all the integers, keeping track of the largest number of divisors that you’'ve
seen so far. Also, keep track of the integer that had that number of divisors.

3. Write a program that will evaluate simple expressions such as 17 + 3 and 3.14159 * 4.7. (solution)
The expressions are to be typed in by the user. The input always consists of a number,
followed by an operator, followed by another number. The operators that are allowed are
+, -, *, and /. You can read the numbers with TextIO.getDouble() and the operator
with TextI0.getChar(). Your program should read an expression, print its value, read
another expression, print its value, and so on. The program should end when the user
enters 0 as the first number on the line.

4. Write a program that reads one line of input text and breaks it up into words. The (solution)
words should be output one per line. A word is defined to be a sequence of letters. Any
characters in the input that are not letters should be discarded. For example, if the user
inputs the line

He said, "That’s not a good idea."

then the output of the program should be

He
said
That
s
not
a
good
idea

An improved version of the program would list “that’s” as a single word. An apostrophe
can be considered to be part of a word if there is a letter on each side of the apostrophe.

To test whether a character is a letter, you might use (ch >= ’a’ && ch <= ’z’) ||
(ch >= ’A’ && ch <= ’Z’). However, this only works in English and similar languages.
A better choice is to call the standard function Character.isLetter(ch), which returns
a boolean value of true if ch is a letter and false if it is not. This works for any Unicode
character.

http://math.hws.edu/eck/cs124/javanotes8/c3/ex1-ans.html
http://math.hws.edu/eck/cs124/javanotes8/c3/ex2-ans.html
http://math.hws.edu/eck/cs124/javanotes8/source/chapter3/CountDivisors.java
http://math.hws.edu/eck/cs124/javanotes8/c3/ex3-ans.html
http://math.hws.edu/eck/cs124/javanotes8/c3/ex4-ans.html

EXERCISES 138

5. Suppose that a file contains information about sales figures for a company in various cities. (solution)
Each line of the file contains a city name, followed by a colon (:) followed by the data for
that city. The data is a number of type double. However, for some cities, no data was
available. In these lines, the data is replaced by a comment explaining why the data is
missing. For example, several lines from the file might look like:

San Francisco: 19887.32
Chicago: mno report received
New York: 298734.12

Write a program that will compute and print the total sales from all the cities together.
The program should also report the number of cities for which data was not available.
The name of the file is “sales.dat”.

To complete this program, you’ll need one fact about file input with Text/O that was
not covered in Subsection 2.4.4. Since you don’t know in advance how many lines there
are in the file, you need a way to tell when you have gotten to the end of the file. When
TextlO is reading from a file, the function TextI0.eof () can be used to test for end of
file. This boolean-valued function returns true if the file has been entirely read and
returns false if there is more data to read in the file. This means that you can read the
lines of the file in a loop while (TextIO.eof() == false).... The loop will end when
all the lines of the file have been read.

Suggestion: For each line, read and ignore characters up to the colon. Then read the
rest of the line into a variable of type String. Try to convert the string into a number, and
use try..catch to test whether the conversion succeeds.

6. Exercise 3.2 asked you to find the number in the range 1 to 10000 that has the largest (solution)
number of divisors. You only had to print out one such number. Revise the program so
that it will print out all numbers that have the maximum number of divisors. Use an array
as follows: As you count the divisors for each number, store each count in an array. Then
at the end of the program, you can go through the array and print out all the numbers
that have the maximum count. The output from the program should look something like
this:

Among integers between 1 and 10000,
The maximum number of divisors was 64
Numbers with that many divisors include:
7560
9240

7. An example in Subsection 3.8.3 tried to answer the question, How many random people do (solution)
you have to select before you find a duplicate birthday? The source code for that program
can be found in the file BirthdayProblem.java. Here are some related questions:

e How many random people do you have to select before you find three people who
share the same birthday? (That is, all three people were born on the same day in
the same month, but not necessarily in the same year.)

e Suppose you choose 365 people at random. How many different birthdays will they
have? (The number could theoretically be anywhere from 1 to 365).

e How many different people do you have to check before you’ve found at least one
person with a birthday on each of the 365 days of the year?

http://math.hws.edu/eck/cs124/javanotes8/c3/ex5-ans.html
http://math.hws.edu/eck/cs124/javanotes8/c3/ex6-ans.html
http://math.hws.edu/eck/cs124/javanotes8/c3/ex7-ans.html
http://math.hws.edu/eck/cs124/javanotes8/source/chapter3/BirthdayProblem.java

EXERCISES 139

Write three programs to answer these questions. Each of your programs should sim-
ulate choosing people at random and checking their birthdays. (In each case, ignore the
possibility of leap years.)

8. Write a GUI program that draws a checkerboard. Base your solution on the sample pro- (solution)
gram SimpleGraphicsStarter.java You will draw the checkerboard in the drawPicture ()
subroutine, after erasing the code that it already contains.

The checkerboard should be 400-by-400 pixels. You can change the size of the drawing
area in SimpleGraphicsStarter.java by modifying the first two lines of the start()
subroutine to set width and height to 400 instead of 800 and 600. A checkerboard
contains 8 rows and 8 columns of squares. If the size of the drawing area is 400, that
means that each square should be 50-by-50 pixels. The squares are red and black (or
whatever other colors you choose). Here is a tricky way to determine whether a given
square should be red or black: The rows and columns can be thought of as numbered from
0 to 7. If the row number of the square and the column number of the square are either
both even or both odd, then the square is red. Otherwise, it is black. Note that a square
is just a rectangle in which the height is equal to the width, so you can use the subroutine
g.fillRect () to draw the squares. Here is a reduced-size image of the checkerboard that
you want to draw:

9. Often, some element of an animation repeats over and over, every so many frames. Some- (solution)
times, the repetition is “cyclic,” meaning that at the end it jumps back to the start.
Sometimes the repetition is “oscillating,” like a back-and-forth motion where the second
half is the same as the first half played in reverse.

Write an animation that demonstrates both cyclic and oscillating motions at various
speeds. For cyclic motion, you can use a square that moves across the drawing area, then
jumps back to the start, and then repeats the same motion over and over. For oscillating
motion, you can do something similar, but the square should move back and forth between
the two edges of the drawing area; that is, it moves left-to-right during the first half of
the animation and then backwards from right-to-left during the second half. To write the
program, you can start with a copy of the sample program SimpleAnimationStarter.java.

A cyclic motion has to repeat every N frames for some value of N. What you draw in
some frame of the animation depends on the frameNumber. The frameNumber just keeps
increasing forever. To implement cyclic motion, what you really want is a “cyclic frame

http://math.hws.edu/eck/cs124/javanotes8/c3/ex8-ans.html
http://math.hws.edu/eck/cs124/javanotes8/source/chapter3/SimpleGraphicsStarter.java
http://math.hws.edu/eck/cs124/javanotes8/c3/ex9-ans.html
http://math.hws.edu/eck/cs124/javanotes8/source/chapter3/SimpleAnimationStarter.java

EXERCISES 140

number” that takes on the values 0, 1, 2, ..., (N-1), 0, 1, 2, ..., (N-1), 0, 1, 2, You
can derive the value that you need from frameNumber simply by saying

cyclicFrameNumber = frameNumber 7, N;

Then, you just have to base what you draw on cyclicFrameNumber instead of on
frameNumber. Similarly, for an oscillating animation, you need an “oscillation frame
number” that takes on the values 0, 1, 2, ... (N-1), N, (N-1), (N-2), ...2, 1,0, 1, 2, and
so on, repeating the back and forth motion forever. You can compute the value that you
need with

oscilationFrameNumber = frameNumber % (2x*N);
if (oscillationFrameNumber > N)
oscillationFrameNumber = (2*N) - oscillationFrameNumber;

Here is a screen shot from my version of the program. I use six squares. The top three
do cyclic motion at various speeds, while the bottom three do oscillating motion. I drew
black lines across the drawing area to separate the squares and to give them “channels”

to move in.

Quiz 141

Quiz on Chapter 3

(answers)

1. What is an algorithm?

2. Explain briefly what is meant by “pseudocode” and how is it useful in the development
of algorithms.

3. What is a block statement? How are block statements used in Java programs?

4. What is the main difference between a while loop and a do..while loop?

5. What does it mean to prime a loop?

6. Explain what is meant by an animation and how a computer displays an animation.

7. Write a for loop that will print out all the multiples of 3 from 3 to 36, that is: 3 6 9 12
15 18 21 24 27 30 33 36.

8. Fill in the following main() routine so that it will ask the user to enter an integer, read
the user’s response, and tell the user whether the number entered is even or odd. (You can
use TextIO.getInt () to read the integer. Recall that an integer nisevenifn % 2 == 0.)

public static void main(Stringl[] args) {

// Fill in the body of this subroutine!

9. Write a code segment that will print out two different random integers selected from the
range 1 to 10. All possible outputs should have the same probability. Hint: You can easily
select two random numbers, but you have to account for the fact that the two numbers
that you pick might be the same.

10. Suppose that s1 and s2 are variables of type String, whose values are expected to be
string representations of values of type int. Write a code segment that will compute and
print the integer sum of those values, or will print an error message if the values cannot
successfully be converted into integers. (Use a try..catch statement.)

11. Show the exact output that would be produced by the following main () routine:

public static void main(String[] args) {

int N;

N =1;

while (N <= 32) {
N =2 x N;

System.out.println(N);
+

12. Show the exact output produced by the following main() routine:

http://math.hws.edu/eck/cs124/javanotes8/c3/quiz_answers.html

Quiz 142

public static void main(String[] args) {

int x,y;
x = b5;
y=1

while (x > 0) {
x =x - 1;
y=Y *X;
System.out.println(y);
}

13. What output is produced by the following program segment? Why? (Recall that
name.charAt (i) is the i-th character in the string, name.)

String name;
int 1i;
boolean startWord;
name = "Richard M. Nixon";
startWord = true;
for (i = 0; i < name.length(); i++) {
if (startWord)
System.out.println(name.charAt(i));

if (name.charAt(i) ==’ ?)
startWord = true;
else

startWord = false;

14. Suppose that numbers is an array of type int[]. Write a code segment that will count and
output the number of times that the number 42 occurs in the array.

15. Define the range of an array of numbers to be the maximum value in the array minus
the minimum value. Suppose that raceTimes is an array of type double[]. Write a code
segment that will find and print the range of raceTimes.

Chapter 4

Programming in the Large I:
Subroutines

ONE WAY TO BREAK UP A COMPLEX PROGRAM into manageable pieces is to use subroutines.
A subroutine consists of the instructions for carrying out a certain task, grouped together and
given a name. Elsewhere in the program, that name can be used as a stand-in for the whole set
of instructions. As a computer executes a program, whenever it encounters a subroutine name,
it executes all the instructions necessary to carry out the task associated with that subroutine.

Subroutines can be used over and over, at different places in the program. A subroutine
can even be used inside another subroutine. This allows you to write simple subroutines and
then use them to help write more complex subroutines, which can then be used in turn in other
subroutines. In this way, very complex programs can be built up step-by-step, where each step
in the construction is reasonably simple.

Subroutines in Java can be either static or non-static. This chapter covers static subroutines.
Non-static subroutines, which are used in true object-oriented programming, will be covered in
the next chapter.

4.1 Black Boxes

A SUBROUTINE CONSISTS OF INSTRUCTIONS for performing some task, chunked together and
given a name. “Chunking” allows you to deal with a potentially very complicated task as
a single concept. Instead of worrying about the many, many steps that the computer might
have to go though to perform that task, you just need to remember the name of the subroutine.
Whenever you want your program to perform the task, you just call the subroutine. Subroutines
are a major tool for dealing with complexity.

A subroutine is sometimes said to be a “black box” because you can’t see what’s
it (or, to be more precise, you usually don’t want to see inside it, because then you would
have to deal with all the complexity that the subroutine is meant to hide). Of course, a black
box that has no way of interacting with the rest of the world would be pretty useless. A black
box needs some kind of interface with the rest of the world, which allows some interaction
between what’s inside the box and what’s outside. A physical black box might have buttons
on the outside that you can push, dials that you can set, and slots that can be used for passing
information back and forth. Since we are trying to hide complexity, not create it, we have the
first rule of black boxes:

“inside”

143

CHAPTER 4. SUBROUTINES 144

The interface of a black box should be fairly straight-
forward, well-defined, and easy to understand.

Are there any examples of black boxes in the real world? Yes; in fact, you are surrounded
by them. Your television, your car, your mobile phone, your refrigerator. ... You can turn your
television on and off, change channels, and set the volume by using elements of the television’s
interface—on/off switch, remote control, don’t forget to plug in the power—without under-
standing anything about how the thing actually works. The same goes for a mobile phone,
although the interface in that case is a lot more complicated.

Now, a black box does have an inside—the code in a subroutine that actually performs the
task, or all the electronics inside your television set. The inside of a black box is called its
implementation. The second rule of black boxes is that:

To use a black box, you shouldn’t need to know any-
thing about its implementation; all you need to know is
its interface.

In fact, it should be possible to change the implementation, as long as the behavior of the
box, as seen from the outside, remains unchanged. For example, when the insides of TV sets
went from using vacuum tubes to using transistors, the users of the sets didn’t need to know
about it—or even know what it means. Similarly, it should be possible to rewrite the inside of
a subroutine, to use more efficient code for example, without affecting the programs that use
that subroutine.

Of course, to have a black box, someone must have designed and built the implementation
in the first place. The black box idea works to the advantage of the implementor as well as
the user of the black box. After all, the black box might be used in an unlimited number of
different situations. The implementor of the black box doesn’t need to know about any of that.
The implementor just needs to make sure that the box performs its assigned task and interfaces
correctly with the rest of the world. This is the third rule of black boxes:

The implementor of a black box should not need to
know anything about the larger systems in which the box
will be used.

In a way, a black box divides the world into two parts: the inside (implementation) and the
outside. The interface is at the boundary, connecting those two parts.

x* kX

By the way, you should not think of an interface as just the physical connection between
the box and the rest of the world. The interface also includes a specification of what the
box does and how it can be controlled by using the elements of the physical interface. It’s not
enough to say that a TV set has a power switch; you need to specify that the power switch is
used to turn the TV on and off!

To put this in computer science terms, the interface of a subroutine has a semantic as well
as a syntactic component. The syntactic part of the interface tells you just what you have
to type in order to call the subroutine. The semantic component specifies exactly what task
the subroutine will accomplish. To write a legal program, you need to know the syntactic
specification of the subroutine. To understand the purpose of the subroutine and to use it
effectively, you need to know the subroutine’s semantic specification. I will refer to both parts
of the interface—syntactic and semantic—collectively as the contract of the subroutine.

CHAPTER 4. SUBROUTINES 145

The contract of a subroutine says, essentially, “Here is what you have to do to use me,
and here is what I will do for you, guaranteed.” When you write a subroutine, the comments
that you write for the subroutine should make the contract very clear. (I should admit that
in practice, subroutines’ contracts are often inadequately specified, much to the regret and
annoyance of the programmers who have to use them.)

For the rest of this chapter, I turn from general ideas about black boxes and subroutines
in general to the specifics of writing and using subroutines in Java. But keep the general ideas
and principles in mind. They are the reasons that subroutines exist in the first place, and they
are your guidelines for using them. This should be especially clear in Section 4.7, where I will
discuss subroutines as a tool in program development.

X* kX

You should keep in mind that subroutines are not the only example of black boxes in
programming. For example, a class is also a black box. We'll see that a class can have a
“public” part, representing its interface, and a “private” part that is entirely inside its hidden
implementation. All the principles of black boxes apply to classes as well as to subroutines.

4.2 Static Subroutines and Static Variables

EvERY SUBROUTINE IN JAvA must be defined inside some class. This makes Java rather
unusual among programming languages, since most languages allow free-floating, independent
subroutines. One purpose of a class is to group together related subroutines and variables.
Perhaps the designers of Java felt that everything must be related to something. As a less
philosophical motivation, Java’s designers wanted to place firm controls on the ways things are
named, since a Java program potentially has access to a huge number of subroutines created by
many different programmers. The fact that those subroutines are grouped into named classes
(and classes are grouped into named “packages,” as we will see later) helps control the confusion
that might result from so many different names.

There is a basic distinction in Java between static and non-static subroutines. A class
definition can contain the source code for both types of subroutine, but what’s done with them
when the program runs is very different. Static subroutines are easier to understand: In a
running program, a static subroutine is a member of the class itself. Non-static subroutine
definitions, on the other hand, are only there to be used when objects are created, and the
subroutines themselves become members of the objects. Non-static subroutines only become
relevant when you are working with objects. The distinction between static and non-static also
applies to variables and to other things that can occur in class definitions. This chapter will
deal with static subroutines and static variables almost exclusively. We’ll turn to non-static
stuff and to object-oriented programming in the next chapter.

A subroutine that is in a class or object is often called a method, and “method” is the
term that most people prefer for subroutines in Java. I will start using the term “method”
occasionally, but I will continue to prefer the more general term “subroutine” in this chapter,
at least for static subroutines. However, you should start thinking of the terms “method”
and “subroutine” as being essentially synonymous as far as Java is concerned. Other terms
that you might see used to refer to subroutines are “procedures” and “functions.” (I generally
use the term “function” only for subroutines that compute and return a value, but in some
programming languages, it is used to refer to subroutines in general.)

CHAPTER 4. SUBROUTINES 146

4.2.1 Subroutine Definitions

A subroutine must be defined somewhere. The definition has to include the name of the
subroutine, enough information to make it possible to call the subroutine, and the code that
will be executed each time the subroutine is called. A subroutine definition in Java takes the
form:

(modifiers) (return-type) (subroutine-name) ((parameter-list)) {
(statements)

3

It will take us a while—most of the chapter—to get through what all this means in detail. Of
course, you've already seen examples of subroutines in previous chapters, such as the main()
routine of a program and the drawFrame () routine of the animation programs in Section 3.9.
So you are familiar with the general format.

The (statements) between the braces, { and }, in a subroutine definition make up the body
of the subroutine. These statements are the inside, or implementation part, of the “black box,”
as discussed in the previous section. They are the instructions that the computer executes when
the method is called. Subroutines can contain any of the statements discussed in Chapter 2
and Chapter 3.

The (modifiers) that can occur at the beginning of a subroutine definition are words that
set certain characteristics of the subroutine, such as whether it is static or not. The modifiers
that you've seen so far are “static” and “public”. There are only about a half-dozen possible
modifiers altogether.

If the subroutine is a function, whose job is to compute some value, then the (return-type)
is used to specify the type of value that is returned by the function. It can be a type name such
as String or int or even an array type such as double[]. We’ll be looking at functions and return
types in some detail in Section 4.4. If the subroutine is not a function, then the (return-type) is
replaced by the special value void, which indicates that no value is returned. The term “void”
is meant to indicate that the return value is empty or non-existent.

Finally, we come to the (parameter-list) of the method. Parameters are part of the interface
of a subroutine. They represent information that is passed into the subroutine from outside,
to be used by the subroutine’s internal computations. For a concrete example, imagine a class
named Television that includes a method named changeChannel(). The immediate question
is: What channel should it change to? A parameter can be used to answer this question. If a
channel number is an integer, the type of the parameter would be int, and the declaration of
the changeChannel () method might look like

public void changeChannel(int channelNum) { ... }

This declaration specifies that changeChannel () has a parameter named channelNum of type
int. However, channelNum does not yet have any particular value. A value for channelNum is
provided when the subroutine is called; for example: changeChannel (17);

The parameter list in a subroutine can be empty, or it can consist of one or more parameter
declarations of the form (type) (parameter-name). If there are several declarations, they are
separated by commas. Note that each declaration can name only one parameter. For example,
if you want two parameters of type double, you have to say “double x, double y”, rather
than “double x, y”.

Parameters are covered in more detail in the next section.

Here are a few examples of subroutine definitions, leaving out the statements that define
what the subroutines do:

CHAPTER 4. SUBROUTINES 147

public static void playGame() {
// "public" and "static" are modifiers; "void" is the
// return-type; "playGame" is the subroutine-name;
// the parameter-list is empty.

// Statements that define what playGame does go here.
}

int getNextN(int N) {

// There are no modifiers; "int" is the return-type;

// "getNextN" is the subroutine-name; the parameter-list

// includes one parameter whose name is "N" and whose

// type is "int".

. // Statements that define what getNextN does go here.
I

static boolean lessThan(double x, double y) {

// "static" is a modifier; "boolean" is the

// return-type; "lessThan" is the subroutine-name;

// the parameter-list includes two parameters whose names are

// "x" and "y", and the type of each of these parameters

// is "double".

// Statements that define what lessThan does go here.

¥

In the second example given here, getNextN is a non-static method, since its definition does
not include the modifier “static”—and so it’s not an example that we should be looking at in
this chapter! The other modifier shown in the examples is “public”. This modifier indicates
that the method can be called from anywhere in a program, even from outside the class where
the method is defined. There is another modifier, “private”, which indicates that the method
can be called only from inside the same class. The modifiers public and private are called
access specifiers. If no access specifier is given for a method, then by default, that method
can be called from anywhere in the package that contains the class, but not from outside that
package. (You will learn more about packages later in this chapter, in Section 4.6.) There
is one other access modifier, protected, which will only become relevant when we turn to
object-oriented programming in Chapter 5.

Note, by the way, that the main() routine of a program follows the usual syntax rules for
a subroutine. In

public static void main(String[] args) { ... }

the modifiers are public and static, the return type is void, the subroutine name is main,
and the parameter list is “String[] args”. In this case, the type for the parameter is the
array type String[].

You’ve already had some experience with filling in the implementation of a subroutine. In
this chapter, you’ll learn all about writing your own complete subroutine definitions, including
the interface part.

4.2.2 Calling Subroutines

When you define a subroutine, all you are doing is telling the computer that the subroutine
exists and what it does. The subroutine doesn’t actually get executed until it is called. (This
is true even for the main() routine in a class—even though you don’t call it, it is called by the

CHAPTER 4. SUBROUTINES 148

system when the system runs your program.) For example, the playGame () method given as
an example above could be called using the following subroutine call statement:

playGame () ;

This statement could occur anywhere in the same class that includes the definition of
playGame (), whether in a main() method or in some other subroutine. Since playGame ()
is a public method, it can also be called from other classes, but in that case, you have to tell
the computer which class it comes from. Since playGame() is a static method, its full name
includes the name of the class in which it is defined. Let’s say, for example, that playGame () is
defined in a class named Poker. Then to call playGame () from outside the Poker class, you
would have to say

Poker.playGame() ;

The use of the class name here tells the computer which class to look in to find the method. It
also lets you distinguish between Poker.playGame () and other potential playGame () methods
defined in other classes, such as Roulette.playGame () or Blackjack.playGame().

More generally, a subroutine call statement for a static subroutine takes the form

(subroutine-name) ((parameters)) ;

if the subroutine that is being called is in the same class, or

(class-name) . (subroutine-name) ((parameters)) ;

if the subroutine is defined elsewhere, in a different class. (Non-static methods belong to objects
rather than classes, and they are called using objects instead of class names. More on that later.)
Note that the parameter list can be empty, as in the playGame () example, but the parentheses
must be there even if there is nothing between them. The number of parameters that you
provide when you call a subroutine must match the number specified in the parameter list in
the subroutine definition, and the types of the parameters in the call statement must match
the types in the subroutine definition.

4.2.3 Subroutines in Programs

It’s time to give an example of what a complete program looks like, when it includes other
subroutines in addition to the main() routine. Let’s write a program that plays a guessing
game with the user. The computer will choose a random number between 1 and 100, and the
user will try to guess it. The computer tells the user whether the guess is high or low or correct.
If the user gets the number after six guesses or fewer, the user wins the game. After each game,
the user has the option of continuing with another game.

Since playing one game can be thought of as a single, coherent task, it makes sense to write
a subroutine that will play one guessing game with the user. The main() routine will use a
loop to call the playGame () subroutine over and over, as many times as the user wants to play.
We approach the problem of designing the playGame() subroutine the same way we write a
main() routine: Start with an outline of the algorithm and apply stepwise refinement. Here is
a short pseudocode algorithm for a guessing game routine:

Pick a random number
while the game is not over:
Get the user’s guess
Tell the user whether the guess is high, low, or correct.

CHAPTER 4. SUBROUTINES 149

The test for whether the game is over is complicated, since the game ends if either the user
makes a correct guess or the number of guesses is six. As in many cases, the easiest thing to
do is to use a “while (true)” loop and use break to end the loop whenever we find a reason
to do so. Also, if we are going to end the game after six guesses, we’ll have to keep track of the
number of guesses that the user has made. Filling out the algorithm gives:

Let computersNumber be a random number between 1 and 100
Let guessCount = 0
while (true):
Get the user’s guess
Count the guess by adding 1 to guess count
if the user’s guess equals computersNumber:
Tell the user he won
break out of the loop
if the number of guesses is 6:
Tell the user he lost
break out of the loop
if the user’s guess is less than computersNumber:
Tell the user the guess was low
else if the user’s guess is higher than computersNumber:
Tell the user the guess was high

With variable declarations added and translated into Java, this becomes the definition of the
playGame () routine. A random integer between 1 and 100 can be computed as (int) (100 *
Math.random()) + 1. I've cleaned up the interaction with the user to make it flow better.

static void playGame() {
int computersNumber; // A random number picked by the computer.
int usersGuess; // A number entered by user as a guess.
int guessCount; // Number of guesses the user has made.
computersNumber = (int) (100 * Math.random()) + 1;
// The value assigned to computersNumber is a randomly
// chosen integer between 1 and 100, inclusive.
guessCount = 0;
System.out.println();
System.out.print("What is your first guess? ");
while (true) {
usersGuess = TextIO.getInt(); // Get the user’s guess.
guessCount++;
if (usersGuess == computersNumber) {
System.out.println("You got it in " + guessCount
+ " guesses! My number was " + computersNumber);
break; // The game is over; the user has won.

if (guessCount == 6) {
System.out.println("You didn’t get the number in 6 guesses.");
System.out.println("You lose. My number was " + computersNumber) ;
break; // The game is over; the user has lost.

}

// If we get to this point, the game continues.

// Tell the user if the guess was too high or too low.

if (usersGuess < computersNumber)
System.out.print("That’s too low. Try again: ");

else if (usersGuess > computersNumber)

CHAPTER 4. SUBROUTINES 150

System.out.print("That’s too high. Try again: ");
}
System.out.println();
} // end of playGame()

Now, where exactly should you put this? It should be part of the same class as the main()
routine, but not inside the main routine. It is not legal to have one subroutine physically
nested inside another. The main() routine will call playGame (), but not contain its definition,
only a call statement. You can put the definition of playGame() either before or after the
main() routine. Java is not very picky about having the subroutine definitions in a class in any
particular order.

It’s pretty easy to write the main routine. You’ve done things like this before. Here’s what
the complete program looks like (except that a serious program needs more comments than I've
included here).

import textio.TextIO;
public class GuessingGame {

public static void main(String[] args) {
System.out.println("Let’s play a game. I’1l pick a number between");
System.out.println("1 and 100, and you try to guess it.");
boolean playAgain;
do {
playGame(); // call subroutine to play one game
System.out.print("Would you like to play again? ");
playAgain = TextIO.getlnBoolean();
} while (playAgain);
System.out.println("Thanks for playing. Goodbye.");
} // end of main()

static void playGame() {
int computersNumber; // A random number picked by the computer.
int usersGuess; // A number entered by user as a guess.
int guessCount; // Number of guesses the user has made.
computersNumber = (int) (100 * Math.random()) + 1;
// The value assigned to computersNumber is a randomly
// chosen integer between 1 and 100, inclusive.
guessCount = 0;
System.out.println();
System.out.print("What is your first guess? ");
while (true) {
usersGuess = TextIO.getInt(); // Get the user’s guess.
guessCount++;
if (usersGuess == computersNumber) {
System.out.println("You got it in " + guessCount
+ " guesses! My number was " + computersNumber) ;
break; // The game is over; the user has won.
Iy
if (guessCount == 6) {
System.out.println("You didn’t get the number in 6 guesses.");
System.out.println("You lose. My number was " + computersNumber) ;
break; // The game is over; the user has lost.
I
// If we get to this point, the game continues.

CHAPTER 4. SUBROUTINES 151

// Tell the user if the guess was too high or too low.
if (usersGuess < computersNumber)
System.out.print ("That’s too low. Try again: ");
else if (usersGuess > computersNumber)
System.out.print("That’s too high. Try again: ");
}
System.out.println();

} // end of playGame()
} // end of class GuessingGame

Take some time to read the program carefully and figure out how it works. And try to
convince yourself that even in this relatively simple case, breaking up the program into two
methods makes the program easier to understand and probably made it easier to write each
piece.

4.2.4 Member Variables

A class can include other things besides subroutines. In particular, it can also include variable
declarations. Of course, you can declare variables inside subroutines. Those are called local
variables. However, you can also have variables that are not part of any subroutine. To
distinguish such variables from local variables, we call them member variables, since they
are members of a class. Another term for them is global variable.

Just as with subroutines, member variables can be either static or non-static. In this chapter,
we’ll stick to static variables. A static member variable belongs to the class as a whole, and it
exists as long as the class exists. Memory is allocated for the variable when the class is first
loaded by the Java interpreter. Any assignment statement that assigns a value to the variable
changes the content of that memory, no matter where that assignment statement is located in
the program. Any time the variable is used in an expression, the value is fetched from that
same memory, no matter where the expression is located in the program. This means that the
value of a static member variable can be set in one subroutine and used in another subroutine.
Static member variables are “shared” by all the static subroutines in the class. A local variable
in a subroutine, on the other hand, exists only while that subroutine is being executed, and is
completely inaccessible from outside that one subroutine.

The declaration of a member variable looks just like the declaration of a local variable
except for two things: The member variable is declared outside any subroutine (although it
still has to be inside a class), and the declaration can be marked with modifiers such as static,
public, and private. Since we are only working with static member variables for now, every
declaration of a member variable in this chapter will include the modifier static. They might
also be marked as public or private. For example:

static String usersName;
public static int numberOfPlayers;
private static double velocity, time;

A static member variable that is not declared to be private can be accessed from outside
the class where it is defined, as well as inside. When it is used in some other class, it must be
referred to with a compound identifier of the form (class-name).(variable-name). For example,
the System class contains the public static member variable named out, and you use this variable
in your own classes by referring to System.out. Similarly, Math.PI is a public static member
variable in the Math class. If numberOfPlayers is a public static member variable in a class

CHAPTER 4. SUBROUTINES 152

named Poker, then code in the Poker class would refer to it simply as number0OfPlayers, while
code in another class would refer to it as Poker .number0fPlayers.

As an example, let’s add a couple of static member variables to the GuessingGame class that
we wrote earlier in this section. We add a variable named gamesPlayed to keep track of how
many games the user has played and another variable named gamesWon to keep track of the
number of games that the user has won. The variables are declared as static member variables:

static int gamesPlayed;
static int gamesWon;

In the playGame () routine, we always add 1 to gamesPlayed, and we add 1 to gamesWon if the
user wins the game. At the end of the main () routine, we print out the values of both variables.
It would be impossible to do the same thing with local variables, since both subroutines need
to access the variables, and local variables exist in only one subroutine. Furthermore, global
variables keep their values between one subroutine call and the next. Local variables do not; a
local variable gets a new value each time that the subroutine that contains it is called.

When you declare a local variable in a subroutine, you have to assign a value to that variable
before you can do anything with it. Member variables, on the other hand are automatically
initialized with a default value. The default values are the same as those that are used when
initializing the elements of an array: For numeric variables, the default value is zero; for boolean
variables, the default is false; for char variables, it’s the character that has Unicode code
number zero; and for objects, such as Strings, the default initial value is the special value null.

Since they are of type int, the static member variables gamesPlayed and gamesWon au-
tomatically get zero as their initial value. This happens to be the correct initial value for a
variable that is being used as a counter. You can, of course, assign a value to a variable at the
beginning of the main() routine if you are not satisfied with the default initial value, or if you
want to make the initial value more explicit.

Here’s the revised version of GuessingGame.java. The changes from the above version are
shown in italic:

import textio.TextIO;
public class GuessingGame2 {

static int gamesPlayed; // The number of games played.
static int gamesiWon; // The number of games won.

public static void main(String[] args) {
gamesPlayed = 0;
gameslWon = 0; // This is actually redundant, since 0 is
/7 the default initial value.
System.out.println("Let’s play a game. I’1l pick a number between");
System.out.println("1 and 100, and you try to guess it.");
boolean playAgain;
do {
playGame(); // call subroutine to play one game
System.out.print("Would you like to play again? ");
playAgain = TextIO.getlnBoolean();
} while (playAgain);
System.out.printin();
System.out.printin("You played " + gamesPlayed + " games,");
System.out.println("and you won " + gamesWon + " of those games.");
System.out.println("Thanks for playing. Goodbye.");

CHAPTER 4. SUBROUTINES 153

} // end of main()

static void playGame() {
int computersNumber; // A random number picked by the computer.
int usersGuess; // A number entered by user as a guess.
int guessCount; // Number of guesses the user has made.
gamesPlayed++; // Count this game.
computersNumber = (int) (100 * Math.random()) + 1;
// The value assigned to computersNumber is a randomly
// chosen integer between 1 and 100, inclusive.
guessCount = 0;
System.out.println();
System.out.print("What is your first guess? ");
while (true) {
usersGuess = TextIO.getInt(); // Get the user’s guess.
guessCount++;
if (usersGuess == computersNumber) {
System.out.println("You got it in " + guessCount
+ " guesses! My number was " + computersNumber);
gamesWon++; // Count this win.
break; // The game is over; the user has won.

if (guessCount == 6) {
System.out.println("You didn’t get the number in 6 guesses.");
System.out.println("You lose. My number was " + computersNumber) ;
break; // The game is over; the user has lost.

}
// If we get to this point, the game continues.
// Tell the user if the guess was too high or too low.
if (usersGuess < computersNumber)
System.out.print ("That’s too low. Try again: ");
else if (usersGuess > computersNumber)
System.out.print ("That’s too high. Try again: ");
}
System.out.println();

} // end of playGame()

} // end of class GuessingGame2

S S 3

(By the way, notice that in my example programs, I didn’t mark the static subroutines or
variables as being public or private. You might wonder what it means to leave out both
modifiers. Recall that global variables and subroutines with no access modifier can be used
anywhere in the same package as the class where they are defined, but not in other packages.
Classes that don’t declare a package are in the default package. So, any class in the default
package would have access to gamesPlayed, gamesWon, and playGame()—and that includes
most of the classes in this book. In fact, it is considered to be good practice to make member
variables and subroutines private, unless there is a reason for doing otherwise. (But then
again, it’s also considered good practice to avoid using the default package.))

CHAPTER 4. SUBROUTINES 154

4.3 Parameters

IF A SUBROUTINE IS A BLACK BOX, then a parameter is something that provides a mechanism
for passing information from the outside world into the box. Parameters are part of the interface
of a subroutine. They allow you to customize the behavior of a subroutine to adapt it to a
particular situation.

As an analogy, consider a thermostat—a black box whose task it is to keep your house
at a certain temperature. The thermostat has a parameter, namely the dial that is used to
set the desired temperature. The thermostat always performs the same task: maintaining a
constant temperature. However, the exact task that it performs—that is, which temperature
it maintains—is customized by the setting on its dial.

4.3.1 Using Parameters

As an example, let’s go back to the “3N+41" problem that was discussed in Subsection 3.2.2.
(Recall that a 3N+1 sequence is computed according to the rule, “if N is odd, multiply it by 3
and add 1; if N is even, divide it by 2; continue until N is equal to 1.” For example, starting from
N=3 we get the sequence: 3, 10, 5, 16, 8, 4, 2, 1.) Suppose that we want to write a subroutine
to print out such sequences. The subroutine will always perform the same task: Print out a
3N+1 sequence. But the exact sequence it prints out depends on the starting value of N. So,
the starting value of N would be a parameter to the subroutine. The subroutine can be written
like this:

/**

* This subroutine prints a 3N+1 sequence to standard output, using

* startingValue as the initial value of N. It also prints the number
* of terms in the sequence. The value of the parameter, startingValue,
* must be a positive integer.

*/

static void print3NSequence(int startingValue) {

int N; // One of the terms in the sequence.
int count; // The number of terms.

N = startingValue; // The first term is whatever value
// is passed to the subroutine as
// a parameter.

count = 1; // We have one term, the starting value, so far.

System.out.println("The 3N+1 sequence starting from " + N);
System.out.println();
System.out.println(N); // print initial term of sequence

while (N > 1) {

if (N% 2==1) // is N odd?
N=3x*N+1;

else
N=N/2;

count++; // count this term

System.out.println(N); // print this term
}

System.out.println();

CHAPTER 4. SUBROUTINES 155

System.out.println("There were " + count + " terms in the sequence.");
} // end print3NSequence

The parameter list of this subroutine, “(int startingValue)”, specifies that the subroutine
has one parameter, of type int. Within the body of the subroutine, the parameter name can
be used in the same way as a variable name. But notice that there is nothing in the subroutine
definition that gives a value to the parameter! The parameter gets its initial value from outside
the subroutine. When the subroutine is called, a value must be provided for the parameter in
the subroutine call statement. This value will be assigned to startingValue before the body
of the subroutine is executed. For example, the subroutine could be called using the subroutine
call statement “print3NSequence(17);”. When the computer executes this statement, the
computer first assigns the value 17 to startingValue and then executes the statements in the
subroutine. This prints the 3N+1 sequence starting from 17. If K is a variable of type int,
then the subroutine can be called by saying “print3NSequence(K);”. When the computer
executes this subroutine call statement, it takes the value of the variable K, assigns that value
to startingValue, and then executes the body of the subroutine.

The class that contains print3NSequence can contain a main() routine (or other subrou-
tines) that call print3NSequence. For example, here is amain() program that prints out 3N+1
sequences for various starting values specified by the user:

public static void main(String[] args) {
System.out.println("This program will print out 3N+1 sequences");
System.out.println("for starting values that you specify.");
System.out.println();
int K; // Input from user; loop ends when K < O.
do {
System.out.println("Enter a starting value.");
System.out.print("To end the program, enter 0: ");
K = TextIO.getInt(); // Get starting value from user.
if (K > 0) // Print sequence, but only if K is > 0.
print3NSequence (K) ;
} while (K > 0); // Continue only if X > O.
} // end main

Remember that before you can use this program, the definitions of main and of
print3NSequence must both be wrapped inside a class definition.

4.3.2 Formal and Actual Parameters

Note that the term “parameter” is used to refer to two different, but related, concepts. There
are parameters that are used in the definitions of subroutines, such as startingValue in the
above example. And there are parameters that are used in subroutine call statements, such
as the K in the statement “print3NSequence(X);”. Parameters in a subroutine definition are
called formal parameters or dummy parameters. The parameters that are passed to a
subroutine when it is called are called actual parameters or arguments. When a subroutine
is called, the actual parameters in the subroutine call statement are evaluated and the values
are assigned to the formal parameters in the subroutine’s definition. Then the body of the
subroutine is executed.

A formal parameter must be a name, that is, a simple identifier. A formal parameter is very
much like a variable, and—Ilike a variable—it has a specified type such as int, boolean, String, or
double[]. An actual parameter is a value, and so it can be specified by any expression, provided

CHAPTER 4. SUBROUTINES 156

that the expression computes a value of the correct type. The type of the actual parameter must
be one that could legally be assigned to the formal parameter with an assignment statement.
For example, if the formal parameter is of type double, then it would be legal to pass an int as
the actual parameter since ints can legally be assigned to doubles. When you call a subroutine,
you must provide one actual parameter for each formal parameter in the subroutine’s definition.
Consider, for example, a subroutine

static void doTask(int N, double x, boolean test) {
// statements to perform the task go here

}
This subroutine might be called with the statement
doTask(17, Math.sqrt(z+1), z >= 10);

When the computer executes this statement, it has essentially the same effect as the block of
statements:

{
int N; // Allocate memory locations for the formal parameters.
double x;
boolean test;
N = 17; // Assign 17 to the first formal parameter, N.
x = Math.sqrt(z+1); // Compute Math.sqrt(z+1), and assign it to
// the second formal parameter, x.
test = (z >= 10); // Evaluate "z >= 10" and assign the resulting
// true/false value to the third formal
// parameter, test.
// statements to perform the task go here
}

(There are a few technical differences between this and “doTask(17,Math.sqrt (z+1) ,z>=10);”
—besides the amount of typing—because of questions about scope of variables and what hap-
pens when several variables or parameters have the same name.)

Beginning programming students often find parameters to be surprisingly confusing. Call-
ing a subroutine that already exists is not a problem—the idea of providing information to the
subroutine in a parameter is clear enough. Writing the subroutine definition is another matter.
A common beginner’s mistake is to assign values to the formal parameters at the beginning
of the subroutine, or to ask the user to input their values. This represents a fundamen-
tal misunderstanding. By the time the computer starts executing the statements in the
subroutine, the formal parameters have already been assigned initial values! The computer
automatically assigns values to the formal parameters before it starts executing the code inside
the subroutine. The values come from the actual parameters in the subroutine call statement.
Remember that a subroutine is not independent. It is called by some other routine, and it is
the subroutine call statement’s responsibility to provide appropriate values for the parameters.

4.3.3 Overloading

In order to call a subroutine legally, you need to know its name, you need to know how many
formal parameters it has, and you need to know the type of each parameter. This information is
called the subroutine’s signature. The signature of the subroutine doTask, used as an example
above, can be expressed as: doTask(int,double,boolean). Note that the signature does not
include the names of the parameters; in fact, if you just want to use the subroutine, you don’t

CHAPTER 4. SUBROUTINES 157

even need to know what the formal parameter names are, so the names are not part of the
interface.

Java is somewhat unusual in that it allows two different subroutines in the same class to
have the same name, provided that their signatures are different. When this happens, we say
that the name of the subroutine is overloaded because it has several different meanings. The
computer doesn’t get the subroutines mixed up. It can tell which one you want to call by the
number and types of the actual parameters that you provide in the subroutine call statement.
You have already seen overloading used with System.out. This object includes many different
methods named println, for example. These methods all have different signatures, such as:

println(int) println(double)
println(char) println(boolean)
println()

The computer knows which of these subroutines you want to use based on the type of the
actual parameter that you provide. System.out.println(17) calls the subroutine with sig-
nature println(int), while System.out.println(’A’) calls the subroutine with signature
println(char). Of course all these different subroutines are semantically related, which is
why it is acceptable programming style to use the same name for them all. But as far as the
computer is concerned, printing out an int is very different from printing out a char, which is
different from printing out a boolean, and so forth—so that each of these operations requires
a different subroutine.

Note, by the way, that the signature does not include the subroutine’s return type. It is
illegal to have two subroutines in the same class that have the same signature but that have
different return types. For example, it would be a syntax error for a class to contain two
subroutines defined as:

int getln() { ... }
double getln() { ... }

This is why in the Text/O class, the subroutines for reading different types are not all named
getln(). In a given class, there can only be one routine that has the name getln with no
parameters. So, the input routines in Text/O are distinguished by having different names, such
as getlnInt () and getlnDouble().

4.3.4 Subroutine Examples

Let’s do a few examples of writing small subroutines to perform assigned tasks. Of course,
this is only one side of programming with subroutines. The task performed by a subroutine is
always a subtask in a larger program. The art of designing those programs—of deciding how to
break them up into subtasks—is the other side of programming with subroutines. We’ll return
to the question of program design in Section 4.7.

As a first example, let’s write a subroutine to compute and print out all the divisors of a
given positive integer. The integer will be a parameter to the subroutine. Remember that the
syntax of any subroutine is:

(modifiers) (return-type) (subroutine-name) ((parameter-list)) {
(statements)

3

Writing a subroutine always means filling out this format. In this case, the statement of the
problem tells us that there is one parameter, of type int, and it tells us what the statements

CHAPTER 4. SUBROUTINES 158

in the body of the subroutine should do. Since we are only working with static subroutines
for now, we’ll need to use static as a modifier. We could add an access modifier (public or
private), but in the absence of any instructions, I'll leave it out. Since we are not told to
return a value, the return type is void. Since no names are specified, we’ll have to make up
names for the formal parameter and for the subroutine itself. I'll use N for the parameter and
printDivisors for the subroutine name. The subroutine will look like

static void printDivisors(int N) {
(statements)

}

and all we have left to do is to write the statements that make up the body of the routine. This
is not difficult. Just remember that you have to write the body assuming that N already has
a value! The algorithm is: “For each possible divisor D in the range from 1 to N, if D evenly
divides N, then print D.” Written in Java, this becomes:

/%%

* Print all the divisors of N.

* We assume that N is a positive integer.

*/

static void printDivisors(int N) {
int D; // One of the possible divisors of N.
System.out.println("The divisors of " + N + " are:");
for (D =1; D<= N; D++) {

if (N % D==0) // Does D evenly divide N7
System.out.println(D);

3

I've added a comment before the subroutine definition indicating the contract of the
subroutine—that is, what it does and what assumptions it makes. The contract includes the
assumption that N is a positive integer. It is up to the caller of the subroutine to make sure
that this assumption is satisfied.

As a second short example, consider the problem: Write a private subroutine named
printRow. It should have a parameter ch of type char and a parameter N of type int. The
subroutine should print out a line of text containing N copies of the character ch.

Here, we are told the name of the subroutine and the names of the two parameters, and we
are told that the subroutine is private, so we don’t have much choice about the first line of
the subroutine definition. The task in this case is pretty simple, so the body of the subroutine
is easy to write. The complete subroutine is given by

/%%
* Write one line of output containing N copies of the
* character ch. If N <= 0, an empty line is output.
*/
private static void printRow(char ch, int N) {
int i; // Loop-control variable for counting off the copies.
for (i =1; i<=N; i++) {
System.out.print(ch);
b
System.out.println();

CHAPTER 4. SUBROUTINES 159

Note that in this case, the contract makes no assumption about N, but it makes it clear what
will happen in all cases, including the unexpected case that N <= 0.

Finally, let’s do an example that shows how one subroutine can build on another. Let’s write
a subroutine that takes a String as a parameter. For each character in the string, it should
print a line of output containing 25 copies of that character. It should use the printRow()
subroutine to produce the output.

Again, we get to choose a name for the subroutine and a name for the parameter. I'll call
the subroutine printRowsFromString and the parameter str. The algorithm is pretty clear:
For each position i in the string str, call printRow(str.charAt(i),25) to print one line of
the output. So, we get:

/%%
* For each character in str, write a line of output
* containing 25 copies of that character.
*/
private static void printRowsFromString(String str) {
int i; // Loop-control variable for counting off the chars.
for (1 =0; i < str.length(); i++) {
printRow(str.charAt(i), 25);
}
}

We could then use printRowsFromString in a main() routine such as

public static void main(String[] args) {
String inputLine; // Line of text input by user.
System.out.print ("Enter a line of text: ");
inputLine = TextI0.getln();
System.out.println();
printRowsFromString(inputLine);

}

Of course, the three routines, main(), printRowsFromString(), and printRow(), would
have to be collected together inside the same class. The program is rather useless, but it does
demonstrate the use of subroutines. You’'ll find the program in the file RowsOfChars.java, if
you want to take a look.

4.3.5 Array Parameters

It’s possible for the type of a parameter to be an array type. This means that an entire array
of values can be passed to the subroutine as a single parameter. For example, we might want
a subroutine to print all the values in an integer array in a neat format, separated by commas
and enclosed in a pair of square brackets. To tell it which array to print, the subroutine would
have a parameter of type int[]:

static void printValuesInList(int[] 1list) {
System.out.print(’[’);

int 1i;
for (i =0; i < list.length; i++) {
if (i>0)

System.out.print(’,’); // No comma in front of list[0]
System.out.print (list[i]);
}
System.out.println(’]’);

http://math.hws.edu/eck/cs124/javanotes8/source/chapter4/RowsOfChars.java

CHAPTER 4. SUBROUTINES 160

}

To use this subroutine, you need an actual array. Here is a legal, though not very realistic, code
segment that creates an array just to pass it as an argument to the subroutine:

int[] numbers;

numbers = new int[3];
numbers[0] = 42;

numbers[1] 17;

numbers [2] 256;
printValuesInList(numbers) ;

The output produced by the last statement would be [42,17,256].

4.3.6 Command-line Arguments

The main routine of a program has a parameter of type String[]. When the main routine is
called, some actual array of String must be passed to main() as the value of the parameter. The
system provides the actual parameter when it calls main(), so the values come from outside the
program. Where do the strings in the array come from, and what do they mean? The strings
in the array are command-line arguments from the command that was used to run the
program. When using a command-line interface, the user types a command to tell the system
to execute a program. The user can include extra input in this command, beyond the name of
the program. This extra input becomes the command-line arguments. The system takes the
command-line arguments, puts them into an array of strings, and passes that array to main().

For example, if the name of the program is myProg, then the user can type “java myProg”
to execute the program. In this case, there are no command-line arguments. But if the user
types the command

java myProg one two three

then the command-line arguments are the strings “one”, “two”, and “three”. The system puts
these strings into an array of Strings and passes that array as a parameter to the main () routine.
Here, for example, is a short program that simply prints out any command line arguments
entered by the user:

public class CLDemo {

public static void main(String[] args) {
System.out.println("You entered " + args.length
+ " command-line arguments");
if (args.length > 0) {
System.out.println("They were:");

int i;
for (i =0; i < args.length; i++)
System.out.println(" " + args[i]);

}
} // end main()

} // end class CLDemo

Note that the parameter, args, can be an array of length zero. This just means that the user
did not include any command-line arguments when running the program.

In practice, command-line arguments are often used to pass the names of files to a program.
For example, consider the following program for making a copy of a text file. It does this

CHAPTER 4. SUBROUTINES 161

by copying one line at a time from the original file to the copy, using TextIO. The function
TextI0.eof () is a boolean-valued function that is true if the end of the file has been reached.

input textio.TextIO;

/**

* Requires two command line arguments, which must be file names. The

* first must be the name of an existing file. The second is the name

* of a file to be created by the program. The contents of the first file
* are copied into the second. WARNING: If the second file already

* exists when the program is run, its previous contents will be lost!

* This program only works for plain text files.

*/

public class CopyTextFile {

public static void main(String[] args) {
if (args.length < 2) {
System.out.println("Two command-line arguments are required!");
System.exit(1);
}
TextIO.readFile(args[0]); // Open the original file for reading.
TextIO.writeFile(args[1]); // Open the copy file for writing.
int lineCount; // Number of lines copied
lineCount = 0;
while (TextIO.eof() == false) {
// Read one line from the original file and write it to the copy.
String line;
line = TextIO.getln();
TextIO0.putln(line);
lineCount++;

}
System.out.printf("%d lines copied from %s to %s/n",
lineCount, args[0], args[1]);

3

Since most programs are run in a GUI environment these days, command-line arguments
aren’t as important as they used to be. But at least they provide a nice example of how array
parameters can be used.

4.3.7 Throwing Exceptions

I have been talking about the “contract” of a subroutine. The contract says what the subroutine
will do, provided that the caller of the subroutine provides acceptable values for the subroutine’s
parameters. The question arises, though, what should the subroutine do when the caller violates
the contract by providing bad parameter values?

We've already seen that some subroutines respond to bad parameter values by throw-
ing exceptions. (See Section 3.7.) For example, the contract of the built-in subroutine
Double.parseDouble says that the parameter should be a string representation of a num-
ber of type double; if this is true, then the subroutine will convert the string into the equivalent
numeric value. If the caller violates the contract by passing an invalid string as the actual
parameter, the subroutine responds by throwing an exception of type NumberFormatException.

CHAPTER 4. SUBROUTINES 162

Many subroutines throw /llegalArgumentExceptions in response to bad parameter values.
You might want to do the same in your own subroutines. This can be done with a throw
statement. An exception is an object, and in order to throw an exception, you must create
an exception object. You won’t officially learn how to do this until Chapter 5, but for now, you
can use the following syntax for a throw statement that throws an lllegalArgumentException:

throw new IllegalArgumentException((error-message));

where (error-message) is a string that describes the error that has been detected. (The word
“new” in this statement is what creates the object.) To use this statement in a subroutine,
you would check whether the values of the parameters are legal. If not, you would throw the
exception. For example, consider the print3NSequence subroutine from the beginning of this
section. The parameter of print3NSequence is supposed to be a positive integer. We can
modify the subroutine definition to make it throw an exception when this condition is violated:

static void print3NSequence(int startingValue) {

if (startingValue <= 0) // The contract s vtiolated!
throw new IllegalArgumentEzception("Starting value must be positive.");

// (The rest of the subroutine is the same as before.)

If the start value is bad, the computer executes the throw statement. This will immediately
terminate the subroutine, without executing the rest of the body of the subroutine. Further-
more, the program as a whole will crash unless the exception is “caught” and handled elsewhere
in the program by a try..catch statement, as discussed in Section 3.7. For this to work, the
subroutine call would have to be in the “try” part of the statement.

4.3.8 Global and Local Variables

I'll finish this section on parameters by noting that we now have three different sorts of vari-
ables that can be used inside a subroutine: local variables declared in the subroutine, formal
parameter names, and static member variables that are declared outside the subroutine.

Local variables have no connection to the outside world; they are purely part of the internal
working of the subroutine.

Parameters are used to “drop” values into the subroutine when it is called, but once the
subroutine starts executing, parameters act much like local variables. Changes made inside
a subroutine to a formal parameter have no effect on the rest of the program (at least if the
type of the parameter is one of the primitive types—things are more complicated in the case of
arrays and objects, as we’ll see later).

Things are different when a subroutine uses a variable that is defined outside the subroutine.
That variable exists independently of the subroutine, and it is accessible to other parts of the
program as well. Such a variable is said to be global to the subroutine, as opposed to the
local variables defined inside the subroutine. A global variable can be used in the entire class
in which it is defined and, if it is not private, in other classes as well. Changes made to a
global variable can have effects that extend outside the subroutine where the changes are made.
You've seen how this works in the last example in the previous section, where the values of the
global variables, gamesPlayed and gamesWon, are computed inside a subroutine and are used
in the main() routine.

It’s not always bad to use global variables in subroutines, but you should realize that the
global variable then has to be considered part of the subroutine’s interface. The subroutine

CHAPTER 4. SUBROUTINES 163

uses the global variable to communicate with the rest of the program. This is a kind of sneaky,
back-door communication that is less visible than communication done through parameters,
and it risks violating the rule that the interface of a black box should be straightforward and
easy to understand. So before you use a global variable in a subroutine, you should consider
whether it’s really necessary.

I don’t advise you to take an absolute stand against using global variables inside subroutines.
There is at least one good reason to do it: If you think of the class as a whole as being a kind
of black box, it can be very reasonable to let the subroutines inside that box be a little sneaky
about communicating with each other, if that will make the class as a whole look simpler from
the outside.

4.4 Return Values

A SUBROUTINE THAT RETURNS A VALUE is called a function. A given function can only
return a value of a specified type, called the return type of the function. A function call
generally occurs in a position where the computer is expecting to find a value, such as the right
side of an assignment statement, as an actual parameter in a subroutine call, or in the middle
of some larger expression. A boolean-valued function can even be used as the test condition in
an if, while, for or do..while statement.

(It is also legal to use a function call as a stand-alone statement, just as if it were a
regular subroutine. In this case, the computer ignores the value computed by the subrou-
tine. Sometimes this makes sense. For example, the function TextI0.getln(), with a return
type of String, reads and returns a line of input typed in by the user. Usually, the line that
is returned is assigned to a variable to be used later in the program, as in the statement
“name = TextIO.getln();”. However, this function is also useful as a subroutine call state-
ment “TextI0.getln();”, which still reads all input up to and including the next carriage
return. Since the return value is not assigned to a variable or used in an expression, it is simply
discarded. So, the effect of the subroutine call is to read and discard some input. Sometimes,
discarding unwanted input is exactly what you need to do.)

4.4.1 The return statement

You've already seen how functions such as Math.sqrt() and TextIO0.getInt() can be used.
What you haven’t seen is how to write functions of your own. A function takes the same form
as a regular subroutine, except that you have to specify the value that is to be returned by the
subroutine. This is done with a return statement, which has the following syntax:

return (ezpression) ;

Such a return statement can only occur inside the definition of a function, and the type of
the (expression) must match the return type that was specified for the function. (More exactly,
it must be an expression that could legally be assigned to a variable whose type is specified
by the return type of the function.) When the computer executes this return statement,
it evaluates the expression, terminates execution of the function, and uses the value of the
expression as the returned value of the function.

For example, consider the function definition

static double pythagoras(double x, double y) {
// Computes the length of the hypotenuse of a right
// triangle, where the sides of the triangle are x and y.

CHAPTER 4. SUBROUTINES 164

return Math.sqrt(x*x + y*y);
+

Suppose the computer executes the statement “totallength = 17 + pythagoras(12,5);”.
When it gets to the term pythagoras(12,5), it assigns the actual parameters 12 and 5 to
the formal parameters x and y in the function. In the body of the function, it evaluates
Math.sqrt(12.0%12.0 + 5.0%5.0), which works out to 13.0. This value is “returned” by the
function, so the 13.0 essentially replaces the function call in the assignment statement, which
then has the same effect as the statement “totalLength = 17+13.0”. The return value is
added to 17, and the result, 30.0, is stored in the variable, totalLength.

Note that a return statement does not have to be the last statement in the function
definition. At any point in the function where you know the value that you want to return, you
can return it. Returning a value will end the function immediately, skipping any subsequent
statements in the function. However, it must be the case that the function definitely does return
some value, no matter what path the execution of the function takes through the code.

You can use a return statement inside an ordinary subroutine, one with declared return
type “void”. Since a void subroutine does not return a value, the return statement does not
include an expression; it simply takes the form “return;”. The effect of this statement is to
terminate execution of the subroutine and return control back to the point in the program from
which the subroutine was called. This can be convenient if you want to terminate execution
somewhere in the middle of the subroutine, but return statements are optional in non-function
subroutines. In a function, on the other hand, a return statement, with expression, is always
required.

Note that a return inside a loop will end the loop as well as the subroutine that contains
it. Similarly, a return in a switch statement breaks out of the switch statement as well as
the subroutine. So, you will sometimes use return in contexts where you are used to seeing a
break.

4.4.2 Function Examples

Here is a very simple function that could be used in a program to compute 3N+1 sequences.
(The 3N+1 sequence problem is one we've looked at several times already, including in the
previous section.) Given one term in a 3N+1 sequence, this function computes the next term
of the sequence:

static int nextN(int currentN) {

if (currentN % 2 == 1) // test if current N is odd
return 3*currentN + 1; // if so, return this value
else
return currentN / 2; // if not, return this instead

}

This function has two return statements. Exactly one of the two return statements is executed
to give the value of the function. Some people prefer to use a single return statement at the
very end of the function when possible. This allows the reader to find the return statement
easily. You might choose to write nextN () like this, for example:

static int nextN(int currentN) {
int answer; // answer will be the value returned
if (currentN % 2 == 1) // test if current N is odd
answer = 3*currentN+1; // if so, this is the answer

CHAPTER 4. SUBROUTINES 165

else
answer = currentN / 2; // if not, this is the answer
return answer; // (Don’t forget to return the answer!)

}

Here is a subroutine that uses this nextN function. In this case, the improvement from the
version of the subroutine in Section 4.3 is not great, but if nextN() were a long function that
performed a complex computation, then it would make a lot of sense to hide that complexity
inside a function:

static void print3NSequence(int startingValue) {

int N; // One of the terms in the sequence.
int count; // The number of terms found.

N = startingValue; // Start the sequence with startingValue.
count = 1;

System.out.println("The 3N+l sequence starting from " + N);
System.out.println();
System.out.println(N); // print initial term of sequence

while (N > 1) {
N = nextN(N); // Compute next term, using the function nexth.
count++; // Count this term.
System.out.println(N); // Print this term.

}

System.out.println();
System.out.println("There were " + count + " terms in the sequence.");

* koXk

Here are a few more examples of functions. The first one computes a letter grade corre-
sponding to a given numerical grade, on a typical grading scale:

/**
* Returns the letter grade corresponding to the numerical
* grade that is passed to this function as a parameter.
*/
static char letterGrade(int numGrade) {

if (numGrade >= 90)

return ’A’; // 90 or above gets an A
else if (numGrade >= 80)
return ’B’; // 80 to 89 gets a B
else if (numGrade >= 65)
return ’C’; // 65 to 79 gets a C
else if (numGrade >= 50)
return ’D’; // 50 to 64 gets a D
else
return ’F’; // anything else gets an F

} // end of function letterGrade

CHAPTER 4. SUBROUTINES 166

The type of the return value of letterGrade() is char. Functions can return values of any
type at all. Here’s a function whose return value is of type boolean. It demonstrates some
interesting programming points, so you should read the comments:

/*%

* ¥ ¥ X X *

*/

This function returns true if N is a prime number. A prime number

is an integer greater than 1 that is not divisible by any positive
integer, except itself and 1. If N has any divisor, D, in the range

1 <D < N, then it has a divisor in the range 2 to Math.sqrt(N), namely
either D itself or N/D. So we only test possible divisors from 2 to
Math.sqrt(N).

static boolean isPrime(int N) {

3

int divisor; // A number we will test to see whether it evenly divides N.

if (N <= 1)
return false; // No number <= 1 is a prime.

int maxToTry; // The largest divisor that we need to test.

maxToTry = (int)Math.sqrt(N);
// We will try to divide N by numbers between 2 and maxToTry.
// If N is not evenly divisible by any of these numbers, then
// N is prime. (Note that since Math.sqrt(N) is defined to
// return a value of type double, the value must be typecast
// to type int before it can be assigned to maxToTry.)

for (divisor = 2; divisor <= maxToTry; divisor++) {
if (N % divisor == 0) // Test if divisor evenly divides N.
return false; // If so, we know N is not prime.
// No need to continue testing!

}

// If we get to this point, N must be prime. Otherwise,
// the function would already have been terminated by
// a return statement in the previous loop.

return true; // Yes, N is prime.

// end of function isPrime

Finally, here is a function with return type String. This function has a String as parameter.
The returned value is a reversed copy of the parameter. For example, the reverse of “Hello

World” is

“dlroW olleH”. The algorithm for computing the reverse of a string, str, is to

start with an empty string and then to append each character from str, starting from the last
character of str and working backwards to the first:

static String reverse(String str) {

String copy; // The reversed copy.

int i; // One of the positions in str,
// from str.length() - 1 down to O.
copy = ""; // Start with an empty string.

for (i = str.length() - 1; i >= 0; i--) {
// Append i-th char of str to copy.
copy = copy + str.charAt(i);

CHAPTER 4. SUBROUTINES 167

return copy,

}

A palindrome is a string that reads the same backwards and forwards, such as “radar”. The
reverse () function could be used to check whether a string, word, is a palindrome by testing
“if (word.equals(reverse(word)))”.

By the way, a typical beginner’s error in writing functions is to print out the answer, instead
of returning it. This represents a fundamental misunderstanding. The task of a function
is to compute a value and return it to the point in the program where the function was called.
That’s where the value is used. Maybe it will be printed out. Maybe it will be assigned to a
variable. Maybe it will be used in an expression. But it’s not for the function to decide.

4.4.3 3N-+1 Revisited

I'll finish this section with a complete new version of the 3N+1 program. This will give me a
chance to show the function nextN(), which was defined above, used in a complete program.
I'll also take the opportunity to improve the program by getting it to print the terms of the
sequence in columns, with five terms on each line. This will make the output more presentable.
The idea is this: Keep track of how many terms have been printed on the current line; when
that number gets up to 5, start a new line of output. To make the terms line up into neat
columns, I use formatted output.

import textio.TextIO;

/%%
* A program that computes and displays several 3N+1 sequences. Starting
* values for the sequences are input by the user. Terms in the sequence
* are printed in columns, with five terms on each line of output.
* After a sequence has been displayed, the number of terms in that
* sequence is reported to the user.
*/

public class ThreeN2 {

public static void main(String[] args) {

System.out.println("This program will print out 3N+1 sequences");
System.out.println("for starting values that you specify.");
System.out.println();

int K; // Starting point for sequence, specified by the user.
do {
System.out.println("Enter a starting value;");
System.out.print("To end the program, enter 0: ");
K = TextIO.getlnInt(); // get starting value from user

if (K > 0) // print sequence, but only if K is > O
print3NSequence (K) ;
} while (K > 0); // continue only if K > O

} // end main

/**

* print3NSequence prints a 3N+1 sequence to standard output, using

* startingValue as the initial value of N. It also prints the number
* of terms in the sequence. The value of the parameter, startingValue,

CHAPTER 4. SUBROUTINES 168

* must be a positive integer.
*/

static void print3NSequence(int startingValue) {

int N; // One of the terms in the sequence.

int count; // The number of terms found.

int onLine; // The number of terms that have been output
// so far on the current line.

N = startingValue; // Start the sequence with startingValue;
count = 1; // We have one term so far.

System.out.println("The 3N+1 sequence starting from " + N);
System.out.println();

System.out.printf ("%8d", N); // Print initial term, using 8 characters.
onLine = 1; // There’s now 1 term on current output line.

while (N > 1) {
N = nextN(N); // compute next term

count++; // count this term
if (onLine == 5) { // If current output line is full
System.out.println(); // ...then output a carriage return
onLine = 0; // ...and note that there are no terms
// on the new line.
}
System.out.printf("%8d", N); // Print this term in an 8-char column.
onLine++; // Add 1 to the number of terms on this line.

}

System.out.println(); // end current line of output
System.out.println(); // and then add a blank line
System.out.println("There were " + count + " terms in the sequence.");

} // end of print3NSequence

/**
* nextN computes and returns the next term in a 3N+1 sequence,
* given that the current term is currentN.
*/
static int nextN(int currentN) {
if (currentN % 2 == 1)
return 3 * currentN + 1;
else
return currentN / 2;
} // end of nextN()

} // end of class ThreeN2

You should read this program carefully and try to understand how it works.

4.5 Lambda Expressions

IN A RUNNING PROGRAM, A SUBROUTINE IS JUST a bunch of binary numbers (representing
instructions) stored somewhere in the computer’s memory. Considered as a long string of zeros

CHAPTER 4. SUBROUTINES 169

and ones, a subroutine doesn’t seem all that different from a data value such as, for example,
as an integer, a string, or an array, which is also represented as a string of zeros and ones in
memory. We are used to thinking of subroutines and data as very different things, but inside
the computer, a subroutine is just another kind of data. Some programming languages make
it possible to work with a subroutine as a kind of data value. In Java 8, that ability was added
to Java in the form of something called lambda expressions.

Lambda expressions are becoming more and more common in Java programs. They are
especially useful for working with the JavaFX GUI toolkit, and it will be useful to know about
them before we cover GUI programming in Chapter 6. However, we won’t encounter them
again until near the end of the Chapter 5, so you can skip this section for now if you want.

4.5.1 First-class Functions

Lambda is a letter in the Greek alphabet that was used by the mathematician Alonzo Church in
his study of computable functions. His lambda notation makes it possible to define a function
without giving it a name. For example, you might think that the notation z? is a perfectly
good way of representing a function that squares a number, but in fact, it’s an expression that
represents the result of squaring z, which leaves open the question of what z represents. We
can define a function with z as a dummy parameter:

static double square(double x) {
return x*x;

3

but to do that, we had to name the function square, and that function becomes a permanent
part of the program—which is overkill if we just want to use the function once. Alonzo Church
introduced the notation lambda(z).2% to represent “the function of x that is given by 22" (except
using the Greek letter instead of the word “lambda”). This notation is a kind of function literal
that represents a value of type “function” in the same way that 42 is an integer literal that
represents a value of type int.

Having function literals is the starting point for thinking of a function as just another kind
of data value. Once we do that, we should be able to do the same things with functions that we
can do with other values, such as assign a function to a variable, pass a function as a parameter
to a subroutine, return a function as the value of subroutine, or even make an array of functions.
A programming language that allows you to do all those things with functions is said to have
“first-class functions” or “functions as first-class objects.”

In fact, you can do all of those things with Java lambda expressions. Java’s notation is
different from the one used by Alonzo Church, and in spite of the name “lambda expression”
it does not even use the word lambda. In Java, the lambda expression for a squaring function
like the one above can be written

X > X*X

The operator —> is what makes this a lambda expression. The dummy parameter for the function
is on the left of the operator, and the expression that computes the value of the function is on
the right. You might see an expression like this one being passed as an actual parameter to a
subroutine, assigned to a variable, or returned by a function.

So are functions now first-class in Java? I'm not quite sure. There are some cool things that
can be done in other languages but can’t be done in Java. For example, in Java we can assign
the above expression to a variable named, say, sqr, but we can’t then use sqr as if it actually is
a function. For example, we can’t say sqr(42). The problem, really, is that Java is a strongly

CHAPTER 4. SUBROUTINES 170

typed language; to have a variable named sqr, we must declare that variable and give it a type.
But what sort of type would be appropriate for a value that is a function? The answer in Java
is something called a functional interface, which we turn to next.

But first one more note: Lambda expressions in Java can actually represent arbitrary sub-
routines, not just functions. Nevertheless, it is the term “function” that is usually associated
with them, rather than “subroutine” or “method.”

4.5.2 Functional Interfaces

To know how a subroutine can be legally used, you need to know its name, how many parameters
it requires, their types, and the return type of the subroutine. A functional interface specifies
this information about one subroutine. A functional interface is similar to a class, and it can
be defined in a .java file, just like a class. However, its content is just a specification for a single
subroutine. Here is an example:

public interface FunctionR2R {
double valueAt(double x);
}

This code would be in a file named FunctionR2R.java. It specifies a function named valueAt
with one parameter of type double and a return type of double. (The name of the parameter,
z, is not really part of the specification, and it’s a little annoying that it has to be there.) Here
is another example:

public interface ArrayProcessor {
void process(String[] array, int count);

}

Java comes with many standard functional interfaces. One of the most important is a very
simple one named Runnable, which is already defined in Java as

public interface Runnable {
public void run();

}

I will use these three functional interfaces for examples in this section.

”Interfaces” in Java can be much more complicated than functional interfaces. You will
learn more about them in Section 5.7. But it is only functional interfaces that are relevant
to lambda expressions: a functional interface provides a template for a subroutine that might
be represented by a lambda expression. The name of a functional interface is a type, just as
String and double are types. That is, it can be used to declare variables and parameters and
to specify the return type of a function. When a type is a functional interface, a value for that
type can be given as a lambda expression.

4.5.3 Lambda Expressions

A lambda expression represents an anonymous subroutine, that is, one without a name. But it
does have a formal parameter list and a definition. The full syntax is:

((parameter-iist)) -> { (statements) }
As with a regular subroutine, the (parameter-list) can be empty, or it can be a list of parameter

declarations, separated by commas, where each declaration consists of a type followed by a
parameter name. However, the syntax can often be simplified. First of all, the parameter types

CHAPTER 4. SUBROUTINES 171

can be omitted, as long as they can be deduced from the context. For example, if the lambda
expression is known to be of type FunctionR2R, then the parameter type must be double, so it
is unnecessary to specify the parameter type in the lambda expression. Next, if there is exactly
one parameter and if its type is not specified, then the parentheses around the parameter list
can be omitted. On the right-hand side of the =>, if the only thing between the braces, { and 7,
is a single subroutine call statement, then the braces can be omitted. And if the right-hand side
has the form { return (expression); }, then you can omit everything except the (expression).

For example, suppose that we want a lambda expression to represent a function that com-
putes the square of a double value. The type of such a function can be the FunctionR2R interface
given above. If sqr is a variable of type FunctionR2R, then the value of the function can be a
lambda expression, which can be written in any of the following forms:

sqr (double x) -> { return x*x; };
sqr = (x) -> { return x*x; };

sqr = x —> { return x*x; };

SqQr = X —> X*X;

sqr (double fred) -> fred*fred;
sqr = (2) -> z*z;

The last two statements are there to emphasize that the parameter names in a lambda expres-
sion are dummy parameters; their names are irrelevant. The six lambda expressions in these
statements all define exactly the same function. Note that the parameter type double can
be omitted because the compiler knows that sqr is of type FunctionR2R, and a FunctionR2R
requires a parameter of type double. A lambda expression can only be used in a context where
the compiler can deduce its type, and the parameter type has to be included only in a case
where leaving it out would make the type of the lambda expression ambiguous.

Now, in Java, the variable sqr as defined here is not quite a function. It is a value of
type FunctionR2R, which means that it contains a function named valueAt, as specified in
the definition of interface FunctionR2R. The full name of that function is sqr.valueAt, and we
must use that name to call the function. For example: sqr.valueAt(42) or sqr.valueAt(x) +
sqr.valueAt(y).

When a lambda expression has two parameters, the parentheses are not optional. Here is
an example of using the ArrayProcessor interface, which also demonstrates a lambda expression
with a multiline definition:

ArrayProcessor concat;
concat = (A,n) -> { // parentheses around (A,n) are required!

String str;

str = " ||;

for (int 1 = 0; i < n; i++)
str += A[i];

System.out.println(str);
}; // The semicolon marks the end of the assignment statement;
// it is not part of the lambda expression.

Stringl[] nums;
nums = new String[4];

nums [0] = "One";
nums[1] = "Two";
nums [2] = "Three";
nums [3] = "Four";

for (int i = 1; i < nums.length; i++) {

CHAPTER 4. SUBROUTINES 172

concat.process(nums, i);

}
This will print out

One

OneTwo
OneTwoThree
OneTwoThreeFour

Things get more interesting when a lambda expression is used as an actual parameter, which
is the most common use in practice. For example, suppose that the following function is defined:

/*%

* For a function f, compute f(start) + f(start+l) + ... + f(end).
* The value of end should be >= the value of start.

*/

static double sum(FunctionR2R f, int start, int end) {
double total = 0;
for (int n = start; n <= end; n++) {
total = total + f.valueAt(n);
}

return total;

}

Note that since f is a value of type FunctionR2R, the value of f at n is actually written as
f-valueAt(n). When the function sum is called, the first parameter can be given as a lambda
expression. For example:

System.out.print("The sum of n squared for n from 1 to 100 is ");
System.out.println(sum(z -> z*z, 1, 100));

System.out.print("The sum of 2 raised to the power n, for n from 1 to 10 is ");
System.out.println(sum(num -> Math.pow(2,num), 1, 10));

As another example, suppose that we have a subroutine that performs a given task several
times. The task can be specified as a value of type Runnable:

static void doSeveralTimes(Runnable task, int repCount) {
for (int i = 0; i < repCount; i++) {
task.run(); // Perform the task!
}
}

We could then say “Hello World” ten times by calling
doSeveralTimes(() -> System.out.println("Hello World"), 10);

Note that for a lambda expression of type Runnable, the parameter list is given as an empty
pair of parentheses. Here is an example in which the syntax is getting rather complicated:

doSeveralTimes(() -> {
// count from 1 up to some random number between 5 and 25
int count = 5 + (int) (21*Math.random());
for (int 1 = 1; i <= count; i++) {
System.out.print(i + " ");
}
System.out.println();
}, 100);

CHAPTER 4. SUBROUTINES 173

This is a single subroutine call statement in which the first parameter is a lambda expression
that extends over multiple lines. The second parameter is 100, and the semicolon on the last
line ends the subroutine call statement.

We have seen examples of assigning a lambda expression to a variable and of using one as
an actual parameter. Here is an example in which a lambda expression is the return value of a
function:

static FunctionR2R makePowerFunction(int n) {
return x -> Math.pow(x,n);

}

Then makePowerFunction(2) returns a FunctionR2R that computes the square of its parameter,
while makePowerFunction(10) returns a FunctionR2R that computes the 10-th power of its
parameter. This example also illustrates the fact that a lambda expression can use other
variables in addition to its parameter, such as n in this case (although there are some restrictions
on when that can be done).

4.5.4 Method References

Suppose that we want a lambda expression to represent the square root function as a value of
type FunctionR2R. We could write it as x -> Math.sqrt(x). However, this lambda expression
is a simple wrapper for a Math.sqrt function that already exists. Instead of writing out the
lambda expression, that function can be written as a method reference, which takes the form
Math::sqrt. (Recall that in Java, “method” is another word for “subroutine.”) This method
reference is just a shorthand for the lambda expression, and it can be used wherever that lambda
expression could be used, such as in the sum function defined above:

System.out.print ("The sum of the square root of n for n from 1 to 100 is ");
System.out.println(sum(Math::sqrt, 1, 100));

It would be nice if we could simply use the name Math.sqrt here instead of introducing a new
notation with ::, but the notation Math.sqrt was already defined to mean a variable named
sqrt in the Math class.

More generally, a lambda expression that simply calls an existing static method can be
written as a method reference of the form

(classname) :: (method-name)

Furthermore, this notation extends to methods that are in objects rather than classes. For
example, if str is a String, then str contains the method str.length(). The method reference
str::length could be used as a lambda expression of type Supplyint, where Supplyint is the
functional interface

public interface SupplyInt {
int get();
by

4.6 APIs, Packages, Modules, and Javadoc

A's COMPUTERS AND THEIR USER INTERFACES have become easier to use, they have also
become more complex for programmers to deal with. You can write programs for a simple
console-style user interface using just a few subroutines that write output to the console and

CHAPTER 4. SUBROUTINES 174

read the user’s typed replies. A modern graphical user interface, with windows, buttons, scroll
bars, menus, text-input boxes, and so on, might make things easier for the user, but it forces
the programmer to cope with a hugely expanded array of possibilities. The programmer sees
this increased complexity in the form of great numbers of subroutines that are provided for
managing the user interface, as well as for other purposes.

4.6.1 Toolboxes

Someone who wanted to program for the original Macintosh computers—and to produce pro-
grams that look and behave the way users expected them to—had to deal with the “Macintosh
Toolbox,” a collection of well over a thousand different subroutines. There were routines for
opening and closing windows, for drawing geometric figures and text to windows, for adding
buttons to windows, and for responding to mouse clicks on the window. There were other
routines for creating menus and for reacting to user selections from menus. Aside from the
user interface, there were routines for opening files and reading data from them, for commu-
nicating over a network, for sending output to a printer, for handling communication between
programs, and in general for doing all the standard things that a computer has to do. Microsoft
Windows provides its own set of subroutines for programmers to use, and they are quite a bit
different from the subroutines used on the Mac. Linux has several different GUI toolboxes for
the programmer to choose from.

The analogy of a “toolbox” is a good one to keep in mind. Every programming project
involves a mixture of innovation and reuse of existing tools. A programmer is given a set of
tools to work with, starting with the set of basic tools that are built into the language: things
like variables, assignment statements, if statements, and loops. To these, the programmer can
add existing toolboxes full of routines that have already been written for performing certain
tasks. These tools, if they are well-designed, can be used as true black boxes: They can be called
to perform their assigned tasks without worrying about the particular steps they go through to
accomplish those tasks. The innovative part of programming is to take all these tools and apply
them to some particular project or problem (word-processing, keeping track of bank accounts,
processing image data from a space probe, Web browsing, computer games, ...). This is called
applications programming.

A software toolbox is a kind of black box, and it presents a certain interface to the pro-
grammer. This interface is a specification of what routines are in the toolbox, what parameters
they use, and what tasks they perform. This information constitutes the API, or Application
Programming Interface, associated with the toolbox. The Macintosh API is a specification
of all the routines available in the Macintosh Toolbox. A company that makes some hard-
ware device—say a card for connecting a computer to a network—might publish an API for
that device consisting of a list of routines that programmers can call in order to communicate
with and control the device. Scientists who write a set of routines for doing some kind of
complex computation—such as solving “differential equations,” say—would provide an API to
allow others to use those routines without understanding the details of the computations they
perform.

X kX

The Java programming language is supplemented by a large, standard API. You've seen
part of this API already, in the form of mathematical subroutines such as Math.sqrt(), the
String data type and its associated routines, and the System.out.print() routines. The
standard Java API includes routines for working with graphical user interfaces, for network

CHAPTER 4. SUBROUTINES 175

communication, for reading and writing files, and more. It’s tempting to think of these routines
as being part of the Java language, but they are technically subroutines that have been written
and made available for use in Java programs.

Java is platform-independent. That is, the same program can run on platforms as diverse as
Mac OS, Windows, Linux, and others. The same Java API must work on all these platforms.
But notice that it is the interface that is platform-independent; the implementation of some
parts of the API varies from one platform to another. A Java system on a particular computer
includes implementations of all the standard API routines. A Java program includes only calls
to those routines. When the Java interpreter executes a program and encounters a call to one
of the standard routines, it will pull up and execute the implementation of that routine which
is appropriate for the particular platform on which it is running. This is a very powerful idea.
It means that you only need to learn one API to program for a wide variety of platforms.

4.6.2 Java’s Standard Packages

Like all subroutines in Java, the routines in the standard API are grouped into classes. To
provide larger-scale organization, classes in Java can be grouped into packages, which were
introduced briefly in Subsection 2.6.7. You can have even higher levels of grouping, since
packages can also contain other packages. In fact, the entire standard Java API is implemented
in several packages. One of these, which is named “java”, contains several non-GUI packages as
well as the original AWT graphical user interface classes. Another package, “javax”, contains
the classes used by the Swing graphical user interface as well as many other classes. And
“javafx” contains the JavaFX API that is used for GUI programming in this textbook.

A package can contain both classes and other packages. A package that is contained in
another package is sometimes called a “sub-package.” Both the java package and the javafx
package contain sub-packages. One of the sub-packages of java, for example, is named “util”.
Since util is contained within java, its full name is actually java.util. This package contains
a variety of utility classes, including the Scanner class that was discussed in Subsection 2.4.6.
The java package includes several other sub-packages, such as java.io, which provides facilities
for input/output, and java.net, which deals with network communication. The most basic
package is called java.lang. This package contains fundamental classes such as String, Math,
Integer, and Double.

It might be helpful to look at a graphical representation of the levels of nesting in the
java package, its sub-packages, the classes in those sub-packages, and the subroutines in those
classes. This is not a complete picture, since it shows only a very few of the many items in each
element:

CHAPTER 4. SUBROUTINES 176

java
lang util io
Math Scanner File
Socket,
nextDouble()
String Timer
Integer Date

Subroutines nested in classes nested in two layers of packages.
The full name of sqrt() is java.lang.Math.sqrt().

Similarly, the package javafx contains a package javafx.scene, which in turn contains
javafx.scene.control. This package contains classes that represent GUI components such as
buttons and input boxes. Another subpackage, javafx.scene.paint, contains class Color and
other classes that define ways to fill and stroke a shape.

The standard Java API includes thousands of classes in hundreds of packages. Many of
the classes are rather obscure or very specialized, but you might want to browse through the
documentation to see what is available. As I write this, the documentation for the complete
basic API for Java 8 can be found at

https://docs.oracle.com/javase/8/docs/api/
and for JavaFX at
https://docs.oracle.com/javase/8/javafx/api/toc.htm

See the subsection about “modules,” below, for a discussion of changes that were made the
language in Java 9 and for links to the documentation for Java 11. However, for the purposes
of this textbook, you will probably find that the Java 8 documentation is easier to use.

Even an expert programmer won’t be familiar with the entire Java API, or even a majority
of it. In this book, you’ll only encounter several dozen classes, and those will be sufficient for
writing a wide variety of programs.

4.6.3 Using Classes from Packages

Let’s say that you want to use the class javafx.scene.paint.Color in a program that you are
writing. This is the full name of class Color in package javafx.scene.paint. Like any class,
javafx.scene.paint.Color is a type, which means that you can use it to declare variables
and parameters and to specify the return type of a function. One way to do this is to use the
full name of the class as the name of the type. For example, suppose that you want to declare
a variable named rectColor of type Color. You could say:

javafx.scene.paint.Color rectColor;

This is just an ordinary variable declaration of the form “(type-name) (variable-name);”. Of
course, using the full name of every class can get tiresome, and you will hardly ever see full
names like this used in a program. Java makes it possible to avoid using the full name of a
class by importing the class. If you put

import javafx.scene.paint.Color;

CHAPTER 4. SUBROUTINES 177

at the beginning of a Java source code file, then, in the rest of the file, you can abbreviate the
full name javafx.scene.paint.Color to just the simple name of the class, which is Color.
Note that the import line comes at the start of a file (after the package statement, if there
is one) and is not inside any class. Although it is sometimes referred to as a statement, it is
more properly called an import directive since it is not a statement in the usual sense. The
import directive “import javafx.scene.paint.Color” would allow you to say

Color rectColor;

to declare the variable. Note that the only effect of the import directive is to allow you to use
simple class names instead of full “package.class” names. You aren’t really importing anything
substantial; if you leave out the import directive, you can still access the class—you just have
to use its full name. There is a shortcut for importing all the classes from a given package. For
example, you can import all the classes from java.util by saying

import java.util.x;

The “*” is a wildcard that matches every class in the package. (However, it does not match
sub-packages; for example, you cannot import the entire contents of all the sub-packages of
the javafx package by saying import javafx.x.)

Some programmers think that using a wildcard in an import statement is bad style, since
it can make a large number of class names available that you are not going to use and might
not even know about. They think it is better to explicitly import each individual class that
you want to use. In my own programming, I often use wildcards to import all the classes from
the most relevant packages, and use individual imports when I am using just one or two classes
from a given package.

A program that works with networking might include the line “import java.net.*;”, while
one that reads or writes files might use “import java.io.*;”. But when you start importing
lots of packages in this way, you have to be careful about one thing: It’s possible for two classes
that are in different packages to have the same name. For example, both the java.awt package
and the java.util package contain a class named List. If you import both java.awt.* and
java.util.*, the simple name List will be ambiguous. If you try to declare a variable of
type List, you will get a compiler error message about an ambiguous class name. You can
still use both classes in your program: Use the full name of the class, either java.awt.List or
java.util.List. Another solution, of course, is to use import to import the individual classes
you need, instead of importing entire packages.

Because the package java.lang is so fundamental, all the classes in java.lang are auto-
matically imported into every program. It’s as if every program began with the statement
“import java.lang.*;”. This is why we have been able to use the class name String instead
of java.lang.String, and Math.sqrt() instead of java.lang.Math.sqrt(). It would still,
however, be perfectly legal to use the longer forms of the names.

Programmers can create new packages. Suppose that you want some classes that you are
writing to be in a package named utilities. Then the source code files that defines those
classes must begin with the line

package utilities;

This would come even before any import directive in that file. Furthermore, the source code
file would be placed in a folder with the same name as the package, “utilities” in this example.
And a class that is in a subpackage must be in a subfolder. For example, a class in a package
named utilities.net would be in folder named “net” inside a folder named “utilities”. A

CHAPTER 4. SUBROUTINES 178

class that is in a package automatically has access to other classes in the same package; that
is, a class doesn’t have to import classes from the package in which it is defined.

In projects that define large numbers of classes, it makes sense to organize those classes
into packages. It also makes sense for programmers to create new packages as toolboxes that
provide functionality and APIs for dealing with areas not covered in the standard Java API.
(And in fact such “toolmaking” programmers often have more prestige than the applications
programmers who use their tools.)

However, with just a couple of exceptions such as class Text/O in package textio, the classes
written for this book are not in packages. For the purposes of this book, you need to know
about packages mainly so that you will be able to import Text/O and classes from the standard
packages. The standard packages are always available to the programs that you write. You
might wonder where the standard classes are actually located. Again, that can depend to some
extent on the version of Java that you are using. In Java 8 they are stored in jar files in a
subdirectory named /ib inside the Java Runtime Environment installation directory. A .jar (or
“Java archive”) file is a single file that can contain many classes. Most of the classes used with
Java 8 can be found in a jar file named rt.jar. Things changed substantially in Java 9, as
discussed in the next subsection.

Although we won’t be creating packages explicitly, every class is actually part of a package.
If a class is not specifically placed in a package, then it is put in something called the default
package, which has no name. Almost all the examples that you see in this book are in the
default package.

4.6.4 About Modules

Starting with Java 9, a major change was made to the large-scale structure of Java with the
introduction of modules. A module is a collection of packages, so it represents yet another
level of containment: Modules contain packages which contain classes which contain variables
and methods. A package does not have to be in a module to be used, but all of the standard
classes in Java and in JavaF'X have been divided into a set of modules.

Modules were introduced for several reasons. A major reason is to provide better access
control. Before modules, a class that is declared public can be used anywhere, from any class in
any package, as can its public variables and methods. For a class that is defined in a module, on
the other hand, “public” only automatically means public within the module where it is defined.
However, a module can explicitly export a package. Exporting a package from a module makes
the public classes in the package accessible from anywhere, including from other modules and
from classes that are not part of any module. (It is even possible to export a package just to
certain specified modules, providing an even finer level of access control.) The upshot is that
it is now possible to have entire packages that are essentially private: They provide services to
other packages in the same module, but are invisible from outside that module. So a module
is another kind of black box, and a non-exported package is part of its hidden implementation.
Of course, modularity on this scale is really only important for very large-scale applications.

Another motivation for modules is the sheer size of the standard JRE (Java Runtime Envi-
ronment), which includes all of the standard classes. A given application will use only a small
part of the standard runtime. Modularization makes it possible to construct smaller, custom
JREs that contain only the modules that are required by an application. The JDK includes a
jlink command for making custom runtimes, which can include modules that define an appli-
cation as well as the standard modules that are required to run that application. That runtime
can then be distributed as a standalone application that can be executed even by people who

CHAPTER 4. SUBROUTINES 179

have not installed a JDK on their computer. But just as for the JDK itself, different versions
of the custom runtime will be needed for Windows, for Mac OS, and for Linux. Furthermore,
when security updates are made to the JDK, they are not automatically applied to custom
runtimes, so the application developer takes on the responsibility of updating custom runtimes.
Once again, this is really only useful for fairly large applications.

In a JDK for Java 9 or later, compiled class files from the standard modules are stored
together in a file named modules inside a directory named [ib in the main JDK directory. This
is a so-called “jimage file,” and there is a command-line tool named jimage for working with
such files. If you use the jlink tool to create a custom runtime, part of what it does is to
create a custom modules file containing just the modules that are needed by the runtime. In
the JDK 12 on my Linux computer, modules is a 130 megabyte file containing 30199 classes in
1000 packages in 70 modules. The JDK directory also has a subdirectory named jmods that
contains the modules in another form. However, it is not required for compiling and running
programs and, as far as I can tell, is meant mostly for use by jlink.

Modules in the JDK include, for example, java.base (which contains the basic modules such
as java.lang and java.util) and java.desktop (which include packages for the Swing GUI
toolkit). JavaFX packages include javafr.base, javafr.control, javafr.graphics, and a few that
are less generally useful. The API documentation for modular versions of Java is divided into
modules, then into packages, and finally into classes. This makes the documentation harder
to browse than in older versions of Java. However, the documentation web site does have an
effective search feature. As I write this, the documentation for Java 11 and for JavaFX 11 is
available at:

https://docs.oracle.com/en/java/javase/11/docs/api/index.html
https://openjfx.io/javadoc/11/

A class can be defined outside of any module, and it is possible for that class to use packages
from modules, provided that those packages are exported by the modules where they are defined.
In particular, a programmer can use classes from the JDK without ever thinking about modules
or knowing that they exist. This applies to all the command-line programs in this book.
However, when using Java 11 or later, things are different for GUI programs that use JavaFX,
which has been removed from the JDK and is distributed as a separate set of modules. As we
saw in Section 2.6, when you compile or run a JavaFX program, you need to specify a module
path that includes the JavaFX modules, and you need to provide an --add-modules option.
(In Section 2.6, the value for --add-modules was given as ALL-MODULE-PATH, which lets the
program access any modules that are found on the module path. An alternative is to specify a
list of names of just those modules that are actually used by the program.)

Aside from using modules with JavaFX and the basic background information in this section,
this textbook does not cover modules.

4.6.5 Javadoc

To use an API effectively, you need good documentation for it. The documentation for most
Java APIs is prepared using a system called Javadoc. For example, this system is used to
prepare the documentation for Java’s standard packages. And almost everyone who creates a
toolbox in Java publishes Javadoc documentation for it.

Javadoc documentation is prepared from special comments that are placed in the Java
source code file. Recall that one type of Java comment begins with /* and ends with */. A
Javadoc comment takes the same form, but it begins with /** rather than simply /*. You have
already seen comments of this form in many of the examples in this book.

CHAPTER 4. SUBROUTINES 180

Note that a Javadoc comment must be placed just before the subroutine that it is com-
menting on. This rule is always followed. You can have Javadoc comments for subroutines, for
member variables, and for classes. The Javadoc comment always immediately precedes the
thing it is commenting on.

Like any comment, a Javadoc comment is ignored by the computer when the file is compiled.
But there is a tool called javadoc that reads Java source code files, extracts any Javadoc
comments that it finds, and creates a set of Web pages containing the comments in a nicely
formatted, interlinked form. By default, javadoc will only collect information about public
classes, subroutines, and member variables, but it allows the option of creating documentation
for non-public things as well. If javadoc doesn’t find any Javadoc comment for something, it
will construct one, but the comment will contain only basic information such as the name and
type of a member variable or the name, return type, and parameter list of a subroutine. This
is syntactic information. To add information about semantics and pragmatics, you have to
write a Javadoc comment.

As an example, you can look at the documentation Web page for Text/O. The documentation
page was created by applying the javadoc tool to the source code file, TextIO.java. If you
have downloaded the on-line version of this book, the documentation can be found in the
TextI0_Javadoc directory, or you can find a link to it in the on-line version of this section.

In a Javadoc comment, the *’s at the start of each line are optional. The javadoc tool
will remove them. In addition to normal text, the comment can contain certain special codes.
For one thing, the comment can contain HTML mark-up commands. HTML is the language
that is used to create web pages, and Javadoc comments are meant to be shown on web pages.
The javadoc tool will copy any HTML commands in the comments to the web pages that it
creates. The book will not teach you HTML, but as an example, you can add <p> to indicate
the start of a new paragraph. (Generally, in the absence of HTML commands, blank lines and
extra spaces in the comment are ignored. Furthermore, the characters & and < have special
meaning in HTML and should not be used in Javadoc comments except with those meanings;
they can be written as & and &1t;.)

In addition to HTML commands, Javadoc comments can include doc tags, which are
processed as commands by the javadoc tool. A doc tag has a name that begins with the
character @ I will only discuss four tags: @author, @param, @return, and @throws. The
@author tag can be used only for a class, and should be followed by the name of the author.
The other three tags are used in Javadoc comments for a subroutine to provide information
about its parameters, its return value, and the exceptions that it might throw. These tags
must be placed at the end of the comment, after any description of the subroutine itself. The
syntax for using them is:

@param (parameter-name) (description—of-parameter)
@return (description-of-return-value)
@throws (exception-class-name) (description-of-ezception)

The (descriptions) can extend over several lines. The description ends at the next doc tag or at
the end of the comment. You can include a @param tag for every parameter of the subroutine
and a @throws for as many types of exception as you want to document. You should have
a @return tag only for a non-void subroutine. These tags do not have to be given in any
particular order.

Here is an example that doesn’t do anything exciting but that does use all three types of
doc tag:

http://math.hws.edu/eck/cs124/javanotes8/source/chapter4/textio/TextIO.java

CHAPTER 4. SUBROUTINES 181

/%%
* This subroutine computes the area of a rectangle, given its width
* and its height. The length and the width should be positive numbers.
* Q@param width the length of one side of the rectangle
* QOparam height the length the second side of the rectangle
* Q@return the area of the rectangle
* Q@throws IllegalArgumentException if either the width or the height
* is a negative number.
*/
public static double areaOfRectangle(double length, double width) {
if (width < 0 || height < 0)
throw new IllegalArgumentException("Sides must have positive length.");
double area;
area = width * height;
return area;

}

I use Javadoc comments for many of my examples. I encourage you to use them in your
own code, even if you don’t plan to generate Web page documentation of your work, since it’s
a standard format that other Java programmers will be familiar with.

If you do want to create Web-page documentation, you need to run the javadoc tool. This
tool is available as a command in the Java Development Kit that was discussed in Section 2.6.
You can use the javadoc tool in a command line interface similarly to the way that the javac
and java commands are used. Javadoc can also be applied in the integrated development
environments that were also discussed in Section 2.6. I won’t go into any of the details here;
consult the documentation for your programming environment.

4.6.6 Static Import

Before ending this section, I will mention an extension of the import directive. We have seen
that import makes it possible to refer to a class such as java.util.Scanner using its simple
name, Scanner. But you still have to use compound names to refer to static member variables
such as System.out and to static methods such as Math.sqrt.

There is another form of the import directive that can be used to import static members
of a class in the same way that the ordinary import directive imports classes from a package.
That form of the directive is called a static tmport, and it has syntax

import static (package-name).(class-name).(static-member-name);
to import one static member name from a class, or
import static (package-name).(class-name).*;

to import all the public static members from a class. For example, if you preface a class
definition with

import static java.lang.System.out;

then you can use the simple name out instead of the compound name System.out. This means
you can say out.println instead of System.out.println. If you are going to work extensively
with the Math class, you might preface your class definition with

import static java.lang.Math.*;

This would allow you to say sqrt instead of Math.sqrt, log instead of Math.log, PI instead
of Math.PI, and so on. And you could import the getlnint function from Text/O using

CHAPTER 4. SUBROUTINES 182

import static textio.TextIO.getlnInt;

Note that the static import directive requires a (package-name), even for classes in the
standard package java.lang. One consequence of this is that you can’t do a static import from
a class in the default package.

4.7 More on Program Design

UNDERSTANDING HOW PROGRAMS WORK is one thing. Designing a program to perform some
particular task is another thing altogether. In Section 3.2, I discussed how pseudocode and
stepwise refinement can be used to methodically develop an algorithm. We can now see how
subroutines can fit into the process.

Stepwise refinement is inherently a top-down process, but the process does have a “bottom,”
that is, a point at which you stop refining the pseudocode algorithm and translate what you
have directly into proper program code. In the absence of subroutines, the process would
not bottom out until you get down to the level of assignment statements and very primitive
input/output operations. But if you have subroutines lying around to perform certain useful
tasks, you can stop refining as soon as you’ve managed to express your algorithm in terms of
those tasks.

This allows you to add a bottom-up element to the top-down approach of stepwise re-
finement. Given a problem, you might start by writing some subroutines that perform tasks
relevant to the problem domain. The subroutines become a toolbox of ready-made tools that
you can integrate into your algorithm as you develop it. (Alternatively, you might be able to
buy or find a software toolbox written by someone else, containing subroutines that you can
use in your project as black boxes.)

Subroutines can also be helpful even in a strict top-down approach. As you refine your
algorithm, you are free at any point to take any sub-task in the algorithm and make it into a
subroutine. Developing that subroutine then becomes a separate problem, which you can work
on separately. Your main algorithm will merely call the subroutine. This, of course, is just
a way of breaking your problem down into separate, smaller problems. It is still a top-down
approach because the top-down analysis of the problem tells you what subroutines to write.
In the bottom-up approach, you start by writing or obtaining subroutines that are relevant to
the problem domain, and you build your solution to the problem on top of that foundation of
subroutines.

4.7.1 Preconditions and Postconditions

When working with subroutines as building blocks, it is important to be clear about how a
subroutine interacts with the rest of the program. This interaction is specified by the contract
of the subroutine, as discussed in Section 4.1. A convenient way to express the contract of a
subroutine is in terms of preconditions and postconditions.

A precondition of a subroutine is something that must be true when the subroutine is called,
if the subroutine is to work correctly. For example, for the built-in function Math.sqrt(x), a
precondition is that the parameter, x, is greater than or equal to zero, since it is not possible
to take the square root of a negative number. In terms of a contract, a precondition represents
an obligation of the caller of the subroutine. If you call a subroutine without meeting its
precondition, then there is no reason to expect it to work properly. The program might crash

CHAPTER 4. SUBROUTINES 183

or give incorrect results, but you can only blame yourself, not the subroutine, because you
haven’t lived up to your side of the deal.

A postcondition of a subroutine represents the other side of the contract. It represents an
obligation of the subroutine. It is something that will be true after the subroutine has run
(assuming that its preconditions were met—and that there are no bugs in the subroutine).
The postcondition of the function Math.sqrt () is that the square of the value that is returned
by this function is equal to the parameter that is provided when the subroutine is called. Of
course, this will only be true if the precondition—that the parameter is greater than or equal
to zero—is met. A postcondition of the built-in subroutine System.out.print(x) is that the
value of the parameter has been displayed on the screen.

Preconditions most often give restrictions on the acceptable values of parameters, as in the
example of Math.sqrt (x). However, they can also refer to global variables that are used in the
subroutine. Or, if it only makes sense to call the subroutine at certain times, the precondition
might refer to the state that the program must be in when the subroutine is called.

The postcondition of a subroutine, on the other hand, specifies the task that it performs.
For a function, the postcondition should specify the value that the function returns.

Subroutines are sometimes described by comments that explicitly specify their preconditions
and postconditions. When you are given a pre-written subroutine, a statement of its precon-
ditions and postconditions tells you how to use it and what it does. When you are assigned
to write a subroutine, the preconditions and postconditions give you an exact specification of
what the subroutine is expected to do. I will use this approach in the example that constitutes
the rest of this section. The comments are given in the form of Javadoc comments, but I will
explicitly label the preconditions and postconditions. (Many computer scientists think that
new doc tags @precondition and @postcondition should be added to the Javadoc system for
explicit labeling of preconditions and postconditions, but that has not yet been done.)

4.7.2 A Design Example

Let’s work through an example of program design using subroutines. In this example, we will
use pre-written subroutines as building blocks and we will also design new subroutines that
we need to complete the project. The API that I will use here is defined in two classes that I
have written, Mosaic.java, which in turn depends on MosaicCanvas.java. To compile and run
a program that uses the API, the classes Mosaic and MosaicCanvas must be available. That is,
the files Mosaic. java and MosaicCanvas. java, or the corresponding compiled class files, must
be in the same folder as the class that defines the program. (You can download them from this
textbooks’s web site.)

So, suppose that I have access to an already-written class called Mosaic. This class allows
a program to work with a window that displays little colored rectangles arranged in rows and
columns. The window can be opened, closed, and otherwise manipulated with static member
subroutines defined in the Mosaic class. In fact, the class defines a toolbox or API that can be
used for working with such windows. Here are some of the available routines in the API, with
Javadoc-style comments. (Remember that a Javadoc comment comes before the thing that it
is commenting on.)

/%%

* Opens a "mosaic" window on the screen. This subroutine should be called
* before any of the other Mosaic subroutines are used. The program will end
* when the user closes the window.

*

http://math.hws.edu/eck/cs124/javanotes8/source/chapter4/Mosaic.java
http://math.hws.edu/eck/cs124/javanotes8/source/chapter4/MosaicCanvas.java

CHAPTER 4. SUBROUTINES 184

* Precondition: The parameters rows, cols, h, and w are positive integers.

* Postcondition: A window is open on the screen that can display rows and

* columns of colored rectangles. Each rectangle is w pixels
wide and h pixels high. The number of rows is given by
the first parameter and the number of columns by the
second. Initially, all rectangles are black.

* ¥ x

*

* Note: The rows are numbered from O to rows - 1, and the columns are
* numbered from O to cols - 1.

*/

public static void open(int rows, int cols, int h, int w)

/%%
* Sets the color of one of the rectangles in the window.
*
* Precondition: row and col are in the valid range of row and column numbers,
* and r, g, and b are in the range O to 255, inclusive.
* Postcondition: The color of the rectangle in row number row and column
* number col has been set to the color specified by r, g,
* and b. r gives the amount of red in the color with O
* representing no red and 255 representing the maximum
* possible amount of red. The larger the value of r, the
* more red in the color. g and b work similarly for the
* green and blue color components.
*/
public static void setColor(int row, int col, int 7, int g, int b)
/%%
* Gets the red component of the color of one of the rectangles.
*
* Precondition: row and col are in the valid range of row and column numbers.
* Postcondition: The red component of the color of the specified rectangle is
* returned as an integer in the range 0 to 255 inclusive.
*/

public static int getRed(int row, int col)

Ve
* Like getRed, but returns the green component of the color.
*/

public static int getGreen(int row, int col)

/%%
* Like getRed, but returns the blue component of the color.
*/

public static int getBlue(int row, int col)

Inserts a delay in the program (to regulate the speed at which the colors
are changed, for example).

Precondition: milliseconds is a positive integer.
Postcondition: The program has paused for at least the specified number
of milliseconds, where one second is equal to 1000

CHAPTER 4. SUBROUTINES 185

* milliseconds.
*/

public static void delay(int milliseconds)

Remember that these subroutines are members of the Mosaic class, so when they are called
from outside Mosaic, the name of the class must be included as part of the name of the routine.
For example, we’ll have to use the name Mosaic.isOpen() rather than simply isOpen().

You’ll notice that the comments on the subroutine don’t specify what happens when the
preconditions are not met. Although a subroutine is not really obligated by its contract to
do anything particular in that case, it would be good to know what happens. For example,
if the precondition, “row and col are in the valid range of row and column numbers,” on
the setColor() or getRed() routine is violated, an /llegalArgumentException will be thrown.
Knowing that fact would allow you to write programs that catch and handle the exception,
and it would be good to document it with a @throws doc tag in the Javadoc comment. Other
questions remain about the behavior of the subroutines. For example, what happens if you
call Mosaic.open() and there is already a mosaic window open on the screen? (In fact, the
second call will simply be ignored.) It’s difficult to fully document the behavior of a piece of
software—sometimes, you just have to experiment or look at the full source code.

S S 3

My idea for a program is to use the Mosaic class as the basis for a neat animation. I want
to fill the window with randomly colored squares, and then randomly change the colors in a
loop that continues as long as the window is open. “Randomly change the colors” could mean
a lot of different things, but after thinking for a while, I decide it would be interesting to have
a “disturbance” that wanders randomly around the window, changing the color of each square
that it encounters. Here’s a picture showing what the contents of the window might look like
at one point in time:

With basic routines for manipulating the window as a foundation, I can turn to the specific
problem at hand. A basic outline for my program is

Open a Mosaic window
Fill window with random colors
Move around, changing squares at random

Filling the window with random colors seems like a nice coherent task that I can work on
separately, so let’s decide to write a separate subroutine to do it. The third step can be
expanded a bit more, into the steps: Start in the middle of the window, then keep moving

CHAPTER 4. SUBROUTINES 186

to new squares and changing the color of those squares. This should continue as long as the
mosaic window is still open. Thus we can refine the algorithm to:

Open a Mosaic window

Fill window with random colors

Set the current position to the middle square in the window

As long as the mosaic window is open:
Randomly change color of the square at the current position
Move current position up, down, left, or right, at random

I need to represent the current position in some way. That can be done with two int variables
named currentRow and currentColumn that hold the row number and the column number of
the square where the disturbance is currently located. I’ll use 16 rows and 20 columns of squares
in my mosaic, so setting the current position to be in the center means setting currentRow to 8
and currentColumn to 10. I already have a subroutine, Mosaic.open(), to open the window.
To keep the main routine simple, I decide that I will write two more subroutines of my own to
carry out the two tasks in the while loop. The algorithm can then be written in Java as:

Mosaic.open(16,20,25,25)

fillWithRandomColors () ;

currentRow = 8; // Middle row, halfway down the window.

currentColumn = 10; // Middle column.

while (true) { // Program ends when user closes the window.
changeToRandomColor (currentRow, currentColumn);
randomMove () ;

3

With the proper wrapper, this is essentially the main() routine of my program. It turns out I
decided to make one small modification after running the completed program: To prevent the
animation from running too fast, I added the line “Mosaic.delay(10);” to the while loop.

The main() routine is taken care of, but to complete the program, I still have to write the
subroutines fillWithRandomColors (), changeToRandomColor (int,int), and randomMove ().
Writing each of these subroutines is a separate, small task. The fillWithRandomColors ()
routine is defined by the postcondition that “each of the rectangles in the mosaic has been
changed to a random color.” Pseudocode for an algorithm to accomplish this task can be given
as:

For each row:
For each column:
set the square in that row and column to a random color

“For each row” and “for each column” can be implemented as for loops. We’ve already planned
to write a subroutine changeToRandomColor that can be used to set the color. (The possi-
bility of reusing subroutines in several places is one of the big payoffs of using them!) So,
fillWithRandomColors() can be written in proper Java as:

static void fillWithRandomColors() {
int row, column;
for (row = 0; row < 16; row++)
for (column = 0; column < 20; column++)
changeToRandomColor (row,column) ;

CHAPTER 4. SUBROUTINES 187

Turning to the changeToRandomColor subroutine, we already have a method in the Mosaic
class, Mosaic.setColor (), that can be used to change the color of a square. If we want a ran-
dom color, we just have to choose random values for r, g, and b. According to the precondition
of the Mosaic.setColor () subroutine, these random values must be integers in the range from
0 to 255. A formula for randomly selecting such an integer is “(int) (256*Math.random())”.
So the random color subroutine becomes:

static void changeToRandomColor (int rowNum, int colNum) {
int red = (int) (256*Math.random());
int green = (int) (256*Math.random()) ;
int blue = (int) (256*Math.random());
Mosaic.setColor (rowNum,colNum,red,green,blue);

}

Finally, consider the randomMove subroutine, which is supposed to randomly move the
disturbance up, down, left, or right. To make a random choice among four directions, we
can choose a random integer in the range 0 to 3. If the integer is 0, move in one direction;
if it is 1, move in another direction; and so on. The position of the disturbance is given
by the variables currentRow and currentColumn. To “move up” means to subtract 1 from
currentRow. This leaves open the question of what to do if currentRow becomes -1, which
would put the disturbance above the window (which would violate a precondition of several
of the Mosaic subroutines). Rather than let this happen, I decide to move the disturbance to
the opposite edge of the grid by setting currentRow to 15. (Remember that the 16 rows are
numbered from 0 to 15.) An alternative to jumping to the opposite edge would be to simply
do nothing in this case. Moving the disturbance down, left, or right is handled similarly. If we
use a switch statement to decide which direction to move, the code for randomMove becomes:

int directionNum;
directionNum = (int) (4*Math.random());
switch (directionNum) {

case 0: // move up

currentRow—-;
if (currentRow < 0) // CurrentRow is outside the mosaic;
currentRow = 15; // move it to the opposite edge.
break;
case 1: // move right
currentColumn++;

if (currentColumn >= 20)
currentColumn = 0;
break;
case 2: // move down
currentRow++;
if (currentRow >= 16)
currentRow = 0;
break;
case 3: // move left
currentColumn--;
if (currentColumn < 0)
currentColumn = 19;
break;

CHAPTER 4. SUBROUTINES 188

4.7.3 The Program

Putting this all together, we get the following complete program. Note that I've added Javadoc-
style comments for the class itself and for each of the subroutines. The variables currentRow
and currentColumn are defined as static members of the class, rather than local variables,
because each of them is used in several different subroutines. You can find a copy of the source
code in RandomMosaicWalk.java. Remember that this program actually depends on two other
files, Mosaic.java and MosaicCanvas.java.

/%%
* This program opens a window full of randomly colored squares. A "disturbance"
* moves randomly around in the window, randomly changing the color of each
* square that it visits. The program runs until the user closes the window.
*/
public class RandomMosaicWalk {

static int currentRow; // Row currently containing the disturbance.
static int currentColumn; // Column currently containing disturbance.

/%%
* The main program creates the window, fills it with random colors,
* and then moves the disturbance in a random walk around the window
* as long as the window is open.
*/
public static void main(String[] args) {
Mosaic.open(16,20,25,25);
fillWithRandomColors () ;
currentRow = 8; // start at center of window
currentColumn = 10;
while (true) {
changeToRandomColor (currentRow, currentColumn);
randomMove () ;
Mosaic.delay(10); // Remove this line to speed things up!

X
} // end main
/%%
* Fills the window with randomly colored squares.
* Precondition: The mosaic window is open.
* Postcondition: Each square has been set to a random color.
*/

static void fillWithRandomColors() {
int row, column;
for (row=0; row < 16; row++) {
for (column=0; column < 20; column++) {
changeToRandomColor (row, column);
}
}
} // end fillWithRandomColors

/%%

* Changes one square to a new randomly selected color.

* Precondition: The specified rowNum and colNum are in the valid range
* of row and column numbers.

* Postcondition: The square in the specified row and column has

http://math.hws.edu/eck/cs124/javanotes8/source/chapter4/RandomMosaicWalk.java
http://math.hws.edu/eck/cs124/javanotes8/source/chapter4/Mosaic.java
http://math.hws.edu/eck/cs124/javanotes8/source/chapter4/MosaicCanvas.java

CHAPTER 4. SUBROUTINES 189

* been set to a random color.

* Q@param rowNum the row number of the square, counting rows down

* from O at the top

* Q@param colNum the column number of the square, counting columns over

* from O at the left

*/

static void changeToRandomColor(int rowNum, int colNum) {
int red = (int) (256*Math.random()); // Choose random levels in range
int green = (int) (256*Math.random()); // 0 to 255 for red, green,
int blue = (int) (256*Math.random()); // and blue color components.

Mosaic.setColor(rowNum,colNum,red,green,blue);
} // end changeToRandomColor

/%%

* Move the disturbance.

* Precondition: The global variables currentRow and currentColumn

* are within the legal range of row and column numbers.

* Postcondition: currentRow or currentColumn is changed to one of the

* neighboring positions in the grid -- up, down, left, or
* right from the current position. If this moves the

* position outside of the grid, then it is moved to the

*

opposite edge of the grid.
*/
static void randomMove() {
int directionNum; // Randomly set to O, 1, 2, or 3 to choose direction.
directionNum = (int) (4*Math.random());
switch (directionNum) {
case 0: // move up
currentRow—-;
if (currentRow < 0)
currentRow = 15;
break;
case 1: // move right
currentColumn++;
if (currentColumn >= 20)
currentColumn = 0;
break;
case 2: // move down
currentRow ++;
if (currentRow >= 16)
currentRow = O;
break;
case 3: // move left
currentColumn—-;
if (currentColumn < 0)
currentColumn = 19;
break;
¥

} // end randomMove

} // end class RandomMosaicWalk

CHAPTER 4. SUBROUTINES 190

4.8 The Truth About Declarations

NAMES ARE FUNDAMENTAL TO PROGRAMMING, as I said a few chapters ago. There are a lot
of details involved in declaring and using names. I have been avoiding some of those details. In
this section, I'll reveal most of the truth (although still not the full truth) about declaring and
using variables in Java. The material in the subsections “Initialization in Declarations” and
“Named Constants” is particularly important, since I will be using it regularly from now on.

4.8.1 Initialization in Declarations

When a variable declaration is executed, memory is allocated for the variable. This memory
must be initialized to contain some definite value before the variable can be used in an expres-
sion. In the case of a local variable, the declaration is often followed closely by an assignment
statement that does the initialization. For example,

int count; // Declare a variable named count.
count = 0; // Give count its initial value.

However, the truth about declaration statements is that it is legal to include the initializa-
tion of the variable in the declaration statement. The two statements above can therefore be
abbreviated as

int count = 0; // Declare count and give it an initial value.

The computer still executes this statement in two steps: Declare the variable count, then assign
the value 0 to the newly created variable. The initial value does not have to be a constant. It
can be any expression. It is legal to initialize several variables in one declaration statement.
For example,

char firstInitial = ’D’, secondInitial = ’E’;
int x, y = 1; // OK, but only y has been initialized!

int N = 3, M = N+2; // OK, N is initialized
// before its value is used.

This feature is especially common in for loops, since it makes it possible to declare a loop control
variable at the same point in the loop where it is initialized. Since the loop control variable
generally has nothing to do with the rest of the program outside the loop, it’s reasonable to
have its declaration in the part of the program where it’s actually used. For example:

for (ent ¢ = 0; i < 10; i++) {

System.out.println(i);
X

You should remember that this is simply an abbreviation for the following, where I’'ve added
an extra pair of braces to show that i is considered to be local to the for statement and no
longer exists after the for loop ends:

{
int 1i;
for (i =0; i< 10; i++) {
System.out.println(i);
}

CHAPTER 4. SUBROUTINES 191

A member variable can also be initialized at the point where it is declared, just as for a
local variable. For example:

public class Bank {
private static double interestRate = 0.05;
private static int maxWithdrawal = 200;

// More variables and subroutines.

}

A static member variable is created as soon as the class is loaded by the Java interpreter, and
the initialization is also done at that time. In the case of member variables, this is not simply
an abbreviation for a declaration followed by an assignment statement. Declaration statements
are the only type of statement that can occur outside of a subroutine. Assignment statements
cannot, so the following is illegal:

public class Bank {
private static double interestRate;
interestRate = 0.05; // ILLEGAL:
// Can’t be outstde a subroutine!:

Because of this, declarations of member variables often include initial values. In fact, as
mentioned in Subsection 4.2.4, if no initial value is provided for a member variable, then a
default initial value is used. For example, when declaring an integer member variable, count,
“static int count;” is equivalent to “static int count = 0;”.

Even array variables can be initialized. An array contains several elements, not just a single
value. To initialize an array variable, you can provide a list of values, separated by commas,
and enclosed between a pair of braces. For example:

int[] smallPrimes = 4{ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };

In this statement, an array of int of length 10 is created and filled with the values in the list.
The length of the array is determined by the number of items in the list.
Note that this syntax for initializing arrays cannot be used in assignment statements. It
can only be used in a declaration statement at the time when the array variable is declared.
It is also possible to initialize an array variable with an array created using the new operator
(which can also be used in assignment statements). For example:

String[] nameList = new String[100];

but in that case, of course, all the array elements will have their default value.

4.8.2 Declaring Variables with var

Java 10 introduced a new way of declaring variables, using the word “var” instead of specifying
an explicit type for the variable. The new syntax for declarations can only be used for local
variables, that is for variables that are declared inside subroutines (see Subsection 4.2.4). Fur-
thermore a variable that is declared using var must be given an initial value. A variable that
is declared with var has a defined type, just like any other variable. The Java compiler uses
the type of the initial value to define the type for the variable. For example, the declaration
statement

CHAPTER 4. SUBROUTINES 192

var interestRate = 0.05;

can be used to define a local variable named interestRate with initial value 0.05. The variable
is of type double, since 0.05 is a value of type double. And a local variable named nameList
of type String[] can be declared as

var namelList = new String[100];
In particular, var can be used to declare the loop control variable in a for loop. For example,

for (war i = 0; i < 10; i++) {
System.out.println(i);
}

All this might not seem particularly useful, but it becomes more useful for the more com-
plicated “parameterized types” that will be covered in Section 7.3 and Chapter 10.

4.8.3 Named Constants

Sometimes, the value of a variable is not supposed to change after it is initialized. For example,
in the above example where interestRate is initialized to the value 0.05, it’s quite possible
that 0.05 is meant to be the value throughout the entire program. In that case, the programmer
is probably defining the variable, interestRate, to give a meaningful name to the otherwise
meaningless number, 0.05. It’s easier to understand what’s going on when a program says
“principal += principal*interestRate;” rather than “principal += principal=*0.05;”.

In Java, the modifier “final” can be applied to a variable declaration to ensure that the
value stored in the variable cannot be changed after the variable has been initialized. For
example, if the member variable interestRate is declared with

public final static double interestRate = 0.05;

then it would be impossible for the value of interestRate to change anywhere else in the
program. Any assignment statement that tries to assign a value to interestRate will be
rejected by the computer as a syntax error when the program is compiled. (A “final” modifier
on a public interest rate makes a lot of sense—a bank might want to publish its interest rate,
but it certainly wouldn’t want to let random people make changes to it!)

It is legal to apply the final modifier to local variables and even to formal parameters,
but it is most useful for member variables. I will often refer to a static member variable that
is declared to be final as a named constant, since its value remains constant for the whole
time that the program is running. The readability of a program can be greatly enhanced by
using named constants to give meaningful names to important quantities in the program. A
recommended style rule for named constants is to give them names that consist entirely of
upper case letters, with underscore characters to separate words if necessary. For example, the
preferred style for the interest rate constant would be

public final static double INTEREST RATE = 0.05;

This is the style that is generally used in Java’s standard classes, which define many named
constants. For example, we have already seen that the Math class contains a variable Math.PI.
This variable is declared in the Math class as a “public final static” variable of type double.
Similarly, the Color class contains named constants such as Color.RED and Color.YELLOW
which are public final static variables of type Color.

Enumerated type constants (see Subsection 2.3.3) are also examples of named constants.
The enumerated type definition

CHAPTER 4. SUBROUTINES 193

enum Alignment { LEFT, RIGHT, CENTER }

defines the constants Alignment .LEFT, Alignment .RIGHT, and Alignment .CENTER. Technically,
Alignment is a class, and the three constants are public final static members of that class.
Defining the enumerated type is similar to defining three constants of type, say, int:

public static final int ALIGNMENT_LEFT = O;
public static final int ALIGNMENT_RIGHT = 1;
public static final int ALIGNMENT_CENTER = 2;

In fact, this is how things had to be done before the introduction of enumerated types, and it
is what is still done in many cases. Using the integer constants, you could define a variable of
type int and assign it the values ALIGNMENT _LEFT, ALIGNMENT RIGHT, or ALIGNMENT_CENTER to
represent different types of alignment. The only problem with this is that the computer has no
way of knowing that you intend the value of the variable to represent an alignment, and it will
not raise any objection if the value that is assigned to the variable is not one of the three valid
alignment values. With the enumerated type, on the other hand, the only values that can be
assigned to a variable of type Alignment are the constant values that are listed in the definition
of the enumerated type. Any attempt to assign an invalid value to the variable is a syntax error
which the computer will detect when the program is compiled. This extra safety is one of the
major advantages of enumerated types.

X ok X

Curiously enough, one of the main reasons to use named constants is that it’s easy to
change the value of a named constant. Of course, the value can’t change while the program
is running. But between runs of the program, it’s easy to change the value in the source code
and recompile the program. Consider the interest rate example. It’s quite possible that the
value of the interest rate is used many times throughout the program. Suppose that the bank
changes the interest rate and the program has to be modified. If the literal number 0.05 were
used throughout the program, the programmer would have to track down each place where
the interest rate is used in the program and change the rate to the new value. (This is made
even harder by the fact that the number 0.05 might occur in the program with other meanings
besides the interest rate, as well as by the fact that someone might have, say, used 0.025 to
represent half the interest rate.) On the other hand, if the named constant INTEREST_RATE is
declared and used consistently throughout the program, then only the single line where the
constant is initialized needs to be changed.

As an extended example, I will give a new version of the RandomMosaicWalk program from
the previous section. This version uses named constants to represent the number of rows in
the mosaic, the number of columns, and the size of each little square. The three constants are
declared as final static member variables with the lines:

final static int ROWS = 20; // Number of rows in mosaic.
final static int COLUMNS = 30; // Number of columns in mosaic.
final static int SQUARE_SIZE = 15; // Size of each square in mosaic.

The rest of the program is carefully modified to use the named constants. For example, in
the new version of the program, the Mosaic window is opened with the statement

Mosaic.open(ROWS, COLUMNS, SQUARE SIZE, SQUARE_SIZE);

Sometimes, it’s not easy to find all the places where a named constant needs to be used. If
you don’t use the named constant consistently, you’ve more or less defeated the purpose. It’s

CHAPTER 4. SUBROUTINES 194

always a good idea to run a program using several different values for any named constant, to
test that it works properly in all cases.

Here is the complete new program, RandomMosaicWalk2, with all modifications from the
previous version shown in italic. Note in particular how the constants ROWS and COLUMNS are
used in randomMove() when moving the disturbance from one edge of the mosaic to the opposite
edge. I've left out most of the comments to save space.

public class RandomMosaicWalk2 {

final static int ROWS = 20; // Number of rows in mosaic.
final static int COLUMNS = 30; // Number of columns in mosaic.
final static int SQUARE SIZE = 15; // Stize of each square in mosaic.

static int currentRow; // Row currently containing the disturbance.
static int currentColumn; // Column currently containing the disturbance.

public static void main(String[] args) {
Mosatc.open(ROWS, COLUMNS, SQUARE_SIZE, SQUARE_SIZE);
fillWithRandomColors();
currentRow = ROWS / 2; // start at center of window
currentColumn = COLUMNS / 2;
while (true) {
changeToRandomColor (currentRow, currentColumn) ;
randomMove () ;
Mosaic.delay(5);
}

} // end main

static void fillWithRandomColors() {
for (4nt row=0; row < ROWS; row++) {
for (int column=0; column < COLUMNS; column++) {
changeToRandomColor (row, column);

}
}
} // end fillWithRandomColors

static void changeToRandomColor (int rowNum, int colNum) {

int red = (int) (256*Math.random()) ; // Choose random levels in range
int green = (int) (256*Math.random()); // 0 to 255 for red, green,
int blue = (int) (256*Math.random()); // and blue color components.

Mosaic.setColor (rowNum,colNum,red,green,blue);
} // end changeToRandomColor

static void randomMove() {
int directionNum; // Randomly set to O, 1, 2, or 3 to choose direction.
directionNum = (int) (4*Math.random());
switch (directionNum) {
case 0: // move up
currentRow—-;
if (currentRow < 0)
currentRow = ROWS - 1;
break;
case 1: // move right
currentColumn++;
if (currentColumn >= COLUMNS)
currentColumn = 0;

CHAPTER 4. SUBROUTINES 195

break;
case 2: // move down
currentRow++;
if (currentRow >= ROWS)
currentRow = O;
break;
case 3: // move left
currentColumn--;
if (currentColumn < 0)
currentColumn = COLUMNS - 1;
break;
}

} // end randomMove

} // end class RandomMosaicWalk?2

4.8.4 Naming and Scope Rules

When a variable declaration is executed, memory is allocated for that variable. The variable
name can be used in at least some part of the program source code to refer to that memory
or to the data that is stored in the memory. The portion of the program source code where
the variable is valid is called the scope of the variable. Similarly, we can refer to the scope of
subroutine names and formal parameter names.

For static member subroutines, scope is straightforward. The scope of a static subroutine
is the entire source code of the class in which it is defined. That is, it is possible to call the
subroutine from any point in the class, including at a point in the source code before the point
where the definition of the subroutine appears. It is even possible to call a subroutine from
within itself. This is an example of something called “recursion,” a fairly advanced topic that
we will return to in Section 9.1. If the subroutine is not private, it can also be accessed from
outside the class where it is defined, using its full name.

For a variable that is declared as a static member variable in a class, the situation is similar,
but with one complication. It is legal to have a local variable or a formal parameter that has
the same name as a member variable. In that case, within the scope of the local variable or
parameter, the member variable is hidden. Consider, for example, a class named Game that
has the form:

public class Game {
static int count; // member variable

static void playGame() {
int count; // local variable

// Some statements to define playGame()

// More variables and subroutines.

} // end Game

CHAPTER 4. SUBROUTINES 196

In the statements that make up the body of the playGame () subroutine, the name “count”
refers to the local variable. In the rest of the Game class, “count” refers to the member variable
(unless hidden by other local variables or parameters named count). However, the member vari-
able named count can also be referred to by the full name Game.count. Usually, the full name
is only used outside the class where count is defined. However, there is no rule against using
it inside the class. The full name, Game.count, can be used inside the playGame () subroutine
to refer to the member variable instead of the local variable. So, the full scope rule is that the
scope of a static member variable includes the entire class in which it is defined, but where the
simple name of the member variable is hidden by a local variable or formal parameter name, the
member variable must be referred to by its full name of the form (className).(variableName).
(Scope rules for non-static members are similar to those for static members, except that, as we
shall see, non-static members cannot be used in static subroutines.)

The scope of a formal parameter of a subroutine is the block that makes up the body of the
subroutine. The scope of a local variable extends from the declaration statement that defines
the variable to the end of the block in which the declaration occurs. As noted above, it is
possible to declare a loop control variable of a for loop in the for statement, as in “for (int
i=0; i < 10; i++)”. The scope of such a declaration is considered as a special case: It is
valid only within the for statement and does not extend to the remainder of the block that
contains the for statement.

It is not legal to redefine the name of a formal parameter or local variable within its scope,
even in a nested block. For example, this is not allowed:

void badSub(int y) {
int x;
while (y > 0) {
int x; // ERROR: = is already defined.

}

In many languages, this would be legal; the declaration of x in the while loop would hide
the original declaration. It is not legal in Java; however, once the block in which a variable is
declared ends, its name does become available for reuse in Java. For example:

void goodSub(int y) {
while (y > 10) {
int x;

// The scope of x ends here.

b
while (y > 0) {
int x; // OK: Previous declaration of x has expired.

CHAPTER 4. SUBROUTINES 197

You might wonder whether local variable names can hide subroutine names. This can’t
happen, for a reason that might be surprising. There is no rule that variables and subroutines
have to have different names. The computer can always tell whether a name refers to a variable
or to a subroutine, because a subroutine name is always followed by a left parenthesis. It’s
perfectly legal to have a variable called count and a subroutine called count in the same class.
(This is one reason why I often write subroutine names with parentheses, as when I talk about
the main() routine. It’s a good idea to think of the parentheses as part of the name.) Even
more is true: It’s legal to reuse class names to name variables and subroutines. The syntax
rules of Java guarantee that the computer can always tell when a name is being used as a class
name. A class name is a type, and so it can be used to declare variables and formal parameters
and to specify the return type of a function. This means that you could legally have a class
called Insanity in which you declare a function

static Insanity Insanity(Insanity Insanity) { ...

The first Insanity is the return type of the function. The second is the function name, the
third is the type of the formal parameter, and the fourth is the name of the formal parameter.
However, please remember that not everything that is possible is a good idea!

EXERCISES 198

Exercises for Chapter 4

1. To “capitalize” a string means to change the first letter of each word in the string to upper (solution)
case (if it is not already upper case). For example, a capitalized version of “Now is the time
to act!” is “Now Is The Time To Act!”. Write a subroutine named printCapitalized
that will print a capitalized version of a string to standard output. The string to be printed
should be a parameter to the subroutine. Test your subroutine with a main() routine that
gets a line of input from the user and applies the subroutine to it.

Note that a letter is the first letter of a word if it is not immediately preceded in the
string by another letter. Recall from Exercise 3.4 that there is a standard boolean-valued
function Character.isLetter(char) that can be used to test whether its parameter is a
letter. There is another standard char-valued function, Character. toUpperCase (char),
that returns a capitalized version of the single character passed to it as a parameter. That
is, if the parameter is a letter, it returns the upper-case version. If the parameter is not a
letter, it just returns a copy of the parameter.

2. The hexadecimal digits are the ordinary, base-10 digits ’0’ through ’9’ plus the letters 'A’ (solution)
through ’F’. In the hexadecimal system, these digits represent the values 0 through 15,
respectively. Write a function named hexValue that uses a switch statement to find the
hexadecimal value of a given character. The character is a parameter to the function, and
its hexadecimal value is the return value of the function. You should count lower case
letters ’a’ through ’f’ as having the same value as the corresponding upper case letters.
If the parameter is not one of the legal hexadecimal digits, return -1 as the value of the
function.

A hexadecimal integer is a sequence of hexadecimal digits, such as 34A7, {8, 174204, or
FADE. If str is a string containing a hexadecimal integer, then the corresponding base-10
integer can be computed as follows:

value = 0;
for (i =0; i < str.length(); i++)
value = valuex16 + hexValue(str.charAt(i));

Of course, this is not valid if str contains any characters that are not hexadecimal digits.
Write a program that reads a string from the user. If all the characters in the string are
hexadecimal digits, print out the corresponding base-10 value. If not, print out an error
message.

3. Write a function that simulates rolling a pair of dice until the total on the dice comes up (solution)
to be a given number. The number that you are rolling for is a parameter to the function.
The number of times you have to roll the dice is the return value of the function. The
parameter should be one of the possible totals: 2, 3, ..., 12. The function should throw
an lllegalArgumentException if this is not the case. Use your function in a program that
computes and prints the number of rolls it takes to get snake eyes. (Snake eyes means
that the total showing on the dice is 2.)

4. This exercise builds on Exercise 4.3. Every time you roll the dice repeatedly, trying to (solution)
get a given total, the number of rolls it takes can be different. The question naturally
arises, what’s the average number of rolls to get a given total? Write a function that
performs the experiment of rolling to get a given total 10000 times. The desired total is

http://math.hws.edu/eck/cs124/javanotes8/c4/ex1-ans.html
http://math.hws.edu/eck/cs124/javanotes8/c4/ex2-ans.html
http://math.hws.edu/eck/cs124/javanotes8/c4/ex3-ans.html
http://math.hws.edu/eck/cs124/javanotes8/c4/ex4-ans.html

EXERCISES 199

a parameter to the subroutine. The average number of rolls is the return value. Each
individual experiment should be done by calling the function you wrote for Exercise 4.3.
Now, write a main program that will call your function once for each of the possible totals
(2, 3, ..., 12). It should make a table of the results, something like:

Total On Dice Average Number of Rolls
2 35.8382
3 18.0607

5. This exercise asks you to write a few lambda expressions and a function that returns a (solution)
lambda expression as its value. Suppose that a function interface ArrayProcessor is defined
as

public interface ArrayProcessor {
double apply(double[] array);
}

Write a class that defines four public static final variables of type ArrayProcessor
that process an array in the following ways: find the maximum value in the array, find the
minimum value in an array, find the sum of the values in the array, and find the average
of the values in the array. In each case, the value of the variable should be given by a
lambda expression. The class should also define a function

public static ArrayProcessor counter(double value) { ...

This function should return an ArrayProcessor that counts the number of times that value
occurs in an array. The return value should be given as a lambda expression.

The class should have a main() routine that tests your work. The program that you
write for this exercise will need access to the file ArrayProcessor.java, which defines the
functional interface.

6. The sample program RandomMosaicWalk.java from Section 4.7 shows a “disturbance” (solution)
that wanders around a grid of colored squares. When the disturbance visits a square,
the color of that square is changed. Here’s an idea for a variation on that program. In
the new version, all the squares start out with the default color, black. Every time the
disturbance visits a square, a small amount is added to the green component of the color
of that square. The result will be a visually interesting effect, as the path followed by the
disturbance gradually turns a brighter and brighter green.

Write a subroutine that will add 25 to the green component of one of the squares in the
mosaic. (But don’t let the green component go over 255, since that’s the largest legal value
for a color component.) The row and column numbers of the square should be given as
parameters to the subroutine. Recall that you can discover the current green component
of the square in row r and column c¢ with the function call Mosaic.getGreen(r,c). Use
your subroutine as a substitute for the changeToRandomColor () subroutine in the program
RandomMosaicWalk2.java. (This is the improved version of the program from Section 4.8
that uses named constants for the number of rows, number of columns, and square size.)
Set the number of rows and the number of columns to 80. Set the square size to 5.

By default, the rectangles in the mosaic have a “3D” appearance and a gray border
that makes them look nicer in the random walk program. But for this program, you

http://math.hws.edu/eck/cs124/javanotes8/c4/ex5-ans.html
http://math.hws.edu/eck/cs124/javanotes8/source/chapter4/ArrayProcessor.java
http://math.hws.edu/eck/cs124/javanotes8/source/chapter4/RandomMosaicWalk.java
http://math.hws.edu/eck/cs124/javanotes8/c4/ex6-ans.html
http://math.hws.edu/eck/cs124/javanotes8/source/chapter4/RandomMosaicWalk2.java

EXERCISES 200

want to turn off that effect. To do so, call Mosaic.setUse3DEffect (false) in the main
program.

Don’t forget that you will need Mosaic.java and MosaicCanvas.java to compile and run
your program, since they define non-standard classes that are required by the program.

7. For this exercise, you will do something even more interesting with the Mosaic class that (solution)
was discussed in Section 4.7. (Again, don’t forget that you will need Mosaic.java and
MosaicCanvas.java to compile and run your program.)

The program that you write for this exercise should start by filling a mosaic with
random colors. Then repeat the following until the user closes the mosaic window: Se-
lect one of the rectangles in the mosaic at random. Then select one of the neighboring
rectangles—above it, below it, to the left of it, or to the right of it. Copy the color of the
originally selected rectangle to the selected neighbor, so that the two rectangles now have
the same color.

As this process is repeated over and over, it becomes more and more likely that neigh-
boring squares will have the same color. The result is to build up larger color patches. On
the other hand, once the last square of a given color disappears, there is no way for that
color to ever reappear. (Extinction is forever!) If you let the program run long enough,
eventually the entire mosaic will be one uniform color.

8. Write a program that administers a basic addition quiz to the user. There should be (solution)
ten questions. Each question is a simple addition problem such as 17 + 42, where the
numbers in the problem are chosen at random (and are not too big). The program should
ask the user all ten questions and get the user’s answers. After asking all the questions, the
user should print each question again, with the user’s answer. If the user got the answer
right, the program should say so; if not, the program should give the correct answer. At
the end, tell the user their score on the quiz, where each correct answer counts for ten
points.

The program should use three subroutines, one to create the quiz, one to administer
the quiz, and one to grade the quiz. It can use three arrays, with three global variables
of type int[], to refer to the arrays. The first array holds the first number from every
question, the second holds the second number from every questions, and the third holds
the user’s answers.

http://math.hws.edu/eck/cs124/javanotes8/source/chapter4/Mosaic.java
http://math.hws.edu/eck/cs124/javanotes8/source/chapter4/MosaicCanvas.java
http://math.hws.edu/eck/cs124/javanotes8/c4/ex7-ans.html
http://math.hws.edu/eck/cs124/javanotes8/source/chapter4/Mosaic.java
http://math.hws.edu/eck/cs124/javanotes8/source/chapter4/MosaicCanvas.java
http://math.hws.edu/eck/cs124/javanotes8/c4/ex8-ans.html

Quiz

201

Quiz on Chapter 4

1.

10.

A “black box” has an interface and an implementation. Explain what is meant by the
terms interface and implementation.

. A subroutine is said to have a contract. What is meant by the contract of a subroutine?

When you want to use a subroutine, why is it important to understand its contract? The
contract has both “syntactic” and “semantic” aspects. What is the syntactic aspect?
What is the semantic aspect?

. Briefly explain how subroutines can be useful in the top-down design of programs.

. Discuss the concept of parameters. What are parameters for? What is the difference

between formal parameters and actual parameters?

. Give two different reasons for using named constants (declared with the final modifier).
. What is an API? Give an example.

. What might the following expression mean in a program?

(a,b) -> axa + b*b + 1

. Suppose that SupplyInt is a functional interface that defines the method public int get().

Write a lambda expression of type Supplylnt that gets a random integer in the range 1 to
6 inclusive. Write another lambda expression of type Supplyint that gets an int by asking
the user to enter an integer and then returning the user’s response.

. Write a subroutine named “stars” that will output a line of stars to standard output. (A

star is the character “*”.) The number of stars should be given as a parameter to the
subroutine. Use a for loop. For example, the command “stars(20)” would output

>k >k >k 3K 3K ok 5k 5k 5k %k %k %k %k >k %k >k Xk >k >k >k

Write a main() routine that uses the subroutine that you wrote for Question 7 to output
10 lines of stars with 1 star in the first line, 2 stars in the second line, and so on, as shown
below.

*
ko

koK k

ok okok

ok kok >k

ok kok ok k

k5 kok >k k ok

3k kK ok kK k >k

3k ok 3k ok >k ok ok ko
3k 5k >k ok >k ko kok >k

(answers)

http://math.hws.edu/eck/cs124/javanotes8/c4/quiz_answers.html

Quiz 202

11. Write a function named countChars that has a String and a char as parameters. The
function should count the number of times the character occurs in the string, and it should
return the result as the value of the function.

12. Write a subroutine with three parameters of type int. The subroutine should determine
which of its parameters is smallest. The value of the smallest parameter should be returned
as the value of the subroutine.

13. Write a function that finds the average of the first N elements of an array of type double.
The array and N are parameters to the subroutine.

14. Explain the purpose of the following function, and explain how it works:

static int[] stripZeros(int[] list) {
int count = 0;
for (int i = 0; i < list.length; i++) {
if (list[i] !'= 0)
count++;
+
int[] newlList;
newlList = new int[count];
int j = 0;
for (int i = 0; i < list.length; i++) {
if (list[i] !'=0) {
newList[j] = 1list[i];
jt+s
}
}

return newList;

Chapter 5

Programming in the Large II:
Objects and Classes

WHEREAS A SUBROUTINE represents a single task, an object can encapsulate both data (in
the form of instance variables) and a number of different tasks or “behaviors” related to that
data (in the form of instance methods). Therefore objects provide another, more sophisticated
type of structure that can be used to help manage the complexity of large programs.

The first four sections of this chapter introduce the basic things you need to know to work
with objects and to define simple classes. The remaining sections cover more advanced topics;
you might not understand them fully the first time through. In particular, Section 5.5 covers the
most central ideas of object-oriented programming: inheritance and polymorphism. However,
in this textbook, we will generally use these ideas in a limited form, by creating independent
classes and building on existing classes rather than by designing entire hierarchies of classes
from scratch.

5.1 Objects, Instance Methods, and Instance Variables

OBJECT-ORIENTED PROGRAMMING (OOP) represents an attempt to make programs more
closely model the way people think about and deal with the world. In the older styles of
programming, a programmer who is faced with some problem must identify a computing task
that needs to be performed in order to solve the problem. Programming then consists of
finding a sequence of instructions that will accomplish that task. But at the heart of object-
oriented programming, instead of tasks we find objects—entities that have behaviors, that hold
information, and that can interact with one another. Programming consists of designing a set
of objects that somehow model the problem at hand. Software objects in the program can
represent real or abstract entities in the problem domain. This is supposed to make the design
of the program more natural and hence easier to get right and easier to understand.

To some extent, OOP is just a change in point of view. We can think of an object in standard
programming terms as nothing more than a set of variables together with some subroutines for
manipulating those variables. In fact, it is possible to use object-oriented techniques in any
programming language. However, there is a big difference between a language that makes OOP
possible and one that actively supports it. An object-oriented programming language such as
Java includes a number of features that make it very different from a standard language. In
order to make effective use of those features, you have to “orient” your thinking correctly.

As I have mentioned before, in the context of object-oriented programming, subroutines are

203

CHAPTER 5. OBJECTS AND CLASSES 204

often referred to as methods. Now that we are starting to use objects, I will be using the term
“method” more often than “subroutine.”

5.1.1 Objects, Classes, and Instances

Objects are closely related to classes. We have already been working with classes for several
chapters, and we have seen that a class can contain variables and methods (that is, subroutines).
If an object is also a collection of variables and methods, how do they differ from classes? And
why does it require a different type of thinking to understand and use them effectively? In the
one section where we worked with objects rather than classes, Section 3.9, it didn’t seem to
make much difference: We just left the word “static” out of the subroutine definitions!

I have said that classes “describe” objects, or more exactly that the non-static portions of
classes describe objects. But it’s probably not very clear what this means. The more usual
terminology is to say that objects belong to classes, but this might not be much clearer. (There
is a real shortage of English words to properly distinguish all the concepts involved. An object
certainly doesn’t “belong” to a class in the same way that a member variable “belongs” to a
class.) From the point of view of programming, it is more exact to say that classes are used
to create objects. A class is a kind of factory—or blueprint—for constructing objects. The
non-static parts of the class specify, or describe, what variables and methods the objects will
contain. This is part of the explanation of how objects differ from classes: Objects are created
and destroyed as the program runs, and there can be many objects with the same structure, if
they are created using the same class.

Consider a simple class whose job is to group together a few static member variables. For
example, the following class could be used to store information about the person who is using
the program:

class UserData {
static String name;
static int age;

}

In a program that uses this class, there is only one copy of each of the variables UserData.name
and UserData.age. When the class is loaded into the computer, there is a section of memory
devoted to the class, and that section of memory includes space for the values of the variables
name and age. We can picture the class in memory as looking like this:

class UserData

name: [|
age: [

An important point is that the static member variables are part of the representation of
the class in memory. Their full names, UserData.name and UserData.age, use the name of
the class, since they are part of the class. When we use class UserData to represent the user
of the program, there can only be one user, since we only have memory space to store data
about one user. Note that the class, UserData, and the variables it contains exist as long as
the program runs. (That is essentially what it means to be “static.”) Now, consider a similar
class that includes some non-static variables:

CHAPTER 5. OBJECTS AND CLASSES 205

class PlayerData {
static int playerCount;
String name;
int age;
}
I've also included a static variable in the PlayerData class. Here, the static variable
playerCount is stored as part of the representation of the class in memory. Its full name
is PlayerData.playerCount, and there is only one of it, which exists as long as the program
runs. However, the other two variables in the class definition are non-static. There is no such
variable as PlayerData.name or PlayerData.age, since non-static variables do not become
part of the class itself. But the PlayerData class can be used to create objects. There can be
many objects created using the class, and each one will have its own variables called name and
age. This is what it means for the non-static parts of the class to be a template for objects:
Every object gets its own copy of the non-static part of the class. We can visualize the situation
in the computer’s memory after several objects have been created like this:

class PlayerData

playerCount:

(constructor)

instanceof PlayerData

instanceof PlayerData name: |:|
name: |:| age: I:I
age: [

instanceof PlayerData

name: I:I

Note that the static variable playerCount is part of the class, and there is only one copy.
On the other hand, every object contains a name and an age. An object that is created from
a class is called an instance of that class, and as the picture shows, every object “knows”
which class was used to create it. I’ve shown class PlayerData as containing something called a
“constructor;” the constructor is a subroutine that creates objects.

Now there can be many “players,” because we can make new objects to represent new
players on demand. A program might use the PlayerData class to store information about
multiple players in a game. Each player has a name and an age. When a player joins the game,
a new PlayerData object can be created to represent that player. If a player leaves the game,
the PlayerData object that represents that player can be destroyed. A system of objects in
the program is being used to dynamsically model what is happening in the game. You can’t
do this with static variables! “Dynamic” is the opposite of “static.”

x kX

An object that is created using a class is said to be an instance of that class. We will
sometimes say that the object belongs to the class. The variables that the object contains are

CHAPTER 5. OBJECTS AND CLASSES 206

called instance variables. The methods (that is, subroutines) that the object contains are
called instance methods. For example, if the PlayerData class, as defined above, is used to
create an object, then that object is an instance of the PlayerData class, and name and age
are instance variables in the object.

My examples here don’t include any methods, but methods work similarly to variables.
Static methods are part of the class; non-static, or instance, methods become part of objects
created from the class. It’s not literally true that each object contains its own copy of the actual
compiled code for an instance method. But logically an instance method is part of the object,
and I will continue to say that the object “contains” the instance method.

Note that you should distinguish between the source code for the class, and the class itself
(in memory). The source code determines both the class and the objects that are created from
that class. The “static” definitions in the source code specify the things that are part of the
class itself (in the computer’s memory), whereas the non-static definitions in the source code
specify things that will become part of every instance object that is created from the class.
By the way, static member variables and static member subroutines in a class are sometimes
called class variables and class methods, since they belong to the class itself, rather than
to instances of that class.

As you can see, the static and the non-static portions of a class are very different things and
serve very different purposes. Many classes contain only static members, or only non-static,
and we will see only a few examples of classes that contain a mixture of the two.

5.1.2 Fundamentals of Objects

So far, I've been talking mostly in generalities, and I haven’t given you much of an idea about
what you have to put in a program if you want to work with objects. Let’s look at a specific
example to see how it works. Consider this extremely simplified version of a Student class,
which could be used to store information about students taking a course:

public class Student {

public String name; // Student’s name.
public double testl, test2, test3; // Grades on three tests.

public double getAverage() { // compute average test grade
return (testl + test2 + test3) / 3;
}

} // end of class Student

None of the members of this class are declared to be static, so the class exists only for
creating objects. This class definition says that any object that is an instance of the Student
class will include instance variables named name, test1, test2, and test3, and it will include
an instance method named getAverage (). The names and test grades in different objects will
generally have different values. When called for a particular student, the method getAverage ()
will compute an average using that student’s test grades. Different students can have different
averages. (Again, this is what it means to say that an instance method belongs to an individual
object, not to the class.)

In Java, a class is a type, similar to the built-in types such as int and boolean. So, a class
name can be used to specify the type of a variable in a declaration statement, or the type of
a formal parameter, or the return type of a function. For example, a program could define a
variable named std of type Student with the statement

CHAPTER 5. OBJECTS AND CLASSES 207

Student std;

However, declaring a variable does not create an object! This is an important point, which is
related to this Very Important Fact:

In Java, no variable can ever hold an object.
A variable can only hold a reference to an object.

You should think of objects as floating around independently in the computer’s memory. In
fact, there is a special portion of memory called the heap where objects live. Instead of holding
an object itself, a variable holds the information necessary to find the object in memory. This
information is called a reference or pointer to the object. In effect, a reference to an object
is the address of the memory location where the object is stored. When you use a variable of
object type, the computer uses the reference in the variable to find the actual object.

In a program, objects are created using an operator called new, which creates an object and
returns a reference to that object. (In fact, the new operator calls a special subroutine called
a “constructor” in the class.) For example, assuming that std is a variable of type Student,
declared as above, the assignment statement

std = new Student();

would create a new object which is an instance of the class Student, and it would store a
reference to that object in the variable std. The value of the variable is a reference, or pointer,
to the object. The object itself is somewhere in the heap. It is not quite true, then, to say that
the object is the “value of the variable std” (though sometimes it is hard to avoid using this
terminology). It is certainly not at all true to say that the object is “stored in the variable
std.” The proper terminology is that “the variable std refers to or points to the object,”
and I will try to stick to that terminology as much as possible. If I ever say something like “std
is an object,” you should read it as meaning “std is a variable that refers to an object.”

So, suppose that the variable std refers to an object that is an instance of class Student.
That object contains instance variables name, testl, test2, and test3. These instance vari-
ables can be referred to as std.name, std.testl, std.test2, and std.test3. This follows the
usual naming convention that when B is part of A, then the full name of B is A.B. For example,
a program might include the lines

System.out.println("Hello, " + std.name + ". Your test grades are:");
System.out.println(std.testl);
System.out.println(std.test2);
System.out.println(std.test3);

This would output the name and test grades from the object to which std refers. Simi-
larly, std can be used to call the getAverage() instance method in the object by saying
std.getAverage (). To print out the student’s average, you could say:

System.out.println("Your average is " + std.getAverage());

More generally, you could use std.name any place where a variable of type String is legal.
You can use it in expressions. You can assign a value to it. You can even use it to call subroutines
from the String class. For example, std.name.length() is the number of characters in the
student’s name.

It is possible for a variable like std, whose type is given by a class, to refer to no object at
all. We say in this case that std holds a null pointer or null reference. The null pointer is
written in Java as “null”. You can store a null reference in the variable std by saying

CHAPTER 5. OBJECTS AND CLASSES 208

std = null;

null is an actual value that is stored in the variable, not a pointer to something else. It is not
correct to say that the variable “points to null”; in fact, the variable is null. For example, you
can test whether the value of std is null by testing

if (std == null)

If the value of a variable is null, then it is, of course, illegal to refer to instance variables
or instance methods through that variable—since there is no object, and hence no instance
variables to refer to! For example, if the value of the variable std is null, then it would be
illegal to refer to std.testl. If your program attempts to use a null pointer illegally in this
way, the result is an error called a null pointer exception. When this happens while the
program is running, an exception of type NullPointerException is thrown.

Let’s look at a sequence of statements that work with objects:

Student std, stdl, // Declare four variables of
std2, std3; // type Student.
std = new Student(); // Create a new object belonging

// to the class Student, and
// store a reference to that
// object in the variable std.

stdl = new Student(); // Create a second Student object
// and store a reference to
// it in the variable stdl.

std2 = stdi; // Copy the reference value in stdl
// into the variable std2.
std3 = null; // Store a null reference in the
// variable std3.
std.name = "John Smith"; // Set values of some instance variables.
stdl.name = "Mary Jones";

// (Other instance variables have default
// initial values of zero.)

After the computer executes these statements, the situation in the computer’s memory looks
like this:

CHAPTER 5. OBJECTS AND CLASSES 209

std:
std1:
std2:

std3:

Astanceof Studem Astanceof Studem

name: [o pame: [o3—|
testl: El testl: El
test2: El test2: El
test3: |j| test3: E

k getAverage() j k getAverage() j

instanceof String instanceof String

"Mary Jones" "Tohn Smith"

In this picture, when a variable contains a reference to an object, the value of that variable is
shown as an arrow pointing to the object. Note, by the way, that the Strings are objects! The
variable std3, with a value of null, doesn’t point anywhere. The arrows from stdl and std2
both point to the same object. This illustrates a Very Important Point:

When one object variable is assigned
to another, only a reference is copied.
The object referred to is not copied.

When the assignment “std2 = stdl;” was executed, no new object was created. Instead, std2
was set to refer to the very same object that std1l refers to. This is to be expected, since the
assignment statement just copies the value that is stored in stdl into std2, and that value
is a pointer, not an object. But this has some consequences that might be surprising. For
example, stdl.name and std2.name are two different names for the same variable, namely
the instance variable in the object that both stdl and std2 refer to. After the string "Mary
Jones" is assigned to the variable stdl.name, it is also true that the value of std2.name is
"Mary Jones". There is a potential for a lot of confusion here, but you can help protect yourself
from it if you keep telling yourself, “The object is not in the variable. The variable just holds
a pointer to the object.”

You can test objects for equality and inequality using the operators == and !'=, but
here again, the semantics are different from what you are used to. When you make a test
“if (stdl == std2)”, you are testing whether the values stored in stdl and std2 are the
same. But the values that you are comparing are references to objects; they are not objects.
So, you are testing whether std1 and std2 refer to the same object, that is, whether they point
to the same location in memory. This is fine, if it’s what you want to do. But sometimes,
what you want to check is whether the instance variables in the objects have the same values.
To do that, you would need to ask whether “stdl.testl == std2.testl && stdl.test2 ==
std2.test2 && stdl.test3 == std2.test3 && stdl.name.equals(std2.name)”.

CHAPTER 5. OBJECTS AND CLASSES 210

I've remarked previously that Strings are objects, and I've shown the strings "Mary Jones"
and "John Smith" as objects in the above illustration. (Strings are special objects, treated
by Java in a special way, and I haven’t attempted to show the actual internal structure of the
String objects.) Since strings are objects, a variable of type String can only hold a reference to a
string, not the string itself. This explains why using the == operator to test strings for equality
is not a good idea. Suppose that greeting is a variable of type String, and that it refers to
the string "Hello". Then would the test greeting == "Hello" be true? Well, maybe, maybe
not. The variable greeting and the String literal "Hello" each refer to a string that contains
the characters H-e-l-1-o. But the strings could still be different objects, that just happen to
contain the same characters; in that case, greeting == "Hello" would be false. The function
greeting.equals("Hello") tests whether greeting and "Hello" contain the same characters,
which is almost certainly the question you want to ask. The expression greeting == "Hello"
tests whether greeting and "Hello" contain the same characters stored in the same mem-
ory location. (Of course, a String variable such as greeting can also contain the special value
null, and it would make sense to use the == operator to test whether “greeting == null”.)

X kX

The fact that variables hold references to objects, not objects themselves, has a couple of
other consequences that you should be aware of. They follow logically, if you just keep in mind
the basic fact that the object is not stored in the variable. The object is somewhere else; the
variable points to it.

Suppose that a variable that refers to an object is declared to be final. This means that
the value stored in the variable can never be changed, once the variable has been initialized.
The value stored in the variable is a reference to the object. So the variable will continue to
refer to the same object as long as the variable exists. However, this does not prevent the data
in the object from changing. The variable is final, not the object. It’s perfectly legal to say

final Student stu = new Student();

stu.name = "John Doe"; // Change data in the object;
// The value stored in stu is not changed!
// It still refers to the same object.

Next, suppose that obj is a variable that refers to an object. Let’s consider what happens
when obj is passed as an actual parameter to a subroutine. The value of obj is assigned to
a formal parameter in the subroutine, and the subroutine is executed. The subroutine has no
power to change the value stored in the variable, obj. It only has a copy of that value. However,
the value is a reference to an object. Since the subroutine has a reference to the object, it can
change the data stored in the object. After the subroutine ends, obj still points to the same
object, but the data stored in the object might have changed. Suppose x is a variable of type
int and stu is a variable of type Student. Compare:

void dontChange(int z) { void change(Student s) {
z = 42; s.name = "Fred";
¥ }
The lines: The lines:
x = 17; stu.name = "Jane";
dontChange (x) ; change (stu) ;
System.out.println(x); System.out.println(stu.name);

output the wvalue 17. output the wvalue "Fred".

CHAPTER 5. OBJECTS AND CLASSES 211

The wvalue of = s not The wvalue of stu is mnot
changed by the subroutine, changed, but stu.mame 1s changed.
which ts equivalent to Thts is equivalent to

Z = X; s = stu;

z = 42; s.name = "Fred";

5.1.3 Getters and Setters

When writing new classes, it’s a good idea to pay attention to the issue of access control. Recall
that making a member of a class public makes it accessible from anywhere, including from
other classes. On the other hand, a private member can only be used in the class where it is
defined.

In the opinion of many programmers, almost all member variables should be declared
private. This gives you complete control over what can be done with the variable. Even
if the variable itself is private, you can allow other classes to find out what its value is by pro-
viding a public accessor method that returns the value of the variable. For example, if your
class contains a private member variable, title, of type String, you can provide a method

public String getTitle() {
return title;

3

that returns the value of title. By convention, the name of an accessor method for a variable
is obtained by capitalizing the name of variable and adding “get” in front of the name. So, for
the variable title, we get an accessor method named “get” + “Title”, or getTitle (). Because
of this naming convention, accessor methods are more often referred to as getter methods. A
getter method provides “read access” to a variable. (Sometimes for boolean variables, “is” is
used in place of “get”. For example, a getter for a boolean member variable named done might
be called isDone().)

You might also want to allow “write access” to a private variable. That is, you might
want to make it possible for other classes to specify a new value for the variable. This is done
with a setter method. (If you don’t like simple, Anglo-Saxon words, you can use the fancier
term mutator method.) The name of a setter method should consist of “set” followed by a
capitalized copy of the variable’s name, and it should have a parameter with the same type as
the variable. A setter method for the variable title could be written

public void setTitle(String newTitle) {
title = newTitle;
}

It is actually very common to provide both a getter and a setter method for a private
member variable. Since this allows other classes both to see and to change the value of the
variable, you might wonder why not just make the variable public? The reason is that getters
and setters are not restricted to simply reading and writing the variable’s value. In fact, they
can take any action at all. For example, a getter method might keep track of the number of
times that the variable has been accessed:

public String getTitle() {
titleAccessCount++; // Increment member variable titleAccessCount.
return title;

CHAPTER 5. OBJECTS AND CLASSES 212

and a setter method might check that the value that is being assigned to the variable is legal:

public void setTitle(String newTitle) {
if (newTitle == null) // Don’t allow null strings as titles!
title = "(Untitled)"; // Use an appropriate default value instead.
else
title = newTitle;
}

Even if you can’t think of any extra chores to do in a getter or setter method, you might change
your mind in the future when you redesign and improve your class. If you've used a getter and
setter from the beginning, you can make the modification to your class without affecting any of
the classes that use your class. The private member variable is not part of the public interface
of your class; only the public getter and setter methods are, and you are free to change their
implementations without changing the public interface of your class. If you haven’t used get
and set from the beginning, you’ll have to contact everyone who uses your class and tell them,
“Sorry people, you’ll have to track down every use that you’ve made of this variable and change
your code to use my new get and set methods instead.”

A couple of final notes: Some advanced aspects of Java rely on the naming convention
for getter and setter methods, so it’s a good idea to follow the convention rigorously. And
though I've been talking about using getter and setter methods for a variable, you can define
get and set methods even if there is no variable. A getter and/or setter method defines a
property of the class, that might or might not correspond to a variable. For example, if a class
includes a public void instance method with signature setValue (double), then the class has
a “property” named value of type double, and it has this property whether or not the class
has a member variable named value.

7

5.1.4 Arrays and Objects

As I noted in Subsection 3.8.1, arrays are objects. Like Strings they are special objects, with
their own unique syntax. An array type such as int[] or String[] is actually a class, and arrays
are created using a special version of the new operator. As in the case for other object variables,
an array variable can never hold an actual array—only a reference to an array object. The array
object itself exists in the heap. It is possible for an array variable to hold the value null, which
means there is no actual array.

For example, suppose that 1ist is a variable of type int[]. If the value of list is null,
then any attempt to access list.length or an array element list[i] would be an error and
would cause an exception of type NullPointerException. If newlist is another variable of type
int[], then the assignment statement

newlist = list;

only copies the reference value in 1ist into newlist. If 1ist is null, the result is that newlist
will also be null. If 1ist points to an array, the assignment statement does not make a copy
of the array. It just sets newlist to refer to the same array as list. For example, the output
of the following code segment

list = new int[3];

list[1] = 17;

newlist = list; // newlist points to the same array as list!
newlist[1] = 42;

System.out.println(list[1]);

CHAPTER 5. OBJECTS AND CLASSES 213

would be 42, not 17, since list[1] and newlist[1] are just different names for the same
element in the array. All this is very natural, once you understand that arrays are objects and
array variables hold pointers to arrays.

This fact also comes into play when an array is passed as a parameter to a subroutine. The
value that is copied into the subroutine is a pointer to the array. The array is not copied. Since
the subroutine has a reference to the original array, any changes that it makes to elements of
the array are being made to the original and will persist after the subroutine returns.

S S 3

Arrays are objects. They can also hold objects. The base type of an array can be a class.
We have already seen this when we used arrays of type String[], but any class can be used as
the base type. For example, suppose Student is the class defined earlier in this section. Then
we can have arrays of type Student[]. For an array of type Student[], each element of the array
is a variable of type Student. To store information about 30 students, we could use an array:

Student[] classlist; // Declare a variable of type Student[].
classlist = new Student[30]; // The variable now points to an array.

The array has 30 elements, classlist[0], classlist[1], ...classlist[29]. When the array
is created, it is filled with the default initial value, which for an object type is null. So, although
we have 30 array elements of type Student, we don’t yet have any actual Student objects! All
we have is 30 nulls. If we want student objects, we have to create them:

Student[] classlist;

classlist = new Student[30];

for (int 1 = 0; i < 30; i++) {
classlist[i] = new Student();

}

Once we have done this, each classlist[i] points to an object of type Student. If we want
to talk about the name of student number 3, we can use classlist[3] .name. The average
for student number i can be computed by calling classlist[i].getAverage(). You can do
anything with classlist[i] that you could do with any other variable of type Student.

5.2 Constructors and Object Initialization

OBJECT TYPES IN JAVA are very different from the primitive types. Simply declaring a variable
whose type is given as a class does not automatically create an object of that class. Objects
must be explicitly constructed. For the computer, the process of constructing an object means,
first, finding some unused memory in the heap that can be used to hold the object and, second,
filling in the object’s instance variables. As a programmer, you don’t care where in memory
the object is stored, but you will usually want to exercise some control over what initial values
are stored in a new object’s instance variables. In many cases, you will also want to do more
complicated initialization or bookkeeping every time an object is created.

5.2.1 Initializing Instance Variables

An instance variable can be assigned an initial value in its declaration, just like any other
variable. For example, consider a class named PairOfDice. An object of this class will represent
a pair of dice. It will contain two instance variables to represent the numbers showing on the
dice and an instance method for rolling the dice:

CHAPTER 5. OBJECTS AND CLASSES 214

public class PairOfDice {

public int diel = 3; // Number showing on the first die.
public int die2 = 4; // Number showing on the second die.

public void roll() {
// Roll the dice by setting each of the dice to be
// a random number between 1 and 6.
diel = (int) (Math.random()*6) + 1;
die2 (int) (Math.random() *6) + 1;

}
} // end class PairOfDice

The instance variables diel and die2 are initialized to the values 3 and 4 respectively. These
initializations are executed whenever a PairOfDice object is constructed. It’s important to
understand when and how this happens. There can be many PairOfDice objects. Each time one
is created, it gets its own instance variables, and the assignments “diel = 3” and “die2 = 4”

are executed to fill in the values of those variables. To make this clearer, consider a variation
of the PairOfDice class:

public class PairOfDice {

public int diel = (int) (Math.random()*6) + 1;
public int die2 = (int) (Math.random()*6) + 1;

public void roll() {
diel = (int) (Math.random()*6) + 1;
die2 (int) (Math.random()*6) + 1;

}
} // end class PairOfDice

Here, every time a new PairOfDice is created, the dice are initialized to random values, as if a
new pair of dice were being thrown onto the gaming table. Since the initialization is executed
for each new object, a set of random initial values will be computed for each new pair of dice.
Different pairs of dice can have different initial values. For initialization of static member
variables, of course, the situation is quite different. There is only one copy of a static variable,
and initialization of that variable is executed just once, when the class is first loaded.

If you don’t provide any initial value for an instance variable, a default initial value is pro-
vided automatically. Instance variables of numerical type (int, double, etc.) are automatically
initialized to zero if you provide no other values; boolean variables are initialized to false; and
char variables, to the Unicode character with code number zero. An instance variable can also
be a variable of object type. For such variables, the default initial value is null. (In particular,
since Strings are objects, the default initial value for String variables is null.)

5.2.2 Constructors

Objects are created with the operator, new. For example, a program that wants to use a
PairOfDice object could say:

Pair0fDice dice; // Declare a variable of type PairOfDice.

dice = new PairOfDice(); // Construct a new object and store a
// reference to it in the variable.

CHAPTER 5. OBJECTS AND CLASSES 215

In this example, “new PairOfDice()” is an expression that allocates memory for the object,
initializes the object’s instance variables, and then returns a reference to the object. This
reference is the value of the expression, and that value is stored by the assignment statement in
the variable, dice, so that after the assignment statement is executed, dice refers to the newly
created object. Part of this expression, “Pair0fDice()”, looks like a subroutine call, and that
is no accident. It is, in fact, a call to a special type of subroutine called a constructor. This
might puzzle you, since there is no such subroutine in the class definition. However, every class
has at least one constructor. If the programmer doesn’t write a constructor definition in a class,
then the system will provide a default constructor for that class. This default constructor
does nothing beyond the basics: allocate memory and initialize instance variables. If you want
more than that to happen when an object is created, you can include one or more constructors
in the class definition.

The definition of a constructor looks much like the definition of any other subroutine, with
three exceptions. A constructor does not have any return type (not even void). The name
of the constructor must be the same as the name of the class in which it is defined. And the
only modifiers that can be used on a constructor definition are the access modifiers public,
private, and protected. (In particular, a constructor can’t be declared static.)

However, a constructor does have a subroutine body of the usual form, a block of statements.
There are no restrictions on what statements can be used. And a constructor can have a list
of formal parameters. In fact, the ability to include parameters is one of the main reasons for
using constructors. The parameters can provide data to be used in the construction of the
object. For example, a constructor for the PairOfDice class could provide the values that are
initially showing on the dice. Here is what the class would look like in that case:

public class PairOfDice {

public int diel; // Number showing on the first die.
public int die2; // Number showing on the second die.

public PairOfDice(int vall, int val2) {
// Constructor. Creates a pair of dice that
// are initially showing the values vall and val2.
diel = vall; // Assign specified values
die2 = val2; // to the instance variables.

}

public void roll() {
// Roll the dice by setting each of the dice to be
// a random number between 1 and 6.
diel (int) (Math.random () *6) + 1;
die2 (int) (Math.random() *6) + 1;

}
} // end class PairOfDice

The constructor is declared as “public PairOfDice(int vall, int val2) ...”, with no
return type and with the same name as the name of the class. This is how the Java com-
piler recognizes a constructor. The constructor has two parameters, and values for these
parameters must be provided when the constructor is called. For example, the expression
“new Pair0fDice(3,4)” would create a PairOfDice object in which the values of the instance
variables diel and die2 are initially 3 and 4. Of course, in a program, the value returned by
the constructor should be used in some way, as in

CHAPTER 5. OBJECTS AND CLASSES 216

PairOfDice dice; // Declare a variable of type PairOfDice.

dice = new PairOfDice(1,1); // Let dice refer to a new PairOfDice
// object that initially shows 1, 1.

Now that we've added a constructor to the PairOfDice class, we can no longer create an
object by saying “new PairOfDice()”! The system provides a default constructor for a class
only if the class definition does not already include a constructor. In this version of PairOfDice,
there is only one constructor in the class, and it requires two actual parameters. However,
this is not a big problem, since we can add a second constructor to the class, one that has
no parameters. In fact, you can have as many different constructors as you want, as long as
their signatures are different, that is, as long as they have different numbers or types of formal
parameters. In the PairOfDice class, we might have a constructor with no parameters which
produces a pair of dice showing random numbers:

public class PairOfDice {

public int diel; // Number showing on the first die.
public int die2; // Number showing on the second die.

public PairOfDice() {
// Constructor. Rolls the dice, so that they initially
// show some random values.
roll(); // Call the roll() method to roll the dice.
}

public PairOfDice(int vall, int val2) {
// Constructor. Creates a pair of dice that
// are initially showing the values vall and val2.
diel = vall; // Assign specified values
die2 = val2; // to the instance variables.

}

public void roll() {
// Roll the dice by setting each of the dice to be
// a random number between 1 and 6.
diel = (int) (Math.random()*6) + 1;
die2 = (int) (Math.random()*6) + 1;
}

} // end class PairOfDice

Now we have the option of constructing a PairOfDice object either with “new Pair0fDice()”
or with “new PairOfDice(x,y)”, where x and y are int-valued expressions.

This class, once it is written, can be used in any program that needs to work with one
or more pairs of dice. None of those programs will ever have to use the obscure incantation
“(int) (Math.random() *6)+1”, because it’s done inside the PairOfDice class. And the pro-
grammer, having once gotten the dice-rolling thing straight will never have to worry about it
again. Here, for example, is a main program that uses the PairOfDice class to count how many
times two pairs of dice are rolled before the two pairs come up showing the same value. This
illustrates once again that you can create several instances of the same class:

public class RollTwoPairs {
public static void main(String[] args) {

PairOfDice firstDice; // Refers to the first pair of dice.

CHAPTER 5. OBJECTS AND CLASSES 217

firstDice = new PairOfDice();

PairOfDice secondDice; // Refers to the second pair of dice.
secondDice = new Pair0fDice();

int countRolls; // Counts how many times the two pairs of
// dice have been rolled.

int totall; // Total showing on first pair of dice.
int total2; // Total showing on second pair of dice.

countRolls = O;

do { // Roll the two pairs of dice until totals are the same.

firstDice.roll(); // Roll the first pair of dice.
totall = firstDice.diel + firstDice.die2; // Get total.
System.out.println("First pair comes up " + totall);
secondDice.roll(); // Roll the second pair of dice.

total2 = secondDice.diel + secondDice.die2; // Get total.
System.out.println("Second pair comes up " + total2);

countRolls++; // Count this roll.
System.out.println(); // Blank line.
} while (totall != total?2);

System.out.println("It took " + countRolls
+ " rolls until the totals were the same.");

} // end main()

} // end class RollTwoPairs

* kX

Constructors are subroutines, but they are subroutines of a special type. They are certainly
not instance methods, since they don’t belong to objects. Since they are responsible for creating
objects, they exist before any objects have been created. They are more like static member
subroutines, but they are not and cannot be declared to be static. In fact, according to the
Java language specification, they are technically not members of the class at all! In particular,
constructors are not referred to as “methods.”

Unlike other subroutines, a constructor can only be called using the new operator, in an
expression that has the form

new (class-name) ((parameter-list))

where the (parameter-list) is possibly empty. I call this an expression because it computes and
returns a value, namely a reference to the object that is constructed. Most often, you will store
the returned reference in a variable, but it is also legal to use a constructor call in other ways,
for example as a parameter in a subroutine call or as part of a more complex expression. Of
course, if you don’t save the reference in a variable, you won’t have any way of referring to the
object that was just created.

A constructor call is more complicated than an ordinary subroutine or function call. It is
helpful to understand the exact steps that the computer goes through to execute a constructor
call:

CHAPTER 5. OBJECTS AND CLASSES 218

1. First, the computer gets a block of unused memory in the heap, large enough to hold an
object of the specified type.

2. It initializes the instance variables of the object. If the declaration of an instance variable
specifies an initial value, then that value is computed and stored in the instance variable.
Otherwise, the default initial value is used.

3. The actual parameters in the constructor, if any, are evaluated, and the values are assigned
to the formal parameters of the constructor.

4. The statements in the body of the constructor, if any, are executed.

5. A reference to the object is returned as the value of the constructor call.

The end result of this is that you have a reference to a newly constructed object.

S S 3

For another example, let’s rewrite the Student class that was used in Section 1. T'll add a
constructor, and I'll also take the opportunity to make the instance variable, name, private.

public class Student {

private String name; // Student’s name.
public double testl, test2, test3; // Grades on three tests.

public Student(String theName) {
// Constructor for Student objects;
// provides a name for the Student.
// The name can’t be null.
if (theName == null)
throw new IllegalArgumentException("name can’t be null");
name = theName;

}

public String getName() {
// Getter method for reading the value of the private
// instance variable, name.
return name;

}

public double getAverage() {
// Compute average test grade.
return (testl + test2 + test3) / 3;
}

} // end of class Student

An object of type Student contains information about some particular student. The con-
structor in this class has a parameter of type String, which specifies the name of that student.
Objects of type Student can be created with statements such as:

std = new Student("John Smith");
stdl = new Student("Mary Jones");

In the original version of this class, the value of name had to be assigned by a program after it
created the object of type Student. There was no guarantee that the programmer would always
remember to set the name properly. In the new version of the class, there is no way to create
a Student object except by calling the constructor, and that constructor automatically sets the
name. Furthermore, the constructor makes it impossible to have a student object whose name is

CHAPTER 5. OBJECTS AND CLASSES 219

null. The programmer’s life is made easier, and whole hordes of frustrating bugs are squashed
before they even have a chance to be born.

Another type of guarantee is provided by the private modifier. Since the instance variable,
name, is private, there is no way for any part of the program outside the Student class to get at
the name directly. The program sets the value of name, indirectly, when it calls the constructor.
I’ve provided a getter function, getName (), that can be used from outside the class to find out
the name of the student. But I haven’t provided any setter method or other way to change the
name. Once a student object is created, it keeps the same name as long as it exists.

Note that it would be legal, and good style, to declare the variable name to be “final”
in this class. An instance variable can be final provided it is either assigned a value in its
declaration or is assigned a value in every constructor in the class. It is illegal to assign a value
to a final instance variable, except inside a constructor.

* koXk

Let’s take this example a little farther to illustrate one more aspect of classes: What happens
when you mix static and non-static in the same class? In that case, it’s legal for an instance
method in the class to use static member variables or call static member subroutines. An object
knows what class it belongs to, and it can refer to static members of that class. But there is
only one copy of the static member, in the class itself. Effectively, all the objects share one
copy of the static member.

As an example, consider a version of the Student class to which I've added an ID for each
student and a static member called nextUniqueID. Although there is an ID variable in each
student object, there is only one nextUniqueID variable.

public class Student {

private String name; // Student’s name.
public double testl, test2, test3; // Grades on three tests.

private int ID; // Unique ID number for this student.

private static int nextUniquelD = 0;
// keep track of next available unique ID number

Student (String theName) {
// Constructor for Student objects; provides a name for the Student,
// and assigns the student a unique ID number.
name = theName;
nextUniquelD++;
ID = nextUniquelD;
}

public String getName() {
// Getter method for reading the value of the private
// instance variable, name.
return name;

}

public int getID() {
// Getter method for reading the walue of ID.
return ID;

}

public double getAverage() {
// Compute average test grade.

CHAPTER 5. OBJECTS AND CLASSES 220

return (testl + test2 + test3) / 3;
}

} // end of class Student

Since nextUniquelD is a static variable, the initialization “nextUniqueID = 0” is done
only once, when the class is first loaded. Whenever a Student object is constructed and the
constructor says “nextUniqueID++;”, it’s always the same static member variable that is being
incremented. When the very first Student object is created, nextUniqueID becomes 1. When
the second object is created, nextUniqueID becomes 2. After the third object, it becomes 3.
And so on. The constructor stores the new value of nextUniqueID in the ID variable of the
object that is being created. Of course, ID is an instance variable, so every object has its own
individual ID variable. The class is constructed so that each student will automatically get a
different value for its ID variable. Furthermore, the ID variable is private, so there is no way
for this variable to be tampered with after the object has been created. You are guaranteed,
just by the way the class is designed, that every student object will have its own permanent,
unique identification number. Which is kind of cool if you think about it.

(Unfortunately, if you think about it a bit more, it turns out that the guarantee isn’t quite
absolute. The guarantee is valid in programs that use a single thread. But, as a preview of the
difficulties of parallel programming, I’ll note that in multi-threaded programs, where several
things can be going on at the same time, things can get a bit strange. In a multi-threaded
program, it is possible that two threads are creating Student objects at exactly the same time,
and it becomes possible for both objects to get the same ID number. We’ll come back to this
in Subsection 12.1.3, where you will learn how to fix the problem.)

5.2.3 Garbage Collection

So far, this section has been about creating objects. What about destroying them? In Java,
the destruction of objects takes place automatically.

An object exists in the heap, and it can be accessed only through variables that hold
references to the object. What should be done with an object if there are no variables that
refer to it? Such things can happen. Consider the following two statements (though in reality,
you’d never do anything like this in consecutive statements!):

Student std = new Student("John Smith");
std = null;

In the first line, a reference to a newly created Student object is stored in the variable std. But
in the next line, the value of std is changed, and the reference to the Student object is gone. In
fact, there are now no references whatsoever to that object, in any variable. So there is no way
for the program ever to use the object again! It might as well not exist. In fact, the memory
occupied by the object should be reclaimed to be used for another purpose.

Java uses a procedure called garbage collection to reclaim memory occupied by objects
that are no longer accessible to a program. It is the responsibility of the system, not the
programmer, to keep track of which objects are “garbage.” In the above example, it was very
easy to see that the Student object had become garbage. Usually, it’s much harder. If an object
has been used for a while, there might be several references to the object stored in several
variables. The object doesn’t become garbage until all those references have been dropped.

In many other programming languages, it’s the programmer’s responsibility to delete the
garbage. Unfortunately, keeping track of memory usage is very error-prone, and many serious

CHAPTER 5. OBJECTS AND CLASSES 221

program bugs are caused by such errors. A programmer might accidently delete an object even
though there are still references to that object. This is called a dangling pointer error, and
it leads to problems when the program tries to access an object that is no longer there. Another
type of error is a memory leak, where a programmer neglects to delete objects that are no
longer in use. This can lead to filling memory with objects that are completely inaccessible,
and the program might run out of memory even though, in fact, large amounts of memory are
being wasted.

Because Java uses garbage collection, such errors are simply impossible. Garbage collection
is an old idea and has been used in some programming languages since the 1960s. You might
wonder why all languages don’t use garbage collection. In the past, it was considered too slow
and wasteful. However, research into garbage collection techniques combined with the incredible
speed of modern computers have combined to make garbage collection feasible. Programmers
should rejoice.

5.3 Programming with Objects

THERE ARE SEVERAL WAYS in which object-oriented concepts can be applied to the process
of designing and writing programs. The broadest of these is object-oriented analysis and
destgn which applies an object-oriented methodology to the earliest stages of program devel-
opment, during which the overall design of a program is created. Here, the idea is to identify
things in the problem domain that can be modeled as objects. On another level, object-oriented
programming encourages programmers to produce generalized software components that
can be used in a wide variety of programming projects.

Of course, for the most part, you will experience “generalized software components” by
using the standard classes that come along with Java. We begin this section by looking at some
built-in classes that are used for creating objects. At the end of the section, we will get back
to generalities.

5.3.1 Some Built-in Classes

Although the focus of object-oriented programming is generally on the design and implementa-
tion of new classes, it’s important not to forget that the designers of Java have already provided
a large number of reusable classes. Some of these classes are meant to be extended to produce
new classes, while others can be used directly to create useful objects. A true mastery of Java
requires familiarity with a large number of built-in classes—something that takes a lot of time
and experience to develop. Let’s take a moment to look at a few built-in classes that you might
find useful.

A string can be built up from smaller pieces using the + operator, but this is not always effi-
cient. If stris a String and ch is a character, then executing the command “str = str + ch;”
involves creating a whole new string that is a copy of str, with the value of ch appended onto
the end. Copying the string takes some time. Building up a long string letter by letter would
require a surprising amount of processing. The class StringBuilder makes it possible to be ef-
ficient about building up a long string from a number of smaller pieces. To do this, you must
make an object belonging to the StringBuilder class. For example:

StringBuilder builder = new StringBuilder();

(This statement both declares the variable builder and initializes it to refer to a newly created
StringBuilder object. Combining declaration with initialization was covered in Subsection 4.8.1

CHAPTER 5. OBJECTS AND CLASSES 222

and works for objects just as it does for primitive types.)

Like a String, a StringBuilder contains a sequence of characters. However, it is possible
to add new characters onto the end of a StringBuilder without continually making copies
of the data that it already contains. If x is a value of any type and builder is the variable
defined above, then the command builder.append(x) will add x, converted into a string
representation, onto the end of the data that was already in the builder. This can be done more
efficiently than copying the data every time something is appended. A long string can be built
up in a StringBuilder using a sequence of append() commands. When the string is complete,
the function builder.toString() will return a copy of the string in the builder as an ordinary
value of type String. The StringBuilder class is in the standard package java.lang, so you can
use its simple name without importing it.

A number of useful classes are collected in the package java.util. For example, this
package contains classes for working with collections of objects. We will study such collection
classes extensively in Chapter 10. And we have already encountered java.util.Scanner in
Subsection 2.4.6. Another class in this package, java.util.Date, is used to represent times.
When a Date object is constructed without parameters, the result represents the current date
and time, so an easy way to display this information is:

System.out.println(new Date());

Of course, since it is in the package java.util, in order to use the Date class in
your program, you must make it available by importing it with one of the statements
“import java.util.Date;” or “import java.util.*;” at the beginning of your program.
(See Subsection 4.6.3 for a discussion of packages and import.)

I will also mention the class java.util.Random. An object belonging to this class is a
source of random numbers (or, more precisely pseudorandom numbers). The standard function
Math.random() uses one of these objects behind the scenes to generate its random numbers.
An object of type Random can generate random integers, as well as random real numbers. If
randGen is created with the command:

Random randGen = new Random();

and if N is a positive integer, then randGen.nextInt (N) generates a random integer in the range
from 0 to N-1. For example, this makes it a little easier to roll a pair of dice. Instead of say-
ing “diel = (int) (6*Math.random())+1;”, one can say “diel = randGen.nextInt(6)+1;”.
(Since you also have to import the class java.util.Random and create the Random object, you
might not agree that it is actually easier.) An object of type Random can also be used to generate
so-called Gaussian distributed random real numbers.

Many of Java’s standard classes are used in GUI programming. You will encounter many
of them in the Chapter 6. Here, I will mention only the class Color, from the package
javafx.scene.paint, so that I can use it in the next example. A Color object represents
a color that can be used for drawing. In Section 3.9, you encountered color constants such
as Color.RED. These constants are final static member variables in the Color class, and their
values are objects of type Color. 1t is also possible to create new color objects. Class Color has
several constructors. One of them, which is called as new Color(r,g,b), takes three double
parameters to specify the red, green, and blue components of the color. The parameters must
be in the range 0.0 to 1.0. For example, a value of 0.0 for » means that the color contains no
red, while a value of 1.0 means that the color contains the maximum possible amount of red.
Another constructor, new Color(r,g,b,t), adds a fourth double parameter, which must also
be in the range 0.0 to 1.0. The fourth parameter determines how transparent or opaque the

CHAPTER 5. OBJECTS AND CLASSES 223

color is. When you draw with a partially transparent color, the background shows through the
color to some extent. A larger value of the parameter t gives a color that is less transparent
and more opaque.

A Color object has only a few instance methods that you are likely to use. Mainly, there
are functions like getRed () to get the individual color components of the color. There are no
“setter” methods to change the color components. In fact, a Color is an #mmutable object,
meaning that all of its instance variables are final and cannot be changed after the object is
created. Strings are another example of immutable objects, and we will make some of our own
later in this section.

The main point of all this, again, is that many problems have already been solved, and the
solutions are available in Java’s standard classes. If you are faced with a task that looks like
it should be fairly common, it might be worth looking through a Java reference to see whether
someone has already written a class that you can use.

5.3.2 The class “Object”

We have already seen that one of the major features of object-oriented programming is the
ability to create subclasses of a class. The subclass inherits all the properties or behaviors of
the class, but can modify and add to what it inherits. In Section 5.5, you’ll learn how to create
subclasses. What you don’t know yet is that every class in Java (with just one exception) is
a subclass of some other class. If you create a class and don’t explicitly make it a subclass of
some other class, then it automatically becomes a subclass of the special class named Object,
in package java.lang. (Object is the one class that is not a subclass of any other class.)

Class Object defines several instance methods that are inherited by every other class. These
methods can be used with any object whatsoever. I will mention just one of them here. You
will encounter more of them later in the book.

The instance method toString() in class Object returns a value of type String that is
supposed to be a string representation of the object. You’ve already used this method implicitly,
any time you’ve printed out an object or concatenated an object onto a string. When you use
an object in a context that requires a string, the object is automatically converted to type
String by calling its toString () method.

The version of toString that is defined in Object just returns the name of the class that
the object belongs to, concatenated with a code number called the hash code of the object;
this is not very useful. When you create a class, you can write a new toString() method for
it, which will replace the inherited version. For example, we might add the following method
to any of the PairOfDice classes from the previous section:

/%%
* Return a String representation of a pair of dice, where diel
* and die2 are instance variables containing the numbers that are
* showing on the two dice.
*/
public String toString() {
if (diel == die2)
return "double " + diel;
else
return diel + " and " + die2;

CHAPTER 5. OBJECTS AND CLASSES 224

If dice refers to a PairOfDice object, then dice.toString() will return strings such as
“3 and 6”7, “5 and 1”7, and “double 2”, depending on the numbers showing on the dice. This
method would be used automatically to convert dice to type String in a statement such as

System.out.println("The dice came up " + dice);

so this statement might output, “The dice came up 5 and 1”7 or “The dice came up double 2”.
You’ll see another example of a toString() method in the next section.

5.3.3 Writing and Using a Class

As an example of designing and using a new class, we will write an animation program, based
on the same animation framework that was used in Subsection 3.9.3. The animation shows
a number of semi-transparent disks that grow in size as the animation plays. The disks have
random colors and locations. When a disk gets too big, or sometimes just at random, the
disk disappears and is replaced with a new disk at a random location. Here is a reduced-size
screenshot from the program:

A disk in this program can be represented as an object. A disk has properties—color, location,
and size—that can be instance variables in the object. As for instance methods, we need to think
about what we might want to do with a disk. An obvious candidate is that we need to be able to
draw it, so we can include an instance method draw(g), where g is a graphics context that will
be used to do the drawing. The class can also include one or more constructors. A constructor
initializes the object. It’s not always clear what data should be provided as parameters to the
constructor. In this case, as an example, the constructor’s parameters specify the location and
size for the circle, but the constructor makes up a color using random values for the red, green,
and blue components. Here’s the complete class:

import javafx.scene.paint.Color;
import javafx.scene.canvas.GraphicsContext;

VLS

* A simple class that holds the size, color, and location of a colored disk,
* with a method for drawing the circle in a graphics context. The circle

* is drawn as a filled oval, with a black outline.

*/

public class CirclelInfo {

public int radius; // The radius of the circle.
public int x,y; // The location of the center of the circle.

CHAPTER 5. OBJECTS AND CLASSES 225

public Color color; // The color of the circle.

/%%

Create a CircleInfo with a given location and radius and with a
randomly selected, semi-transparent color.

Oparam centerX The x coordinate of the center.

Oparam centerY The y coordinate of the center.

Oparam rad The radius of the circle.

* X ¥ ¥ *

*/

public CircleInfo(int centerX, int centerY, int rad) {
x = centerX;
y = centerV;
radius = rad;
double red = Math.random();
double green = Math.random();
double blue = Math.random();
color = new Color(red,green,blue, 0.4);

}

/%%
* Draw the disk in graphics context g, with a black outline.
*/
public void draw(GraphicsContext g) {
g.setFill(color);
g.fill0val(x - radius, y - radius, 2*radius, 2*radius);
g.setStroke(Color.BLACK);
g.strokeOval(x - radius, y - radius, 2+%radius, 2*radius);

}

It would probably be better style to write getters and setters for the instance variables, but to
keep things simple, I made them public.

The main program for my animation is a class GrowingCircleAnimation. The program uses
100 disks, each one represented by an object of type CircleInfo. To make that manageable, the
program uses an array of objects. The array variable is an instance variable in the class:

private CircleInfo[] circleData; // holds the data for all 100 circles

Note that it is not static. GUI programming generally uses objects rather than static variables
and methods. Basically, this is because we can imagine having several GrowingCircleAnimations
going on at the same time, each with its own array of disks. Each animation would be repre-
sented by an object, and each object will need to have its own circleData instance variable.
If circleData were static, there would only be one array and all the animations would show
exactly the same thing.

The array must be created and filled with data. The array is created using
new CircleInfo[100], and then 100 objects of type CircleInfo are created to fill the array.
The new objects are created with random locations and sizes. In the program, this is done
before drawing the first frame of the animation. Here is the code, where width and height are
the size of the drawing area:

circleData = new CircleInfo[100]; // create the array

for (int i = 0; i < circleData.length; i++) { // create the objects
circleData[i] = new CircleInfo(
(int) (width*Math.random()),

CHAPTER 5. OBJECTS AND CLASSES 226

(int) (height*Math.random()),
(int) (100*Math.random()));
}

In each frame, the radius of the disk is increased and the disk is drawn using the code

circleDatali] .radius++;
circleDatali] .draw(g);

These statements look complicated, so let’s unpack them. Now, circleDatali] is an ele-
ment of the array circleData. That means that it is a variable of type CircleInfo. This
variable refers to an object of type CircleInfo, which contains a public instance variable named
radius. This means that circleDatali].radius is the full name for that variable. Since it
is a variable of type int, we can use the ++ operator to increment its value. So the effect of
circleDatal[i] .radius++ is to increase the radius of the circle by one. The second line of code
is similar, but in that statement, circleDatal[i] .draw is an instance method in the Circlelnfo
object. The statement circleDatali].draw(g) calls that instance method with a parameter g
that represents the GraphicsContext that is being used for drawing.

The source code example GrowingCircleAnimation.java contains the full source code for the
program, if you are interested. Since the program uses class Circlelnfo, you will also need a copy
of Circlelnfo.java in order to compile and run the program.

5.3.4 Object-oriented Analysis and Design

Every programmer builds up a stock of techniques and expertise expressed as snippets of code
that can be reused in new programs using the tried-and-true method of cut-and-paste: The old
code is physically copied into the new program and then edited to customize it as necessary.
The problem is that the editing is error-prone and time-consuming, and the whole enterprise is
dependent on the programmer’s ability to pull out that particular piece of code from last year’s
project that looks like it might be made to fit. (On the level of a corporation that wants to
save money by not reinventing the wheel for each new project, just keeping track of all the old
wheels becomes a major task.)

Well-designed classes are software components that can be reused without editing. A well-
designed class is not carefully crafted to do a particular job in a particular program. Instead,
it is crafted to model some particular type of object or a single coherent concept. Since objects
and concepts can recur in many problems, a well-designed class is likely to be reusable without
modification in a variety of projects.

Furthermore, in an object-oriented programming language, it is possible to make subclasses
of an existing class. This makes classes even more reusable. If a class needs to be customized,
a subclass can be created, and additions or modifications can be made in the subclass without
making any changes to the original class. This can be done even if the programmer doesn’t
have access to the source code of the class and doesn’t know any details of its internal, hidden
implementation.

I S 3

The PairOfDice class in the previous section is already an example of a generalized software
component, although one that could certainly be improved. The class represents a single,
coherent concept, “a pair of dice.” The instance variables hold the data relevant to the state
of the dice, that is, the number showing on each of the dice. The instance method represents
the behavior of a pair of dice, that is, the ability to be rolled. This class would be reusable in
many different programming projects.

http://math.hws.edu/eck/cs124/javanotes8/source/chapter5/GrowingCircleAnimation.java
http://math.hws.edu/eck/cs124/javanotes8/source/chapter5/CircleInfo.java

CHAPTER 5. OBJECTS AND CLASSES 227

On the other hand, the Student class from the previous section is not very reusable. It
seems to be crafted to represent students in a particular course where the grade will be based
on three tests. If there are more tests or quizzes or papers, it’s useless. If there are two people
in the class who have the same name, we are in trouble (one reason why numerical student ID’s
are often used). Admittedly, it’s much more difficult to develop a general-purpose student class
than a general-purpose pair-of-dice class. But this particular Student class is good only as an
example in a programming textbook.

S S 3

A large programming project goes through a number of stages, starting with specification
of the problem to be solved, followed by analysis of the problem and design of a program
to solve it. Then comes coding, in which the program’s design is expressed in some actual
programming language. This is followed by testing and debugging of the program. After that
comes a long period of maintenance, which means fixing any new problems that are found
in the program and modifying it to adapt it to changing requirements. Together, these stages
form what is called the software life cycle. (In the real world, the ideal of consecutive stages
is seldom if ever achieved. During the analysis stage, it might turn out that the specifications
are incomplete or inconsistent. A problem found during testing requires at least a brief return
to the coding stage. If the problem is serious enough, it might even require a new design.
Maintenance usually involves redoing some of the work from previous stages. . ..)

Large, complex programming projects are only likely to succeed if a careful, systematic
approach is adopted during all stages of the software life cycle. The systematic approach to
programming, using accepted principles of good design, is called software engineering. The
software engineer tries to efficiently construct programs that verifiably meet their specifications
and that are easy to modify if necessary. There is a wide range of “methodologies” that can
be applied to help in the systematic design of programs. (Most of these methodologies seem to
involve drawing little boxes to represent program components, with labeled arrows to represent
relationships among the boxes.)

We have been discussing object orientation in programming languages, which is relevant to
the coding stage of program development. But there are also object-oriented methodologies for
analysis and design. The question in this stage of the software life cycle is, How can one discover
or invent the overall structure of a program? As an example of a rather simple object-oriented
approach to analysis and design, consider this advice: Write down a description of the problem.
Underline all the nouns in that description. The nouns should be considered as candidates for
becoming classes or objects in the program design. Similarly, underline all the verbs. These
are candidates for methods. This is your starting point. Further analysis might uncover the
need for more classes and methods, and it might reveal that subclassing can be used to take
advantage of similarities among classes.

This is perhaps a bit simple-minded, but the idea is clear and the general approach can be
effective: Analyze the problem to discover the concepts that are involved, and create classes to
represent those concepts. The design should arise from the problem itself, and you should end
up with a program whose structure reflects the structure of the problem in a natural way.

5.4 Programming Example: Card, Hand, Deck

In this section, we look at some specific examples of object-oriented design in a domain that
is simple enough that we have a chance of coming up with something reasonably reusable.

CHAPTER 5. OBJECTS AND CLASSES 228

Consider card games that are played with a standard deck of playing cards (a so-called “poker”
deck, since it is used in the game of poker).

5.4.1 Designing the classes

In a typical card game, each player gets a hand of cards. The deck is shuffled and cards are
dealt one at a time from the deck and added to the players’ hands. In some games, cards can
be removed from a hand, and new cards can be added. The game is won or lost depending on
the value (ace, 2, 3, ..., king) and suit (spades, diamonds, clubs, hearts) of the cards that a
player receives. If we look for nouns in this description, there are several candidates for objects:
game, player, hand, card, deck, value, and suit. Of these, the value and the suit of a card are
simple values, and they might just be represented as instance variables in a Card object. In a
complete program, the other five nouns might be represented by classes. But let’s work on the
ones that are most obviously reusable: card, hand, and deck.

If we look for verbs in the description of a card game, we see that we can shuffle a deck and
deal a card from a deck. This gives use us two candidates for instance methods in a Deck class:
shuffle() and dealCard(). Cards can be added to and removed from hands. This gives two
candidates for instance methods in a Hand class: addCard() and removeCard(). Cards are
relatively passive things, but we at least need to be able to determine their suits and values.
We will discover more instance methods as we go along.

First, we’ll design the deck class in detail. When a deck of cards is first created, it contains
52 cards in some standard order. The Deck class will need a constructor to create a new deck.
The constructor needs no parameters because any new deck is the same as any other. There will
be an instance method called shuffle() that will rearrange the 52 cards into a random order.
The dealCard() instance method will get the next card from the deck. This will be a function
with a return type of Card, since the caller needs to know what card is being dealt. It has no
parameters—when you deal the next card from the deck, you don’t provide any information to
the deck; you just get the next card, whatever it is. What will happen if there are no more
cards in the deck when its dealCard () method is called? It should probably be considered an
error to try to deal a card from an empty deck, so the deck can throw an exception in that case.
But this raises another question: How will the rest of the program know whether the deck is
empty? Of course, the program could keep track of how many cards it has used. But the deck
itself should know how many cards it has left, so the program should just be able to ask the
deck object. We can make this possible by specifying another instance method, cardsLeft (),
that returns the number of cards remaining in the deck. This leads to a full specification of all
the subroutines in the Deck class:

Constructor and instance methods in class Deck:

VLS
* Constructor. Create an unshuffled deck of cards.
*/

public Deck()

/*%

* Put all the used cards back into the deck,
* and shuffle it into a random order.

*/

public void shuffle()

/%%

CHAPTER 5. OBJECTS AND CLASSES 229

* As cards are dealt from the deck, the number of
* cards left decreases. This function returns the
* number of cards that are still left in the deck.
*/

public int cardsLeft()

/%%
* Deals one card from the deck and returns it.
* Othrows IllegalStateException if no more cards are left.

*/
public Card dealCard()

This is everything you need to know in order to use the Deck class. Of course, it doesn’t tell us
how to write the class. This has been an exercise in design, not in coding. You can look at the
source code, Deck.java, if you want. It should not be a surprise that the class includes an array
of Cards as an instance variable, but there are a few things you might not understand at this
point. Of course, you can use the class in your programs as a black box, without understanding
the implementation.

We can do a similar analysis for the Hand class. When a hand object is first created, it
has no cards in it. An addCard() instance method will add a card to the hand. This method
needs a parameter of type Card to specify which card is being added. For the removeCard()
method, a parameter is needed to specify which card to remove. But should we specify the
card itself (“Remove the ace of spades”), or should we specify the card by its position in the
hand (“Remove the third card in the hand”)? Actually, we don’t have to decide, since we can
allow for both options. We’ll have two removeCard() instance methods, one with a parameter
of type Card specifying the card to be removed and one with a parameter of type int specifying
the position of the card in the hand. (Remember that you can have two methods in a class
with the same name, provided they have different numbers or types of parameters.) Since a
hand can contain a variable number of cards, it’s convenient to be able to ask a hand object
how many cards it contains. So, we need an instance method getCardCount () that returns
the number of cards in the hand. When I play cards, I like to arrange the cards in my hand so
that cards of the same value are next to each other. Since this is a generally useful thing to be
able to do, we can provide instance methods for sorting the cards in the hand. Here is a full
specification for a reusable Hand class:

Constructor and instance methods in class Hand:

/%%
* Constructor. Create a Hand object that is initially empty.
*/

public Hand()

VA
* Discard all cards from the hand, making the hand empty.
*/

public void clear()

/%%
* Add the card c to the hand. c¢ should be non-null.
* Q@throws NullPointerException if ¢ is null.
*/

public void addCard(Card c)

/%%

http://math.hws.edu/eck/cs124/javanotes8/source/chapter5/Deck.java

CHAPTER 5. OBJECTS AND CLASSES 230

* If the specified card is in the hand, it is removed.
*/

public void removeCard(Card c)

/%%

* Remove the card in the specified position from the
* hand. Cards are numbered counting from zero.

* Qthrows IllegalArgumentException if the specified
* position does not exist in the hand.

*/

public void removeCard(int position)

/%%
* Return the number of cards in the hand.
*/

public int getCardCount ()

/%%
* Get the card from the hand in given position, where
* positions are numbered starting from O.
* Qthrows IllegalArgumentException if the specified
* position does not exist in the hand.
*/
public Card getCard(int position)

/%%

* Sorts the cards in the hand so that cards of the same
* suit are grouped together, and within a suit the cards
* are sorted by value.
*/

public void sortBySuit()

/**
* Sorts the cards in the hand so that cards are sorted into
* order of increasing value. Cards with the same value
* are sorted by suit. Note that aces are considered
* to have the lowest value.
*/
public void sortByValue()

Again, there are a few things in the implementation of the class that you won’t understand at
this point, but that doesn’t stop you from using the class in your projects. The source code
can be found in the file Hand.java

5.4.2 The Card Class

We will look at the design and implementation of a Card class in full detail. The class will
have a constructor that specifies the value and suit of the card that is being created. There
are four suits, which can be represented by the integers 0, 1, 2, and 3. It would be tough
to remember which number represents which suit, so I've defined named constants in the Card
class to represent the four possibilities. For example, Card.SPADES is a constant that represents
the suit, “spades.” (These constants are declared to be public final static ints. It might
be better to use an enumerated type, but I will stick here to integer-valued constants.) The
possible values of a card are the numbers 1, 2, ..., 13, with 1 standing for an ace, 11 for a jack,
12 for a queen, and 13 for a king. Again, I've defined some named constants to represent the

http://math.hws.edu/eck/cs124/javanotes8/source/chapter5/Hand.java

CHAPTER 5. OBJECTS AND CLASSES 231

values of aces and face cards. (When you read the Card class, you’ll see that I've also added
support for Jokers.)

A Card object can be constructed knowing the value and the suit of the card. For example,
we can call the constructor with statements such as:

cardl = new Card(Card.ACE, Card.SPADES); // Construct ace of spades.
card2 = new Card(10, Card.DIAMONDS); // Construct 10 of diamonds.
card3 = new Card(v, s); // This is OK, as long as v and s

// are integer expressions.

A Card object needs instance variables to represent its value and suit. I've made these
private so that they cannot be changed from outside the class, and I've provided getter methods
getSuit () and getValue () so that it will be possible to discover the suit and value from outside
the class. The instance variables are initialized in the constructor, and are never changed after
that. In fact, I've declared the instance variables suit and value to be final, since they are
never changed after they are initialized. An instance variable can be declared final provided
it is either given an initial value in its declaration or is initialized in every constructor in the
class. Since all its instance variables are final, a Card is an immutable object.

Finally, I've added a few convenience methods to the class to make it easier to print out
cards in a human-readable form. For example, I want to be able to print out the suit of a
card as the word “Diamonds”, rather than as the meaningless code number 2, which is used
in the class to represent diamonds. Since this is something that I’ll probably have to do in
many programs, it makes sense to include support for it in the class. So, I’ve provided instance
methods getSuitAsString () and getValueAsString() to return string representations of the
suit and value of a card. Finally, I've defined the instance method toString() to return a
string with both the value and suit, such as “Queen of Hearts”. Recall that this method will
be used automatically whenever a Card needs to be converted into a String, such as when the
card is concatenated onto a string with the + operator. Thus, the statement

System.out.println("Your card is the " + card);

is equivalent to

System.out.println("Your card is the " + card.toString());

If the card is the queen of hearts, either of these will print out “Your card is the Queen of
Hearts”.

Here is the complete Card class, which can also be found in Card.java. This class is general
enough to be highly reusable, so the work that went into designing, writing, and testing it pays
off handsomely in the long run.

/%%

An object of type Card represents a playing card from a

standard Poker deck, including Jokers. The card has a suit, which
can be spades, hearts, diamonds, clubs, or joker. A spade, heart,
diamond, or club has one of the 13 values: ace, 2, 3, 4, 5, 6, 7,

8, 9, 10, jack, queen, or king. Note that "ace" is considered to be
the smallest value. A joker can also have an associated value;

this value can be anything and can be used to keep track of several
different jokers.

* X X X X X X *

*/
public class Card {

public final static int SPADES = 0; // Codes for the 4 suits, plus Joker.

http://math.hws.edu/eck/cs124/javanotes8/source/chapter5/Card.java

CHAPTER 5. OBJECTS AND CLASSES 232
public final static int HEARTS = 1;
public final static int DIAMONDS = 2;
public final static int CLUBS = 3;
public final static int JOKER = 4;
public final static int ACE = 1; // Codes for the non-numeric cards.
public final static int JACK = 11; // Cards 2 through 10 have their
public final static int QUEEN = 12; // numerical values for their codes.

public final static int KING = 13;

/%%

* This card’s suit, one of the constants SPADES, HEARTS, DIAMONDS,
* CLUBS, or JOKER. The suit cannot be changed after the card is
* constructed.

*/

private final int suit;

/%%

* The card’s value. For a normal card, this is one of the values
* 1 through 13, with 1 representing ACE. For a JOKER, the value
* can be anything. The value cannot be changed after the card

* is constructed.

*/

private final int value;

/%%

* Creates a Joker, with 1 as the associated value. (Note that
* "new Card()" is equivalent to "new Card(1l,Card.JOKER)".)
*/

public Card() {

suit = JOKER;

value = 1;
X
/%%
* Creates a card with a specified suit and value.
* Oparam theValue the value of the new card. For a regular card (non-joker),
* the value must be in the range 1 through 13, with 1 representing an Ace.
* You can use the constants Card.ACE, Card.JACK, Card.QUEEN, and Card.KING.
* For a Joker, the value can be anything.
* QOparam theSuit the suit of the new card. This must be one of the values
* Card.SPADES, Card.HEARTS, Card.DIAMONDS, Card.CLUBS, or Card.JOKER.
* Q@throws IllegalArgumentException if the parameter values are not in the
* permissible ranges
*/

public Card(int theValue, int theSuit) {
if (theSuit != SPADES && theSuit != HEARTS && theSuit != DIAMONDS &&
theSuit != CLUBS && theSuit != JOKER)
throw new IllegalArgumentException("Illegal playing card suit");
if (theSuit != JOKER && (theValue < 1 || theValue > 13))
throw new IllegalArgumentException("Illegal playing card value");
value = theValue;
suit = theSuit;

/%%

CHAPTER 5. OBJECTS AND CLASSES 233

* Returns the suit of this card.
* Q@returns the suit, which is one of the constants Card.SPADES,
* Card.HEARTS, Card.DIAMONDS, Card.CLUBS, or Card.JOKER
*/
public int getSuit() {
return suit;

3

/%%
* Returns the value of this card.
* Q@return the value, which is one of the numbers 1 through 13, inclusive for
* a regular card, and which can be any value for a Joker.
*/
public int getValue() {
return value;

}

/%%

* Returns a String representation of the card’s suit.

* Qreturn one of the strings "Spades", "Hearts", "Diamonds", "Clubs"
* or "Joker".

*/

public String getSuitAsString() {
switch (suit) {
case SPADES: return "Spades";
case HEARTS: return "Hearts";
case DIAMONDS: return "Diamonds";

case CLUBS: return "Clubs";
default: return "Joker";
}
}
/%%
* Returns a String representation of the card’s value.
* Q@return for a regular card, one of the strings "Ace", "2",
* "3", ..., "10", "Jack", "Queen", or "King". For a Joker, the
* string is always numerical.
*/

public String getValueAsString() {
if (suit == JOKER)

return "" + value;

else {
switch (value) {
case 1: return "Ace";
case 2: return "2";
case 3: return "3";
case 4: return "4";
case b: return "5";
case 6: return "6";
case 7: return "7";
case 8: return "8";
case 9: return "9";
case 10: return "10";
case 11: return "Jack";
case 12: return "Queen";

CHAPTER 5. OBJECTS AND CLASSES 234

default: return "King";

}

/**

Returns a string representation of this card, including both
its suit and its value (except that for a Joker with value 1,
the return value is just "Joker"). Sample return values

are: "Queen of Hearts", "10 of Diamonds", "Ace of Spades",
"Joker", "Joker #2"

* X X ¥ ¥

*/
public String toString() {
if (suit == JOKER) {
if (value == 1)
return "Joker";
else
return "Joker #" + value;

}
else
return getValueAsString() + " of " + getSuitAsString();

} // end class Card

5.4.3 Example: A Simple Card Game

I will finish this section by presenting a complete program that uses the Card and Deck classes.
The program lets the user play a very simple card game called HighLow. A deck of cards is
shuffled, and one card is dealt from the deck and shown to the user. The user predicts whether
the next card from the deck will be higher or lower than the current card. If the user predicts
correctly, then the next card from the deck becomes the current card, and the user makes
another prediction. This continues until the user makes an incorrect prediction. The number
of correct predictions is the user’s score.

My program has a static method that plays one game of HighLow. The main() routine lets
the user play several games of HighLow. At the end, it reports the user’s average score.

I won’t go through the development of the algorithms used in this program, but I encourage
you to read it carefully and make sure that you understand how it works. Note in particular
that the subroutine that plays one game of HighLow returns the user’s score in the game as its
return value. This gets the score back to the main program, where it is needed. Here is the
program:

import textio.TextIO;

/**
* This program lets the user play HighLow, a simple card game
* that is described in the output statements at the beginning of
* the main() routine. After the user plays several games,
* the user’s average score is reported.
*/
public class HighLow {

CHAPTER 5. OBJECTS AND CLASSES 235

public static void main(String[] args) {

System.out.println("This program lets you play the simple card game,");
System.out.println("HighLow. A card is dealt from a deck of cards.");
System.out.println("You have to predict whether the next card will be");
System.out.println("higher or lower. Your score in the game is the");
System.out.println("number of correct predictions you make before");
System.out.println("you guess wrong.");
System.out.println();
int gamesPlayed = 0; // Number of games user has played.
int sumOfScores = 0; // The sum of all the scores from

// all the games played.
double averageScore; // Average score, computed by dividing

// sumOfScores by gamesPlayed.
boolean playAgain; // Record user’s response when user is

do {
int

// asked whether he wants to play
// another game.

scoreThisGame; // Score for one game.

scoreThisGame = play(); // Play the game and get the score.
sumOfScores += scoreThisGame;
gamesPlayed++;
System.out.print("Play again? ");
playAgain = TextIO.getlnBoolean();
} while (playAgain);

averageScore = ((double)sumOfScores) / gamesPlayed;

System

System

System
} // end
/%%

.out.println();

.out.println("You played " + gamesPlayed + " games.");
.out.printf ("Your average score was %1.3f.\n", averageScore);
main()

* Lets the user play one game of Highlow, and returns the

* user’s

score in that game. The score is the number of

* correct guesses that the user makes.

*/

private static int play() {

Deck deck = new Deck(); // Get a new deck of cards, and

// store a reference to it in
// the variable, deck.

Card currentCard; // The current card, which the user sees.

Card nextCard; // The next card in the deck. The user tries
// to predict whether this is higher or lower
// than the current card.

int correctGuesses ; // The number of correct predictions the

// user has made. At the end of the game,
// this will be the user’s score.

char guess; // The user’s guess. ’H’ if the user predicts that

CHAPTER 5. OBJECTS AND CLASSES 236

// the next card will be higher, ’L’ if the user
// predicts that it will be lower.

deck.shuffle(); // Shuffle the deck into a random order before
// starting the game.

correctGuesses = 0;
currentCard = deck.dealCard();
System.out.println("The first card is the " + currentCard);

while (true) { // Loop ends when user’s prediction is wrong.
/* Get the user’s prediction, ’H’ or ’L’ (or ’h’ or ’1’). %/

System.out.print ("Will the next card be higher (H) or lower (L)? ");
do {
guess = TextIO0.getlnChar();
guess = Character.toUpperCase(guess);
if (guess != ’H’ && guess != ’L’)
System.out.print ("Please respond with H or L: ");
} while (guess != ’H’ && guess != ’L’);

/* Get the next card and show it to the user. */

nextCard = deck.dealCard();
System.out.println("The next card is " + nextCard);

/* Check the user’s prediction. */

if (nextCard.getValue() == currentCard.getValue()) {
System.out.println("The value is the same as the previous card.");
System.out.println("You lose on ties. Sorry!");
break; // End the game.

}
else if (nextCard.getValue() > currentCard.getValue()) {
if (guess == ’H’) {
System.out.println("Your prediction was correct.");
correctGuesses++;
}
else {
System.out.println("Your prediction was incorrect.");
break; // End the game.
}
}
else { // nextCard is lower
if (guess == ’L’) {
System.out.println("Your prediction was correct.");
correctGuesses++;
}
else {
System.out.println("Your prediction was incorrect.");
break; // End the game.
}
}

/* To set up for the next iteration of the loop, the nextCard
becomes the currentCard, since the currentCard has to be
the card that the user sees, and the nextCard will be

CHAPTER 5. OBJECTS AND CLASSES 237

set to the next card in the deck after the user makes
his prediction. */

currentCard = nextCard;
System.out.println();
System.out.println("The card is " + currentCard);

} // end of while loop

System.out.println();
System.out.println("The game is over.");
System.out.println("You made " + correctGuesses
+ " correct predictions.");
System.out.println();

return correctGuesses;

} // end play(Q)

} // end class HighLow

5.5 Inheritance, Polymorphism, and Abstract Classes

A CLASS REPRESENTS A SET OF OBJECTS which share the same structure and behaviors.
The class determines the structure of objects by specifying variables that are contained in each
instance of the class, and it determines behavior by providing the instance methods that express
the behavior of the objects. This is a powerful idea. However, something like this can be done
in most programming languages. The central new idea in object-oriented programming—the
idea that really distinguishes it from traditional programming—is to allow classes to express
the similarities among objects that share some, but not all, of their structure and behavior.
Such similarities can be expressed using inheritance and polymorphism.

5.5.1 Extending Existing Classes

Any programmer should know what is meant by subclass, inheritance, and polymorphism.
However, it will probably be a while before you actually do anything with inheritance except
for extending classes that already exist. In the first part of this section, we look at how that is
done.

In day-to-day programming, especially for programmers who are just beginning to work
with objects, subclassing is used mainly in one situation: There is an existing class that can be
adapted with a few changes or additions. This is much more common than designing groups of
classes and subclasses from scratch. The existing class can be extended to make a subclass.
The syntax for this is

public class (subclass-name) extends (ezisting-class-name) {
// Changes and additioms.

3

As an example, suppose you want to write a program that plays the card game, Blackjack.
You can use the Card, Hand, and Deck classes developed in Section 5.4. However, a hand in the
game of Blackjack is a little different from a hand of cards in general, since it must be possible

CHAPTER 5. OBJECTS AND CLASSES 238

to compute the “value” of a Blackjack hand according to the rules of the game. The rules are
as follows: The value of a hand is obtained by adding up the values of the cards in the hand.
The value of a numeric card such as a three or a ten is its numerical value. The value of a Jack,
Queen, or King is 10. The value of an Ace can be either 1 or 11. An Ace should be counted
as 11 unless doing so would put the total value of the hand over 21. Note that this means that
the second, third, or fourth Ace in the hand will always be counted as 1.

One way to handle this is to extend the existing Hand class by adding a method that
computes the Blackjack value of the hand. Here’s the definition of such a class:

public class BlackjackHand extends Hand {
/**

* Computes and returns the value of this hand in the game
* of Blackjack.
*/

public int getBlackjackValue() {

int val; // The value computed for the hand.

boolean ace; // This will be set to true if the
// hand contains an ace.

int cards; // Number of cards in the hand.

val = 0;
ace = false;
cards = getCardCount(); // (method defined in class Hand.)

for (int i = 0; i < cards; i++) {
// Add the value of the i-th card in the hand.
Card card; // The i-th card;
int cardVal; // The blackjack value of the i-th card.
card = getCard(i);
cardVal = card.getValue(); // The normal value, 1 to 13.
if (cardVal > 10) {
cardVal = 10; // For a Jack, Queen, or King.

}
if (cardvVal == 1) {

ace = true; // There is at least one ace.
}

val = val + cardVal;

}

// Now, val is the value of the hand, counting any ace as 1.
// If there is an ace, and if changing its value from 1 to
// 11 would leave the score less than or equal to 21,

// then do so by adding the extra 10 points to val.

if (ace == true && wval + 10 <= 21)
val = val + 10;

return val;
} // end getBlackjackValue()

} // end class BlackjackHand

CHAPTER 5. OBJECTS AND CLASSES 239

Since BlackjackHand is a subclass of Hand, an object of type BlackjackHand contains
all the instance variables and instance methods defined in Hand, plus the new in-
stance method named getBlackjackValue(). For example, if bjh is a variable of type
BlackjackHand, then the following are all legal: bjh.getCardCount (), bjh.removeCard(0),
and bjh.getBlackjackValue (). The first two methods are defined in Hand, but are inherited
by BlackjackHand.

Variables and methods from the Hand class are inherited by BlackjackHand, and they can
be used in the definition of BlackjackHand just as if they were actually defined in that class—
except for any that are declared to be private, which prevents access even by subclasses. The
statement “cards = getCardCount();” in the above definition of getBlackjackValue() calls
the instance method getCardCount (), which was defined in Hand.

Extending existing classes is an easy way to build on previous work. We’ll see that many
standard classes have been written specifically to be used as the basis for making subclasses.

N 3

Access modifiers such as public and private are used to control access to members of a
class. There is one more access modifier, protected, that comes into the picture when subclasses
are taken into consideration. When protected is applied as an access modifier to a method or
member variable in a class, that member can be used in subclasses—direct or indirect—of the
class in which it is defined, but it cannot be used in non-subclasses. (There is an exception:
A protected member can also be accessed by any class in the same package as the class that
contains the protected member. Recall that using no access modifier makes a member accessible
to classes in the same package, and nowhere else. Using the protected modifier is strictly more
liberal than using no modifier at all: It allows access from classes in the same package and from
subclasses that are not in the same package.)

When you declare a method or member variable to be protected, you are saying that it
is part of the implementation of the class, rather than part of the public interface of the class.
However, you are allowing subclasses to use and modify that part of the implementation.

For example, consider a PairOfDice class that has instance variables diel and die2 to
represent the numbers appearing on the two dice. We could make those variables private to
make it impossible to change their values from outside the class, while still allowing read access
through getter methods. However, if we think it possible that PairOfDice will be used to create
subclasses, we might want to make it possible for subclasses to change the numbers on the dice.
For example, a GraphicalDice subclass that draws the dice might want to change the numbers
at other times besides when the dice are rolled. In that case, we could make diel and die2
protected, which would allow the subclass to change their values without making them public
to the rest of the world. (An even better idea would be to define protected setter methods for
the variables. A setter method could, for example, ensure that the value that is being assigned
to the variable is in the legal range 1 through 6.)

5.5.2 Inheritance and Class Hierarchy

The term tnheritance refers to the fact that one class can inherit part or all of its structure
and behavior from another class. The class that does the inheriting is said to be a subclass of
the class from which it inherits. If class B is a subclass of class A, we also say that class A is a
superclass of class B. (Sometimes the terms derived class and base class are used instead
of subclass and superclass; this is the common terminology in C++.) A subclass can add to the
structure and behavior that it inherits. It can also replace or modify inherited behavior (though

CHAPTER 5. OBJECTS AND CLASSES 240

not inherited structure). The relationship between subclass and superclass is sometimes shown
by a diagram in which the subclass is shown below, and connected to, its superclass, as shown
on the left below:

class A class A
(superclass)
class B I class C I class D I
class B

(subclass)
| class E I

In Java, to create a class named “B” as a subclass of a class named “A”, you would write

class B extends A {

// additions to, and modifications of,
// stuff inherited from class A

}

Several classes can be declared as subclasses of the same superclass. The subclasses, which
might be referred to as “sibling classes,” share some structures and behaviors—namely, the ones
they inherit from their common superclass. The superclass expresses these shared structures
and behaviors. In the diagram shown on the right above, classes B, C, and D are sibling classes.
Inheritance can also extend over several “generations” of classes. This is shown in the diagram,
where class E is a subclass of class D which is itself a subclass of class A. In this case, class E
is considered to be a subclass of class A, even though it is not a direct subclass. This whole set
of classes forms a small class hierarchy.

5.5.3 Example: Vehicles

Let’s look at an example. Suppose that a program has to deal with motor vehicles, including
cars, trucks, and motorcycles. (This might be a program used by a Department of Motor
Vehicles to keep track of registrations.) The program could use a class named Vehicle to
represent all types of vehicles. Since cars, trucks, and motorcycles are types of vehicles, they
would be represented by subclasses of the Vehicle class, as shown in this class hierarchy diagram:

| Vehicle I

| Car I | Truck I IMotorcycleI

The Vehicle class would include instance variables such as registrationNumber and owner and
instance methods such as transferOwnership(). These are variables and methods common
to all vehicles. The three subclasses of Vehicle—Car, Truck, and Motorcycle—could then be
used to hold variables and methods specific to particular types of vehicles. The Car class
might add an instance variable numberOfDoors, the Truck class might have numberOfAxles,

CHAPTER 5. OBJECTS AND CLASSES 241

and the Motorcycle class could have a boolean variable hasSidecar. (Well, it could in theory
at least, even if it might give a chuckle to the people at the Department of Motor Vehicles.)
The declarations of these classes in a Java program would look, in outline, like this (although
they are likely to be defined in separate files and declared as public classes):

class Vehicle {
int registrationNumber;
Person owner; // (Assuming that a Person class has been defined!)
void transferOwnership(Person newQOwner) {

3

}

class Car extends Vehicle {
int numberOfDoors;

}

class Truck extends Vehicle {
int numberOfAxles;

3

class Motorcycle extends Vehicle {
boolean hasSidecar;

}

Suppose that myCar is a variable of type Car that has been declared and initialized with the
statement

Car myCar = new Car();

Given this declaration, a program could refer to myCar .number0fDoors, since numberOfDoors
is an instance variable in the class Car. But since class Car extends class Vehicle, a car also
has all the structure and behavior of a vehicle. This means that myCar.registrationNumber,
myCar .owner, and myCar.transferOwnership() also exist.

Now, in the real world, cars, trucks, and motorcycles are in fact vehicles. The same is true
in a program. That is, an object of type Car or Truck or Motorcycle is automatically an object
of type Vehicle too. This brings us to the following Important Fact:

A variable that can hold a reference
to an object of class A can also hold a reference
to an object belonging to any subclass of A.

The practical effect of this in our example is that an object of type Car can be assigned to a
variable of type Vehicle. That is, it would be legal to say
Vehicle myVehicle = myCar;

or even

Vehicle myVehicle = new Car();

CHAPTER 5. OBJECTS AND CLASSES 242

After either of these statements, the variable myVehicle holds a reference to a Vehicle object
that happens to be an instance of the subclass, Car. The object “remembers” that it is in fact
a Car, and not just a Vehicle. Information about the actual class of an object is stored as part
of that object. It is even possible to test whether a given object belongs to a given class, using
the instanceof operator. The test:

if (myVehicle instanceof Car)

determines whether the object referred to by myVehicle is in fact a car.
On the other hand, the assignment statement

myCar = myVehicle; // ERROR!

would be illegal because myVehicle could potentially refer to other types of vehicles that are
not cars. This is similar to a problem we saw previously in Subsection 2.5.6: The computer
will not allow you to assign an int value to a variable of type short, because not every int is a
short. Similarly, it will not allow you to assign a value of type Vehicle to a variable of type Car
because not every vehicle is a car. As in the case of ints and shorts, the solution here is to use
type-casting. If, for some reason, you happen to know that myVehicle does in fact refer to a
Car, you can use the type cast (Car)myVehicle to tell the computer to treat myVehicle as if
it were actually of type Car. So, you could say

myCar = (Car)myVehicle;

and you could even refer to ((Car)myVehicle).numberOfDoors. (The parentheses are
necessary because of precedence. The “.” has higher precedence than the type-cast, so
(Car)myVehicle.numberOfDoors would be read as (Car) (myVehicle.numberOfDoors), an at-
tempt to type-cast the int myVehicle.numberOfDoors into a Vehicle, which is impossible.)

As an example of how this could be used in a program, suppose that you want to print out
relevant data about the Vehicle referred to by myVehicle. If it’s a Car, you will want to print
out the car’s number0fDoors, but you can’t say myVehicle.numberOfDoors, since there is no
numberO0fDoors in the Vehicle class. But you could say:

System.out.println("Vehicle Data:");
System.out.println("Registration number:
+ myVehicle.registrationNumber) ;
if (myVehicle instanceof Car) {
System.out.println("Type of vehicle: Car");

Car c;
c = (Car)myVehicle; // Type-cast to get access to numberOfDoors!
System.out.println("Number of doors: " + c.numberOfDoors);

}
else if (myVehicle instanceof Truck) {
System.out.println("Type of vehicle: Truck");

Truck t;
t = (Truck)myVehicle; // Type-cast to get access to numberOfAxles!
System.out.println("Number of axles: " + t.numberOfAxles);

X
else if (myVehicle instanceof Motorcycle) {
System.out.println("Type of vehicle: Motorcycle");
Motorcycle m;
m = (Motorcycle)myVehicle; // Type-cast to get access to hasSidecar!
System.out.println("Has a sidecar: " + m.hasSidecar);

CHAPTER 5. OBJECTS AND CLASSES 243

Note that for object types, when the computer executes a program, it checks whether
type-casts are valid. So, for example, if myVehicle refers to an object of type Truck, then
the type cast (Car)myVehicle would be an error. When this happens, an exception of type
ClassCastException is thrown. This check is done at run time, not compile time, because the
actual type of the object referred to by myVehicle is not known when the program is compiled.
The code above avoids ClassCastExceptions by using instanceof to test the type of the variable
before doing a type cast.

5.5.4 Polymorphism

As another example, consider a program that deals with shapes drawn on the screen. Let’s say
that the shapes include rectangles, ovals, and roundrects of various colors. (A “roundrect” is
just a rectangle with rounded corners.)

S =3 00

Rectangles Ovals RoundRects

Three classes, Rectangle, Oval, and RoundRect, could be used to represent the three types of
shapes. These three classes would have a common superclass, Shape, to represent features that
all three shapes have in common. The Shape class could include instance variables to represent
the color, position, and size of a shape, and it could include instance methods for changing the
values of those properties. Changing the color, for example, might involve changing the value
of an instance variable, and then redrawing the shape in its new color:

class Shape {
Color color; // (must be imported from package javafx.scene.paint)

void setColor(Color newColor) {
// Method to change the color of the shape.
color = newColor; // change value of instance variable
redraw(); // redraw shape, which will appear in new color

}

void redraw() {
// method for drawing the shape
? 7 7 // what commands should go here?

// more instance variables and methods
} // end of class Shape

Now, you might see a problem here with the method redraw(). The problem is that each
different type of shape is drawn differently. The method setColor () can be called for any type
of shape. How does the computer know which shape to draw when it executes the redraw()?
Informally, we can answer the question like this: The computer executes redraw() by asking
the shape to redraw itself. Every shape object knows what it has to do to redraw itself.

In practice, this means that each of the specific shape classes has its own redraw() method:

CHAPTER 5. OBJECTS AND CLASSES 244

class Rectangle extends Shape {
void redraw() {
// commands for drawing a rectangle
}
. // possibly, more methods and variables

}

class Oval extends Shape {
void redraw() {
// commands for drawing an oval
}
. // possibly, more methods and variables

}

class RoundRect extends Shape {
void redraw() {
// commands for drawing a rounded rectangle
}
. // possibly, more methods and variables

}

Suppose that someShape is a variable of type Shape. Then it could refer to an object
of any of the types Rectangle, Oval, or RoundRect. As a program executes, and the value of
someShape changes, it could even refer to objects of different types at different times! Whenever
the statement

someShape.redraw() ;

is executed, the redraw method that is actually called is the one appropriate for the type of
object to which someShape actually refers. There may be no way of telling, from looking at the
text of the program, what shape this statement will draw, since it depends on the value that
someShape happens to have when the program is executed. Even more is true. Suppose the
statement is in a loop and gets executed many times. If the value of someShape changes as the
loop is executed, it is possible that the very same statement “someShape.redraw();” will call
different methods and draw different kinds of shapes as it is executed several times. We say that
the redraw() method is polymorphic. A method is polymorphic if the action performed by
the method depends on the actual type of the object to which the method is applied at run time.
Polymorphism is one of the major distinguishing features of object-oriented programming. This
can be seen most vividly, perhaps, if we have an array of shapes. Suppose that shapelist is
a variable of type Shape[], and that the array has already been created and filled with data.
Some of the elements in the array might be Rectangles, some might be Ovals, and some might
be RoundRects. We can draw all the shapes in the array by saying

for (int i = 0; i < shapelist.length; i++) {
Shape shape = shapelist[i];
shape.redraw() ;

}

As the computer goes through this loop, the statement shape.redraw() will sometimes draw
a rectangle, sometimes an oval, and sometimes a roundrect, depending on the type of object to
which array element number i refers.

Perhaps this becomes more understandable if we change our terminology a bit: In object-
oriented programming, calling a method is often referred to as sending a message to an object.
The object responds to the message by executing the appropriate method. The statement

CHAPTER 5. OBJECTS AND CLASSES 245

“someShape.redraw();” is a message to the object referred to by someShape. Since that
object knows what type of object it is, it knows how it should respond to the message. From
this point of view, the computer always executes “someShape.redraw();” in the same way: by
sending a message. The response to the message depends, naturally, on who receives it. From
this point of view, objects are active entities that send and receive messages, and polymorphism
is a natural, even necessary, part of this view. Polymorphism just means that different objects
can respond to the same message in different ways.

One of the most beautiful things about polymorphism is that it lets code that you write do
things that you didn’t even conceive of, at the time you wrote it. Suppose that I decide to add
beveled rectangles to the types of shapes my program can deal with. A beveled rectangle has

a triangle cut off each corner:

BeveledRects

To implement beveled rectangles, I can write a new subclass, BeveledRect, of class Shape
and give it its own redraw() method. Automatically, code that I wrote previously—such as
the statement someShape .redraw() —can now suddenly start drawing beveled rectangles, even
though the beveled rectangle class didn’t exist when I wrote the statement!

* koXk

In the statement “someShape.redraw();”, the redraw message is sent to the object
someShape. Look back at the method in the Shape class for changing the color of a shape:

void setColor(Color newColor) {
color = newColor; // change value of instance variable
redraw(); // redraw shape, which will appear in new color

}

A redraw message is sent here, but which object is it sent to? Well, the setColor method is
itself a message that was sent to some object. The answer is that the redraw message is sent to
that same object, the one that received the setColor message. If that object is a rectangle,
then it contains a redraw () method for drawing rectangles, and that is the one that is executed.
If the object is an oval, then the redraw() method from the Oval class is executed. This is what
you should expect, but it means that the “redraw();” statement in the setColor () method
does not necessarily call the redraw() method in the Shape class! The redraw() method that
is executed could be in any subclass of Shape. This is just another case of polymorphism.

5.5.5 Abstract Classes

Whenever a Rectangle, Oval, or RoundRect object has to draw itself, it is the redraw () method in
the appropriate class that is executed. This leaves open the question, What does the redraw ()
method in the Shape class do? How should it be defined?

CHAPTER 5. OBJECTS AND CLASSES 246

The answer may be surprising: We should leave it blank! The fact is that the class Shape
represents the abstract idea of a shape, and there is no way to draw such a thing. Only
particular, concrete shapes like rectangles and ovals can be drawn. So, why should there
even be a redraw() method in the Shape class? Well, it has to be there, or it would be
illegal to call it in the setColor () method of the Shape class, and it would be illegal to write
“someShape.redraw();”. The compiler would complain that someShape is a variable of type
Shape and there’s no redraw() method in the Shape class.

Nevertheless the version of redraw() in the Shape class itself will never actually be called.
In fact, if you think about it, there can never be any reason to construct an actual object of
type Shape! You can have variables of type Shape, but the objects they refer to will always
belong to one of the subclasses of Shape. We say that Shape is an abstract class. An abstract
class is one that is not used to construct objects, but only as a basis for making subclasses. An
abstract class exists only to express the common properties of all its subclasses. A class that
is not abstract is said to be concrete. You can create objects belonging to a concrete class,
but not to an abstract class. A variable whose type is given by an abstract class can only refer
to objects that belong to concrete subclasses of the abstract class.

Similarly, we say that the redraw() method in class Shape is an abstract method, since
it is never meant to be called. In fact, there is nothing for it to do—any actual redrawing is
done by redraw() methods in the subclasses of Shape. The redraw() method in Shape has
to be there. But it is there only to tell the computer that all Shapes understand the redraw
message. As an abstract method, it exists merely to specify the common interface of all the
actual, concrete versions of redraw() in the subclasses. There is no reason for the abstract
redraw() in class Shape to contain any code at all.

Shape and its redraw() method are semantically abstract. You can also tell the computer,
syntactically, that they are abstract by adding the modifier “abstract” to their definitions.
For an abstract method, the block of code that gives the implementation of an ordinary method
is replaced by a semicolon. An implementation must then be provided for the abstract method
in any concrete subclass of the abstract class. Here’s what the Shape class would look like as
an abstract class:

public abstract class Shape {
Color color; // color of shape.

void setColor(Color newColor) {
// method to change the color of the shape
color = newColor; // change value of instance variable
redraw(); // redraw shape, which will appear in new color

}

abstract void redraw();
// abstract method-—--must be defined in
// concrete subclasses

// more instance variables and methods
} // end of class Shape

Once you have declared the class to be abstract, it becomes illegal to try to create actual
objects of type Shape, and the computer will report a syntax error if you try to do so.

Note, by the way, that the Vehicle class discussed above would probably also be an abstract
class. There is no way to own a vehicle as such—the actual vehicle has to be a car or a truck

CHAPTER 5. OBJECTS AND CLASSES 247

or a motorcycle, or some other “concrete” type of vehicle.
Kk ok

Recall from Subsection 5.3.2 that a class that is not explicitly declared to be a subclass of
some other class is automatically made a subclass of the standard class Object. That is, a class
declaration with no “extends” part such as

public class myClass { .

is exactly equivalent to

public class myClass extends Object { .

This means that class Object is at the top of a huge class hierarchy that includes every
other class. (Semantically, Object is an abstract class, in fact the most abstract class of all.
Curiously, however, it is not declared to be abstract syntactically, which means that you can
create objects of type Object. However, there is not much that you can do with them.)

Since every class is a subclass of Object, a variable of type Object can refer to any object
whatsoever, of any type. Similarly, an array of type Object[] can hold objects of any type.

I 3

The sample source code file ShapeDraw.java uses an abstract Shape class and an array of
type Shape[] to hold a list of shapes. You might want to look at this file, even though you
won’t be able to understand all of it at this time. Even the definitions of the shape classes are
somewhat different from those that I have described in this section. (For example, the draw()
method has a parameter of type GraphicsContext. This parameter is required because drawing
in Java requires a graphics context.) I'll return to similar examples in later chapters when
you know more about GUI programming. However, it would still be worthwhile to look at the
definition of the Shape class and its subclasses in the source code. You might also check how
an array is used to hold the list of shapes. Here is a scaled-down screenshot from the program:

Clith bttons te add shapes: drag shapes with yuar mouse

Add anOvnl | Add s Rect Add s RoundRect | Green

If you run the ShapeDraw program, you can click one of the buttons along the bottom to
add a shape to the picture. The new shape will appear in the upper left corner of the drawing
area. The color of the shape is given by the “pop-up menu” of colors below the drawing area.
Once a shape is on the screen, you can drag it around with the mouse. A shape will maintain

http://math.hws.edu/eck/cs124/javanotes8/source/chapter5/ShapeDraw.java

CHAPTER 5. OBJECTS AND CLASSES 248

the same front-to-back order with respect to other shapes on the screen, even while you are
dragging it. However, you can move a shape out in front of all the other shapes if you hold
down the shift key as you click on it.

In the program, the only time when the actual class of a shape is used is when that shape is
added to the screen. Once the shape has been created, it is manipulated entirely as an abstract
shape. The routine that implements dragging, for example, works with variables of type Shape
and makes no reference to any of its subclasses. As the shape is being dragged, the dragging
routine just calls the shape’s draw method each time the shape has to be drawn, so it doesn’t
have to know how to draw the shape or even what type of shape it is. The object is responsible
for drawing itself. If I wanted to add a new type of shape to the program, I would define a
new subclass of Shape, add another button, and program the button to add the correct type of
shape to the screen. No other changes in the programming would be necessary.

5.6 this and super

A LTHOUGH THE BASIC IDEAS of object-oriented programming are reasonably simple and clear,
they are subtle, and they take time to get used to. And unfortunately, beyond the basic ideas
there are a lot of details. The rest of this chapter covers more of those annoying details.
Remember that you don’t need to master everything in this chapter the first time through. In
this section, we’ll look at two variables, this and super, that are automatically defined in any
instance method or constructor.

5.6.1 The Special Variable this

What does it mean when you use a simple identifier such as amount or process() to refer to a
variable or method? The answer depends on scope rules that tell where and how each declared
variable and method can be accessed in a program. Inside the definition of a method, a simple
variable name might refer to a local variable or parameter, if there is one “in scope,” that is,
one whose declaration is in effect at the point in the source code where the reference occurs. If
not, it must refer to a member variable of the class in which the reference occurs. Similarly, a
simple method name must refer to a method in the same class.

A static member of a class has a simple name that can only be used inside the class
definition; for use outside the class, it has a full name of the form (class-name).(simple-name).
For example, “Math.PI” is a static member variable with simple name “PI” in the class “Math”.
It’s always legal to use the full name of a static member, even within the class where it’s defined.
Sometimes it’s even necessary, as when the simple name of a static member variable is hidden
by a local variable or parameter of the same name.

Instance variables and instance methods also have simple names. The simple name of such
an instance member can be used in instance methods in the class where the instance member
is defined (but not in static methods). Instance members also have full names—but remember
that an instance variable or instance method is actually contained in an object rather than in
a class, and each object has its own version. A full name of an instance member starts with
a reference to the object that contains the instance member. For example, if std is a variable
that refers to an object of type Student, then std.testl could be a full name for an instance
variable named test1 that is contained in that object.

But when we are working inside a class and use a simple name to refer to an instance variable
like test1, where is the object that contains the variable? The solution to this riddle is simple:

CHAPTER 5. OBJECTS AND CLASSES 249

Suppose that a reference to “test1” occurs in the definition of some instance method. The
method is part of some particular object of type Student. When that method gets executed,
the occurrence of the name “test1” refers to the testl variable in that same object. (This
is why simple names of instance members cannot be used in static methods—when a static
method is executed, it is not part of an object, and hence there are no instance members in
sight!)

This leaves open the question of full names for instance members inside the same class
where they are defined. We need a way to refer to “the object that contains this method.” Java
defines a special variable named this for just this purpose. The variable this can be used in
the source code of an instance method to refer to the object that contains the method. This
intent of the name, “this,” is to refer to “this object,” the one right here that this very method
is in. If var is an instance variable in the same object as the method, then “this.var” is a
full name for that variable. If otherMethod() is an instance method in the same object, then
this.otherMethod () could be used to call that method. Whenever the computer executes an
instance method, it automatically sets the variable this to refer to the object that contains the
method.

(Some object oriented languages use the name “self” instead of “this.” Here, an object is seen
as an entity that receives messages and responds by performing some action. From the point
of view of that entity, an instance variable such as self .name refers to the entity’s own name,
something that is part of the entity itself. Calling an instance method such as self.redraw()
is like saying “message to self: redraw!”)

One common use of this is in constructors. For example:

public class Student {
private String name; // Name of the student.

public Student(String name) {
// Constructor. Create a student with specified name.
this.name = name;

// More variables and methods.

3

In the constructor, the instance variable called name is hidden by a formal parameter that is also
called “name.” However, the instance variable can still be referred to by its full name, which
is this.name. In the assignment statement “this.name = name”, the “name” on the right is
the formal parameter, and the value of that formal parameter is being assigned to the instance
variable, this.name. This is considered to be acceptable style: There is no need to dream up
cute new names for formal parameters that are just used to initialize instance variables. You
can use the same name for the parameter as for the instance variable.

There are other uses for this. Sometimes, when you are writing an instance method, you
need to pass the object that contains the method to a subroutine, as an actual parameter. In
that case, you can use this as the actual parameter. For example, if you wanted to print out
a string representation of the object, you could say “System.out.println(this);”. Or you
could assign the value of this to another variable in an assignment statement. You can store it
in an array. In fact, you can do anything with this that you could do with any other variable,
except change its value. (Consider it to be a final variable.)

CHAPTER 5. OBJECTS AND CLASSES 250

5.6.2 The Special Variable super

Java also defines another special variable, named “super”, for use in the definitions of instance
methods. The variable super is for use in a subclass. Like this, super refers to the object
that contains the method. But it’s forgetful. It forgets that the object belongs to the class you
are writing, and it remembers only that it belongs to the superclass of that class. The point is
that the class can contain additions and modifications to the superclass. super doesn’t know
about any of those additions and modifications; it can only be used to refer to methods and
variables in the superclass.

Let’s say that the class that you are writing contains an instance method named
doSomething (). Consider the subroutine call statement super.doSomething(). Now, super
doesn’t know anything about the doSomething() method in the subclass. It only knows
about things in the superclass, so it tries to execute a method named doSomething() from
the superclass. If there is none—if the doSomething() method was an addition rather than a
modification—you’ll get a syntax error.

The reason super exists is so you can get access to things in the superclass that are hidden
by things in the subclass. For example, super.var always refers to an instance variable named
var in the superclass. This can be useful for the following reason: If a class contains an instance
variable with the same name as an instance variable in its superclass, then an object of that
class will actually contain two variables with the same name: one defined as part of the class
itself and one defined as part of the superclass. The variable in the subclass does not replace
the variable of the same name in the superclass; it merely hides it. The variable from the
superclass can still be accessed, using super.

When a subclass contains an instance method that has the same signature as a method in
its superclass, the method from the superclass is hidden in the same way. We say that the
method in the subclass overrides the method from the superclass. Again, however, super can
be used to access the method from the superclass.

The major use of super is to override a method with a new method that extends the
behavior of the inherited method, instead of replacing that behavior entirely. The new method
can use super to call the method from the superclass, and then it can add additional code to
provide additional behavior. As an example, suppose you have a PairOfDice class that includes
a roll() method. Suppose that you want a subclass, GraphicalDice, to represent a pair of
dice drawn on the computer screen. The roll() method in the GraphicalDice class should do
everything that the rol1() method in the PairOfDice class does. We can express this with a
call to super.roll(), which calls the method in the superclass. But in addition to that, the
ro0ll1 () method for a GraphicalDice object has to redraw the dice to show the new values. The
GraphicalDice class might look something like this:

public class GraphicalDice extends PairOfDice {

public void roll() {
// Roll the dice, and redraw them.
super.roll(); // Call the roll method from PairOfDice.
redraw() ; // Call a method to draw the dice.

// More stuff, including definition of redraw().

CHAPTER 5. OBJECTS AND CLASSES 251

Note that this allows you to extend the behavior of the ro11() method even if you don’t know
how the method is implemented in the superclass!

5.6.3 super and this As Constructors

Constructors are not inherited. That is, if you extend an existing class to make a subclass, the
constructors in the superclass do not become part of the subclass. If you want constructors in
the subclass, you have to define new ones from scratch. If you don’t define any constructors
in the subclass, then the computer will make up a default constructor, with no parameters, for
you.

This could be a problem, if there is a constructor in the superclass that does a lot of necessary
work. It looks like you might have to repeat all that work in the subclass! This could be a
real problem if you don’t have the source code to the superclass, and don’t even know how it
is implemented. It might look like an impossible problem, if the constructor in the superclass
uses private member variables that you don’t even have access to in the subclass!

Obviously, there has to be some fix for this, and there is. It involves the special variable,
super. As the very first statement in a constructor, you can use super to call a constructor
from the superclass. The notation for this is a bit ugly and misleading, and it can only be used
in this one particular circumstance: It looks like you are calling super as a subroutine (even
though super is not a subroutine and you can’t call constructors the same way you call other
subroutines anyway). As an example, assume that the PairOfDice class has a constructor that
takes two integers as parameters. Consider a subclass:

public class GraphicalDice extends PairQOfDice {
public GraphicalDice() { // Constructor for this class.

super(3,4); // Call the constructor from the
// PairOfDice class, with parameters 3, 4.

initializeGraphics(); // Do some initialization specific
// to the GraphicalDice class.

// More constructors, methods, variables...

}

The statement “super(3,4);” calls the constructor from the superclass. This call must
be the first line of the constructor in the subclass. Note that if you don’t explicitly call a
constructor from the superclass in this way, then the default constructor from the superclass,
the one with no parameters, will be called automatically. (And if no such constructor exists in
the superclass, the compiler will consider it to be a syntax error.)

You can use the special variable this in exactly the same way to call another constructor
in the same class. That is, the very first line of a constructor can look like a subroutine call
with “this” as the name of the subroutine. The result is that the body of another constructor
in the same class is executed. This can be very useful since it can save you from repeating the
same code in several different constructors. As an example, consider MosaicCanvas.java, which
was used indirectly in Section 4.7. A MosaicCanvas represents a grid of colored rectangles. It
has a constructor with four parameters:

public MosaicCanvas(int rows, int columns,
int preferredBlockWidth, int preferredBlockHeight)

http://math.hws.edu/eck/cs124/javanotes8/source/chapter4/MosaicCanvas.java

CHAPTER 5. OBJECTS AND CLASSES 252

This constructor provides several options and does a lot of initialization. I wanted to provide
easier-to-use constructors with fewer options, but all the initialization still has to be done. The
class also contains these constructors:

public MosaicCanvas() {
this(42,42);
}

public MosaicCanvas(int rows, int columns) {
this(rows,columns,16,16);

3

Each of these constructors exists just to call another constructor, while providing constant
values for some of the parameters. For example, this(42,42) calls the second constructor
listed here, while that constructor in turn calls the main, four-parameter constructor. That
main constructor is eventually called in all cases, so that all the essential initialization gets
done in every case.

5.7 Interfaces

Some object-oriented programming languages, such as C++, allow a class to extend two or
more superclasses. This is called multiple inheritance. In the illustration below, for example,
class E is shown as having both class A and class B as direct superclasses, while class F has
three direct superclasses.

| class A I | class B I

Multiple inheritance (NOT allowed in Java)

Such multiple inheritance is not allowed in Java. The designers of Java wanted to keep the
language reasonably simple, and felt that the benefits of multiple inheritance were not worth the
cost in increased complexity. However, Java does have a feature that can be used to accomplish
many of the same goals as multiple inheritance: interfaces. We have already encountered
“functional interfaces” in Section 4.5 in connection with lambda expressions. A functional
interface specifies a single method. However, interfaces can be much more complicated than
that, and they have many other uses.

You are not likely to need to write your own interfaces until you get to the point of writing
fairly complex programs. However, there are several interfaces that are used in important ways
in Java’s standard packages, and you will need to learn how to use them.

CHAPTER 5. OBJECTS AND CLASSES 253

5.7.1 Defining and Implementing Interfaces

We encountered the term “interface” in other contexts, in connection with black boxes in
general and subroutines in particular. The interface of a subroutine consists of the name of the
subroutine, its return type, and the number and types of its parameters. This is the information
you need to know if you want to call the subroutine. A subroutine also has an implementation:
the block of code which defines it and which is executed when the subroutine is called.

In Java, interface is a reserved word with an additional, technical meaning. An
“interface” in this sense consists of a set of instance method interfaces, without any as-
sociated implementations. (Actually, a Java interface can contain other things as well, as we’ll
see later.) A class can implement an interface by providing an implementation for each of
the methods specified by the interface. Here is an example of a very simple Java interface:

public interface Strokeable {
public void stroke(GraphicsContext g);
}

This looks much like a class definition, except that the implementation of the stroke () method
is omitted. A class that implements the interface Strokeable must provide an implementation
for stroke (). Of course, the class can also include other methods and variables. For example,

public class Line implements Strokeable {
public void stroke(GraphicsContext g) {
. // do something---presumably, draw a line

3

. // other methods, variables, and constructors

}

Note that to implement an interface, a class must do more than simply provide an implemen-
tation for each method in the interface; it must also state that it implements the interface,
using the reserved word implements as in this example: “public class Line implements
Strokeable”. Any concrete class that implements the Strokeable interface must define a
stroke () instance method. Any object created from such a class includes a stroke () method.
We say that an object implements an interface if it belongs to a class that implements the
interface. For example, any object of type Line implements the Strokeable interface.

While a class can extend only one other class, it can implement any number of interfaces.
In fact, a class can both extend one other class and implement one or more interfaces. So, we
can have things like

class FilledCircle extends Circle
implements Strokeable, Fillable {

3

The point of all this is that, although interfaces are not classes, they are something very
similar. An interface is very much like an abstract class, that is, a class that can never be used
for constructing objects, but can be used as a basis for making subclasses. The subroutines
in an interface are abstract methods, which must be implemented in any concrete class that
implements the interface. You can compare the Strokeable interface with the abstract class

public abstract class AbstractStrokeable {
public abstract void stroke(GraphicsContext g);

}

CHAPTER 5. OBJECTS AND CLASSES 254

The main difference is that a class that extends AbstractStrokeable cannot extend any other
class, while a class that implements Strokeable can also extend some class, as well as implement
other interfaces. Of course, an abstract class can contain non-abstract methods as well as
abstract methods. An interface is like a “pure” abstract class, which contains only abstract
methods.

Note that the methods declared in an interface must be public and abstract. In fact, since
that is the only option, it is not necessary to specify either of these modifiers in the declaration.

In addition to method declarations, an interface can also include variable declarations. The
variables must be "public static final" and effectively become public static final variables
in every class that implements the interface. In fact, since the variables can only be public and
static and final, specifying the modifiers is optional. For example,

public interface ConversionFactors {
int INCHES_PER_FOOT = 12;
int FEET_PER_YARD = 3;
int YARDS_PER_MILE = 1760;

3

This is a convenient way to define named constants that can be used in several classes. A class
that implements ConversionFactors can use the constants defined in the interface as if they were
defined in the class.

Note in particular that any variable that is defined in an interface is a constant. It’s not
really a variable at all. An interface cannot add instance variables to the classes that implement
it.

An interface can extend one or more other interfaces. For example, if Strokeable is the
interface given above and Fillable is an interface that defines a method £i11(g), then we could
define

public interface Drawable extends Strokeable, Fillable {
// (more methods/constants could be defined here)

3

A concrete class that implements Drawable must then provide implementations for the stroke ()
method from Strokeable and the draw() method from Fillable, as well as for any abstract
methods specified directly in the Drawable interface.

An interface is usually defined in its own .java file, whose name must match the name of
the interface. For example, Strokeable would be defined in a file named Strokeable. java.
Just like a class, an interface can be in a package and can import things from other packages.

5.7.2 Default Methods

Starting in Java 8, interfaces can contain default methods. Unlike the usual abstract methods
in interfaces, a default method has an implementation. When a class implements the interface,
it does not have to provide an implementation for the default method—although it can do so
if it wants to provide a different implementation. Essentially, default methods are inherited
from interfaces in much the same way that ordinary methods are inherited from classes. This
moves Java partway towards supporting multiple inheritance. It’s not true multiple inheritance,
however, since interfaces still cannot define instance variables. Default methods can call abstract
methods that are defined in the same interface, but they cannot refer to any instance variables.

Note that a functional interface can include default methods in addition to the single abstract
method that it specified.

CHAPTER 5. OBJECTS AND CLASSES 255

A default method in an interface must be marked with the modifier default. It can op-
tionally be marked public but, as for everything else in interfaces, default methods are auto-
matically public and the public modifier can be omitted. Here is an example:

public interface Readable { // represents a source of input
public char readChar(); // read the next character from the input

default public String readLine() { // read up to the next line feed
StringBuilder line = new StringBuilder();
char ch = readChar();
while (ch !'= ’\n’) {
line.append(ch);
ch = readChar();
}

return line.toString();

3

A concrete class that implements this interface must provide an implementation for readChar ().
It will inherit a definition for readLine () from the interface, but can provide a new definition if
necessary. When a class includes an implementation for a default method, the implementation
given in the class overrides the default method from the interface.

Note that the default readLine() calls the abstract method readChar (), whose definition
will only be provided in an implementing class. The reference to readChar () in the definition
is polymorphic. The default implementation of readLine() is one that would make sense
in almost any class that implements Readable. Here’s a rather silly example of a class that
implements Readable, including a main() routine that tests the class. Can you figure out what
it does?

public class Stars implements Readable {

public char readChar() {
if (Math.random() > 0.02)
return ’*’;
else
return ’\n’;

3

public static void main(String[] args) {
Stars stars = new Stars();
for (int i =0 ; i < 10; i++) {
String line = stars.readLine(); // Calls the default method!
System.out.println(line);

}

Default methods provide Java with a capability similar to something called a “mixin” in
other programming languages, namely the ability to mix functionality from another source into
a class. Since a class can implement several interfaces, it is possible to mix in functionality
from several different sources.

CHAPTER 5. OBJECTS AND CLASSES 256

5.7.3 Interfaces as Types

As with abstract classes, even though you can’t construct an object from an interface, you
can declare a variable whose type is given by the interface. For example, if Strokeable is the
interface given above, and if Line and Circle are classes that implement Strokeable, as above,
then you could say:

Strokeable figure; // Declare a variable of type Strokeable. It

// can refer to any object that implements the
// Strokeable interface.

figure = new Line(); // figure now refers to an object of class Line

figure.stroke(g); // calls stroke() method from class Line
figure = new Circle(); // Now, figure refers to an object

// of class Circle.
figure.stroke(g); // calls stroke() method from class Circle

A variable of type Strokeable can refer to any object of any class that implements the Stroke-
able interface. A statement like figure.stroke(g), above, is legal because figure is of type
Strokeable, and any Strokeable object has a stroke() method. So, whatever object figure
refers to, that object must have a stroke() method.

Note that a type is something that can be used to declare variables. A type can also be
used to specify the type of a parameter in a subroutine, or the return type of a function. In
Java, a type can be either a class, an interface, or one of the eight built-in primitive types.
These are the only possibilities (given a few special cases, such as an enum, which is considered
to be a special kind of class). Of these, however, only classes can be used to construct new
objects.

An interface can also be the base type of an array. For example, we can use an array type
Strokeable[] to declare variables and create arrays. The elements of the array can refer to any
objects that implement the Strokeable interface:

Strokeable[] listOfFigures;
listOfFigures = new Strokeable[10];
listOfFigures[0] = new Line();
listOfFigures[1] = new Circle();
listOfFigures[2] new Line();

Every element of the array will then have a stroke() method, so that we can say things like
listOfFigures[i] .stroke(g).

5.8 Nested Classes

A CLASS SEEMS LIKE IT SHOULD BE a pretty important thing. A class is a high-level building
block of a program, representing a potentially complex idea and its associated data and behav-
iors. I've always felt a bit silly writing tiny little classes that exist only to group a few scraps of
data together. However, such trivial classes are often useful and even essential. Fortunately, in
Java, I can ease the embarrassment, because one class can be nested inside another class. My
trivial little class doesn’t have to stand on its own. It becomes part of a larger more respectable
class. This is particularly useful when you want to create a little class specifically to support

CHAPTER 5. OBJECTS AND CLASSES 257

the work of a larger class. And, more seriously, there are other good reasons for nesting the
definition of one class inside another class.

In Java, a nested class is any class whose definition is inside the definition of another
class. (In fact, a class can even be nested inside a method, which must, of course, itself be
inside a class.) Nested classes can be either named or anonymous. 1 will come back to the
topic of anonymous classes later in this section. A named nested class, like most other things
that occur in classes, can be either static or non-static. Interfaces, like classes, can be nested
inside class definitions and can be either static or non-static. (In fact, interface definitions can
contain static nested classes and interfaces, but that is not something that you will see in this
textbook.)

5.8.1 Static Nested Classes

The definition of a static nested class looks just like the definition of any other class, except
that it is nested inside another class and it has the modifier static as part of its declaration.
A static nested class is part of the static structure of the containing class. It can be used inside
that class to create objects in the usual way. If it is used outside the containing class, its name
must indicate its membership in the containing class. That is, the full name of the static nested
class consists of the name of the class in which it is nested, followed by a period, followed by
the name of the nested class. This is similar to other static components of a class: A static
nested class is part of the class itself in the same way that static member variables are parts of
the class itself.

For example, suppose a class named WireFrameModel represents a set of lines in three-
dimensional space. (Such models are used to represent three-dimensional objects in graphics
programs.) Suppose that the WireFrameModel class contains a static nested class, Line, that
represents a single line. The definition of the WireFrameModel class with its nested Line class
would look, in outline, like this:

public class WireFrameModel {
. // other members of the WireFrameModel class

static public class Line {
// Represents a line from the point (x1,y1,z1)
// to the point (x2,y2,z2) in 3-dimensional space.
double x1, y1, z1;
double x2, y2, z2;
} // end class Line

. // other members of the WireFrameModel class
} // end WireFrameModel

The full name of the nested class is WireFrameModel.Line. That name can be used, for example,
to declare variables. Inside the WireFrameModel class, a Line object would be created with the
constructor “new Line()”. Outside the class, “new WireFrameModel.Line()” would be used.

A static nested class has full access to the static members of the containing class, even to the
private members. Similarly, the containing class has full access to the members of the nested
class, even if they are marked private. This can be another motivation for declaring a nested
class, since it lets you give one class access to the private members of another class without
making those members generally available to other classes. Note also that a nested class can
itself be private, meaning that it can only be used inside the class in which it is nested.

CHAPTER 5. OBJECTS AND CLASSES 258

When you compile the above class definition, two class files will be created. Even though
the definition of Line is nested inside WireFrameModel, the compiled Line class is stored in a
separate file. The name of the class file for Line will be WireFrameModel$Line.class.

5.8.2 Inner Classes

Non-static nested classes are referred to as inner classes. Inner classes are not, in practice,
very different from static nested classes, but a non-static nested class is actually associated
with an object rather than with the class in which its definition is nested. This can take some
getting used to.

Any non-static member of a class is not really part of the class itself (although its source
code is contained in the class definition). This is true for inner classes, just as it is for any other
non-static part of a class. The non-static members of a class specify what will be contained in
objects that are created from that class. The same is true—at least logically—for inner classes.
It’s as if each object that belongs to the containing class has its own copy of the nested class
(although it does not literally contain a copy of the compiled code for the nested class). This
copy has access to all the instance methods and instance variables of the object, even to those
that are declared private. The two copies of the inner class in two different objects differ
because the instance variables and methods they refer to are in different objects. In fact, the
rule for deciding whether a nested class should be static or non-static is simple: If the nested
class needs to use any instance variable or instance method from the containing class, make the
nested class non-static. Otherwise, it might as well be static.

In most cases, an inner class is used only within the class where it is defined. When that
is true, using the inner class is really not much different from using any other class. You can
create variables and declare objects using the simple name of the inner class in the usual way
(although you can only do that in the non-static part of the class).

From outside the containing class, however, an inner class has to be referred to using a name
of the form (variableName).(NestedClassName), where (variableName) is a variable that refers
to the object that contains the inner class. In order to create an object that belongs to an inner
class, you must first have an object that belongs to the containing class. (When working inside
the class, the object “this” is used implicitly.)

Looking at an example will help, and will hopefully convince you that inner classes are
really very natural. Consider a class that represents poker games. This class might include a
nested class to represent the players of the game. The structure of the PokerGame class could
be:

public class PokerGame { // Represents a game of poker.

class Player { // Represents one of the players in this game.

} // end class Player

private Deck deck; // A deck of cards for playing the game.
private int pot; // The amount of money that has been bet.

} // end class PokerGame

CHAPTER 5. OBJECTS AND CLASSES 259

If game is a variable of type PokerGame, then, conceptually, game contains its own copy of
the Player class. In an instance method of a PokerGame object, a new Player object would
be created by saying “new Player()”, just as for any other class. (A Player object could be
created outside the PokerGame class with an expression such as “game.new Player()”. Again,
however, this is rare.) The Player object will have access to the deck and pot instance variables
in the PokerGame object. Each PokerGame object has its own deck and pot and Players.
Players of that poker game use the deck and pot for that game; players of another poker game
use the other game’s deck and pot. That’s the effect of making the Player class non-static.
This is the most natural way for players to behave. A Player object represents a player of one
particular poker game. If Player were an independent class or a static nested class, on the
other hand, it would represent the general idea of a poker player, independent of a particular
poker game.

5.8.3 Anonymous Inner Classes

In some cases, you might find yourself writing an inner class and then using that class in just a
single line of your program. Is it worth creating such a class? Indeed, it can be, but for cases
like this you have the option of using an anonymous inner class. An anonymous class is
created with a variation of the new operator that has the form

new (superclass-or-interface) ((parameter-list)) {
(methods-and-variables)

This constructor defines a new class, without giving it a name. At run time, it creates an
object that belongs to that class. This form of the new operator can be used in any statement
where a regular “new” could be used. The intention of this expression is to create: “a new object
belonging to a class that is the same as (superclass-or-interface) but with these (methods-and-
variables) added.” The effect is to create a uniquely customized object, just at the point in
the program where you need it. Note that it is possible to base an anonymous class on an
interface, rather than a class. In this case, the anonymous class must implement the interface
by defining all the methods that are declared in the interface. If an interface is used as a base,
the (pammeter—lz’st) must be empty. Otherwise, it can contain parameters for a constructor in
the (superclass).

For now, we will look at one not-very-plausible example. Suppose that Drawable is an
interface defined as:

public interface Drawable {
public void draw(GraphicsContext g);
}

Suppose that we want a Drawable object that draws a filled, red, 100-pixel square. Rather than
defining a new, separate class and then using that class to create the object, we can use an
anonymous class to create the object in one statement:

Drawable redSquare = new Drawable() {
public void draw(GraphicsContext g) {
g.setFill(Color.RED);
g.fillRect(10,10,100,100) ;

CHAPTER 5. OBJECTS AND CLASSES 260

Then redSquare refers to an object that implements Drawable and that draws a red square
when its draw() method is called. By the way, the semicolon at the end of the statement is not
part of the class definition; it’s the semicolon that is required at the end of every declaration
statement.

Anonymous classes are often used for actual parameters. For example, consider the following
simple method, which draws a Drawable in two different graphics contexts:

void drawTwice(GraphicsContext gl, GraphicsContext g2, Drawable figure) {
figure.draw(gl);
figure.draw(g2) ;

}

When calling this method, the third parameter can be created using an anonymous inner class.
For example:

drawTwice(firstG, secondG, mew Drawable() {
votd draw(GraphicsContext g) {
g.fill0val(10,10,100,100);
}
})

When a Java class is compiled, each anonymous nested class will produce a separate
class file. If the name of the main class is MainClass, for example, then the names of the
class files for the anonymous nested classes will be MainClass$1.class, MainClass$2.class,
MainClass$3.class, and so on.

Of course, in this example, Drawable is a functional interface, and we could use lambda
expressions (Section 4.5) instead of anonymous classes. The last example could then be written
simply

drawTwice(firstG, secondG, g -> g.fil11l0val(10,10,100,100));

and redSquare could be defined as

Drawable redSquare = g -> {
g.setFill(Color.RED);
g.fillRect(10,10,100,100);
};

This approach has the advantage that it does not create an extra .class file. However, lambda
expressions can only be used with functional interfaces, while anonymous classes can be used
with any interface or class. Before Java 8, anonymous classes were often used for handling
events in GUI programs. With Java 8 and JavaFX, they can be mostly replaced in that context
by lambda expressions.

5.8.4 Local Classes and Lambda Expressions

A class can be defined inside a subroutine definition. Such classes are called local classes. A
local class can only be used inside the subroutine where it is defined. However, an object that
is defined by a local class can be used outside that subroutine. It can be returned as the value
of the subroutine, or it can be passed as a parameter to another subroutine. This is possible
because an object belonging to some class B can be assigned to a variable of type A, as long
as B is a subclass of A or, if A is an interface, as long as class B implements interface A. For
example, if a subroutine takes a parameter of type Drawable, where Drawable is the interface

CHAPTER 5. OBJECTS AND CLASSES 261

defined above, then any object that implements Drawable can be passed as a parameter to that
subroutine. And that object can be defined by a local class.

In an example earlier in this section, we passed a customized object of type Drawable to the
drawTwice () method, which takes a parameter of type Drawable. In that example, the class
was an anonymous inner class. Local classes are often anonymous, but that is not required. It
is also true that anonymous classes are often local classes, but that is also not required. For
example, an anonymous class could be used to define the initial value of a global variable. In
that case, the anonymous class is not enclosed in any subroutine and therefore is not local.

The definition of a local class can use local variables from the subroutine where it is defined.
It can also use parameters to that subroutine. However, there is a restriction on the use of such
variables and parameters in a local class: The local variable or parameter must be declared
to be final or, if it is not explicitly declared final, then it must be “effectively final.” A
parameter is effectively final if its value is not changed inside the subroutine (including in any
local class that references the parameter). A local variable is effectively final if its value is never
changed after it is initialized. Note that there is no such restriction on global variables that are
used in the definition of a local class.

The same restriction on the use of local variables also applies to lambda expressions, which
are very similar to anonymous classes. Here is an example using the stream API and the
Runnable interface, which are discussed in Section 4.5. This subroutine will print out the
numbers 1 to 10 in some indeterminate order (since it uses a parallel stream):

static void printitol10() {
ArrayList<Runnable> printers = new ArrayList<>();
for (int i = 1; 1 <= 10; i++) {
int x = 1i;
printers.add(() -> System.out.println(x));
}
printers.parallelStream() .forEach(r -> r.run());

¥

The local variable x is effectively final and therefore can be used in the lambda expression.
On the other hand, it would have been illegal to use the variable i directly in the lambda
expression, since i is not effectively final; its value is changed when i++ is executed.

EXERCISES 262

Exercises for Chapter 5

1. In all versions of the PairOfDice class in Section 5.2, the instance variables diel and die2 (solution)

are declared to be public. They really should be private, so that they would be protected
from being changed from outside the class. Write another version of the PairOfDice class
in which the instance variables diel and die2 are private. Your class will need “getter”
methods that can be used to find out the values of diel and die2. (The idea is to protect
their values from being changed from outside the class, but still to allow the values to be
read.) Include other improvements in the class, including at least a toString() method.
Test your class with a short program that counts how many times a pair of dice is rolled,
before the total of the two dice is equal to two.

2. A common programming task is computing statistics of a set of numbers. (A statistic is (solution)

a number that summarizes some property of a set of data.) Common statistics include
the mean (also known as the average) and the standard deviation (which tells how spread
out the data are from the mean). I have written a little class called StatCalc that can be
used to compute these statistics, as well as the sum of the items in the dataset and the
number of items in the dataset. You can read the source code for this class in the file
StatCalc.java. If calc is a variable of type StatCalc, then the following instance methods
are available:

e calc.enter(item) where item is a number, adds the item to the dataset.

e calc.getCount () is a function that returns the number of items that have been
added to the dataset.

e calc.getSum() is a function that returns the sum of all the items that have been
added to the dataset.

e calc.getMean() is a function that returns the average of all the items.

e calc.getStandardDeviation() is a function that returns the standard deviation
of the items.

Typically, all the data are added one after the other by calling the enter() method
over and over, as the data become available. After all the data have been entered, any
of the other methods can be called to get statistical information about the data. The
methods getMean() and getStandardDeviation() should only be called if the number
of items is greater than zero.

Modify the current source code, StatCalc.java, to add instance methods getMax () and
getMin(). The getMax () method should return the largest of all the items that have been
added to the dataset, and getMin() should return the smallest. You will need to add two
new instance variables to keep track of the largest and smallest items that have been seen
so far.

Test your new class by using it in a program to compute statistics for a set of non-zero
numbers entered by the user. Start by creating an object of type StatCalc:

StatCalc calc; // Object to be used to process the data.
calc = new StatCalc();

Read numbers from the user and add them to the dataset. Use 0 as a sentinel value
(that is, stop reading numbers when the user enters 0). After all the user’s non-zero

http://math.hws.edu/eck/cs124/javanotes8/c5/ex1-ans.html
http://math.hws.edu/eck/cs124/javanotes8/c5/ex2-ans.html
http://math.hws.edu/eck/cs124/javanotes8/source/chapter5/StatCalc.java
http://math.hws.edu/eck/cs124/javanotes8/source/chapter5/StatCalc.java

EXERCISES 263

numbers have been entered, print out each of the six statistics that are available from
calc.

3. This problem uses the PairOfDice class from Exercise 5.1 and the StatCalc class from (solution)
Exercise 5.2.

The program in Exercise 4.4 performs the experiment of counting how many times a
pair of dice is rolled before a given total comes up. It repeats this experiment 10000 times
and then reports the average number of rolls. It does this whole process for each possible
total (2, 3, ..., 12).

Redo that exercise. But instead of just reporting the average number of rolls, you
should also report the standard deviation and the maximum number of rolls. Use a
PairOfDice object to represent the dice. Use a StatCalc object to compute the statistics.
(You’ll need a new StatCalc object for each possible total, 2, 3, ..., 12. You can use a
new pair of dice if you want, but it’s not required.)

4. The BlackjackHand class from Subsection 5.5.1 is an extension of the Hand class from Sec- (solution)
tion 5.4. The instance methods in the Hand class are discussed in that section. In addition
to those methods, BlackjackHand includes an instance method, getBlackjackValue(),
which returns the value of the hand for the game of Blackjack. For this exercise, you will
also need the Deck and Card classes from Section 5.4.

A Blackjack hand typically contains from two to six cards. Write a program to test the
BlackjackHand class. You should create a BlackjackHand object and a Deck object. Pick
a random number between 2 and 6. Deal that many cards from the deck and add them to
the hand. Print out all the cards in the hand, and then print out the value computed for
the hand by getBlackjackValue(). Repeat this as long as the user wants to continue.

In addition to TextlO.java, your program will depend on Card.java, Deck.java,
Hand.java, and BlackjackHand.java.

5. Write a program that lets the user play Blackjack. The game will be a simplified version (solution)
of Blackjack as it is played in a casino. The computer will act as the dealer. As in
the previous exercise, your program will need the classes defined in Card.java, Deck.java,
Hand.java, and BlackjackHand.java. (This is the longest and most complex program that
has come up so far in the exercises.)

You should first write a subroutine in which the user plays one game. The subroutine
should return a boolean value to indicate whether the user wins the game or not. Return
true if the user wins, false if the dealer wins. The program needs an object of class
Deck and two objects of type BlackjackHand, one for the dealer and one for the user.
The general object in Blackjack is to get a hand of cards whose value is as close to 21 as
possible, without going over. The game goes like this.

e First, two cards are dealt into each player’s hand. If the dealer’s hand has a value of
21 at this point, then the dealer wins. Otherwise, if the user has 21, then the user
wins. (This is called a “Blackjack”.) Note that the dealer wins on a tie, so if both
players have Blackjack, then the dealer wins.

e Now, if the game has not ended, the user gets a chance to add some cards to her
hand. In this phase, the user sees her own cards and sees one of the dealer’s two
cards. (In a casino, the dealer deals himself one card face up and one card face down.
All the user’s cards are dealt face up.) The user makes a decision whether to “Hit”,

http://math.hws.edu/eck/cs124/javanotes8/c5/ex3-ans.html
http://math.hws.edu/eck/cs124/javanotes8/c5/ex4-ans.html
http://math.hws.edu/eck/cs124/javanotes8/source/chapter5/textio/TextIO.java
http://math.hws.edu/eck/cs124/javanotes8/source/chapter5/Card.java
http://math.hws.edu/eck/cs124/javanotes8/source/chapter5/Deck.java
http://math.hws.edu/eck/cs124/javanotes8/source/chapter5/Hand.java
http://math.hws.edu/eck/cs124/javanotes8/source/chapter5/BlackjackHand.java
http://math.hws.edu/eck/cs124/javanotes8/c5/ex5-ans.html
http://math.hws.edu/eck/cs124/javanotes8/source/chapter5/Card.java
http://math.hws.edu/eck/cs124/javanotes8/source/chapter5/Deck.java
http://math.hws.edu/eck/cs124/javanotes8/source/chapter5/Hand.java
http://math.hws.edu/eck/cs124/javanotes8/source/chapter5/BlackjackHand.java

EXERCISES 264

which means to add another card to her hand, or to “Stand”, which means to stop
taking cards.

o If the user Hits, there is a possibility that the user will go over 21. In that case, the
game is over and the user loses. If not, then the process continues. The user gets to
decide again whether to Hit or Stand.

e If the user Stands, the game will end, but first the dealer gets a chance to draw cards.
The dealer only follows rules, without any choice. The rule is that as long as the
value of the dealer’s hand is less than or equal to 16, the dealer Hits (that is, takes
another card). The user should see all the dealer’s cards at this point. Now, the
winner can be determined: If the dealer has gone over 21, the user wins. Otherwise,
if the dealer’s total is greater than or equal to the user’s total, then the dealer wins.
Otherwise, the user wins.

Two notes on programming: At any point in the subroutine, as soon as you know who
the winner is, you can say “return true;” or “return false;” to end the subroutine
and return to the main program. To avoid having an overabundance of variables in your
subroutine, remember that a function call such as userHand.getBlackjackValue() can
be used anywhere that a number could be used, including in an output statement or in
the condition of an if statement.

Write a main program that lets the user play several games of Blackjack. To make
things interesting, give the user 100 dollars, and let the user make bets on the game. If
the user loses, subtract the bet from the user’s money. If the user wins, add an amount
equal to the bet to the user’s money. End the program when the user wants to quit or
when she runs out of money.

6. Exercise 4.8 asked you to write a program that administers a 10-question addition quiz. (solution)
Rewrite that program so that it uses the following class to represent addition questions:

public class AdditionQuestion {
private int a, b; // The numbers in the problem.

public AdditionQuestion() { // comstructor
a = (int) (Math.random() * 50 + 1);
b = (int) (Math.random() * 50);

}

public String getQuestion() {
return "What is " +a+ " + " + b+ " 7";

3

public int getCorrectAnswer() {
return a + b;

}

7. Rewrite the program from the previous exercise so that it administers a quiz with several (solution)
different kinds of questions. In the previous exercise, you used a class to represent addition
questions. For this exercise, you will use the following interface, or an equivalent abstract
class, to represent the more general idea of a question that has an integer as its answer:

http://math.hws.edu/eck/cs124/javanotes8/c5/ex6-ans.html
http://math.hws.edu/eck/cs124/javanotes8/c5/ex7-ans.html

EXERCISES 265

public interface IntQuestion {
public String getQuestion();
public int getCorrectAnswer();

}

You can make the AdditionQuestion class implement the interface simply by adding
“implements IntQuestion” to its definition. Write a similar class to represent subtrac-
tion questions. When creating a subtraction problem, you should make sure that the
answer is not negative.

For the new program, use an array of type IntQuestion[] to hold the quiz questions.
Include some addition questions and some subtraction questions in the quiz. You can also
add a couple non-math questions, including this one, created as an anonymous class:

IntQuestion bigQuestion = new IntQuestion() {
public String getQuestion() {
return "What is the answer to the ultimate question " +
" of life, the universe, and everything?";
}
public int getCorrectAnswer() {
return 42;
}
+;

Quiz

266

Quiz on Chapter 5

10.

11.

12.

13.

14.

. Object-oriented programming uses classes and objects. What are classes and what are

objects? What is the relationship between classes and objects?

. Explain carefully what null means in Java, and why this special value is necessary.
. What is a constructor? What is the purpose of a constructor in a class?

. Suppose that Kumquat is the name of a class and that fruit is a variable of type Kumquat.

What is the meaning of the statement “fruit = new Kumquat();”? That is, what does
the computer do when it executes this statement? (Try to give a complete answer. The
computer does several things.)

. What is meant by the terms instance variable and instance method?
. Explain what is meant by the terms subclass and superclass.

. Modify the following class so that the two instance variables are private and there is a

getter method and a setter method for each instance variable:

public class Player {
String name;
int score;

. Explain why the class Player that is defined in the previous question has an instance

method named toString(), even though no definition of this method appears in the
definition of the class.

. Explain the term polymorphism.

Java uses “garbage collection” for memory management. Explain what is meant here by
garbage collection. What is the alternative to garbage collection?

What is an abstract class, and how can you recognize an abstract class in Java?
What is this?

For this problem, you should write a very simple but complete class. The class represents
a counter that counts 0, 1, 2, 3, 4, The name of the class should be Counter. It has
one private instance variable representing the value of the counter. It has two instance
methods: increment () adds one to the counter value, and getValue () returns the current
counter value. Write a complete definition for the class, Counter.

This problem uses the Counter class from the previous question. The following program
segment is meant to simulate tossing a coin 100 times. It should use two Counter objects,
headCount and tailCount, to count the number of heads and the number of tails. Fill in
the blanks so that it will do so:

(answers)

http://math.hws.edu/eck/cs124/javanotes8/c5/quiz_answers.html

Quiz 267

Counter headCount, tailCount;
tailCount = new Counter();
headCount = new Counter();
for (int flip = 0; flip < 100; flip++) {
if (Math.random() < 0.5) // There’s a 50/50 chance that this is true.

; // Count a "head".

else

;// Count a "tail".

}
System.out.println("There were " + _______ + " heads.");

System.out.println("There were " + ___________________ + " tails.");

15. Explain why it can never make sense to test “if (obj.equals(null))”

Chapter 6

Introduction to GUI Programming

COMPUTER USERS TODAY EXPECT to interact with their computers using a graphical user
interface (GUI), and Java can be used to write sophisticated GUI programs.

GUI programs differ from traditional “straight-through” programs that you have encoun-
tered in the first few chapters of this book. One big difference is that GUI programs are
event-driven. That is, user actions such as clicking on a button or pressing a key on the
keyboard generate events, and the program must respond to these events as they occur.

Event-driven programming builds on all the skills you have learned in the first five chapters
of this text. You need to be able to write the methods that respond to events. Inside those
methods, you are doing the kind of programming-in-the-small that was covered in Chapter 2
and Chapter 3. And of course, objects are everywhere in GUI programming. Events are objects.
Colors and fonts are objects. GUI components such as buttons and menus are objects. Events
are handled by instance methods contained in objects. In Java, GUI programming is object-
oriented programming. The purpose of this chapter is, as much as anything, to give you some
experience with a large-scale object-oriented API.

Java has had several “toolkits” for building GUI program. This textbook uses JavaFX
as its toolkit. The previous version used the Swing GUI toolkit, and if you are interested in
learning Swing rather than JavaFX, you should consult Chapter 6 and Chapter 13 in that
version, which is still available at http://math.hws.edu/javanotes?.

This chapter is just an introduction to JavaFX, but it covers the essential features of GUI
programming in enough detail to write some interesting programs. The discussion of JavaFX
will continue in Chapter 13 with more details and with more advanced techniques, but complete
coverage of JavaF'X would require an entire book of its own.

Note that JavaFX is no longer being distributed as part of the Java Development Kit. For
information about how to obtain JavaFX and how to compile and run programs that use it,
see Section 2.6.

6.1 A Basic JavaFX Application

THE COMMAND-LINE PROGRAMS that you have learned how to write would seem very alien
to most computer users. The style of interaction where the user and the computer take turns
typing strings of text seems like something out of the early days of computing, although it was
only in the mid 1980s that home computers with graphical user interfaces started to become
available. Today, most people interact with their computers exclusively through a GUIL. A GUI
program offers a much richer type of user interface, where the user uses a mouse and keyboard

269

http://math.hws.edu/javanotes7

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 270

(or other input devices) to interact with GUI components such as windows, menus, buttons,
check boxes, text input boxes, scroll bars, and so on.

This section introduces some of the basic ideas of programming with JavaFX by looking
at a very simple GUI application. (“Application” is the preferred term for “program” in this
context.) The application simply displays a window containing a message and three buttons.
Here’s what the window looks like when it first opens:

JavaFX Test =

First FX Application!

Say Hello Say Goodbye Quit

Clicking “Say Hello” will get the computer to tell you, “Hello World!”. Clicking “Say Goodbye”
will change the text of the message to “Goodbye”. Clicking the “Quit” button will end the
application, which can also be ended by clicking the window’s close box.

6.1.1 JavaFX Applications

A JavaFX program (or “application”) is represented by an object of type Application, which
is defined in the package javafx.application. Application is an abstract class, which defines,
among other things, one abstract instance method, named start(). To create a JavaFX
program, you need to create a class that extends Application and provides a definition for the
start() method. (See Subsection 5.5.1 and Subsection 5.5.5.)

The class that you write to create a JavaFX application also typically includes a main()
method that simply “launches” the application:

public static void main(String[] args) {
launch(args) ;

}

When this main () routine is executed, the launch() method creates a new thread, called the
JavaFX application thread. Recall from Section 1.2 that a thread can execute a sequence of
instructions that can be run in parallel with other threads. It is important that anything that
affects the GUI be done on the JavaFX application thread. That will be pretty much automatic
for the things that we do in this chapter, but it’s something that will become important when
we cover threads in Chapter 12 and write some GUI programs that use several threads. The
launch() method then creates the object that represents the application; that object is an
instance of the class that contains the call to the launch() method. The start () method of
that object is then called on the JavaFX application thread, and it is the responsibility of that
start () method to set up the GUI and open a window on the screen. (Some versions of Java
can run a JavaF'X Application class even if the class does not contain a main() method of the
above form; however, it is best not to rely on that, and I will always include main() in my
JavaFX applications.)

Here, then is our first JavaFX application. We will spend the rest of this section discussing
it:

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 271

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.stage.Stage;

import javafx.application.Platform;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.HBox;
import javafx.geometry.Pos;

import javafx.scene.control.Label;
import javafx.scene.control.Button;
import javafx.scene.text.Font;

public class HelloWorldFX extends Application {
public void start(Stage stage) {

Label message = new Label("First FX Application!");
message.setFont (new Font (40));

Button helloButton = new Button("Say Hello");
helloButton.setOnAction(e -> message.setText("Hello World!"));
Button goodbyeButton = new Button("Say Goodbye");
goodbyeButton.setOnAction(e -> message.setText("Goodbye!!"));
Button quitButton = new Button("Quit");

quitButton.setOnAction(e -> Platform.exit());

HBox buttonBar = new HBox(20, helloButton, goodbyeButton, quitButton);
buttonBar.setAlignment (Pos.CENTER) ;

BorderPane root = new BorderPane();

root.setCenter (message) ;

root.setBottom(buttonBar) ;

Scene scene = new Scene(root, 450, 200);
stage.setScene(scene);
stage.setTitle("JavaFX Test");
stage.show();

} // end start();

public static void main(String[] args) {
launch(args); // Run this Application.
}

} // end class HelloWorldFX

The first thing that you will notice is the large number of imports at the start of the program,
all from subpackages of the javafx package. A typical JavaFX program uses many classes from
such packages. When I discuss a JavaFX class for the first time, I will usually mention the
package that it comes from. But in any case, you can look up the class in the JavaFX API
documentation. As I write this, it can be found at
https://docs.oracle.com/javase/8 /javafx /api/toc.htm

The HelloWorldFX program contains a main method to launch the application, and it con-
tains the required start () method. Of course, we will often add other methods to our applica-
tion classes, to be called by start (). There are also a couple other methods in Application that
can be overridden. In particular, there is an init (), that will be called by the system before
start (), and a stop() method that is called by the system when the application is shutting
down. These two methods are defined in class Application to do nothing. A programmer can

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 272

redefine init () to do some initialization and stop() to do cleanup. However, we will rarely if
ever need them. Any initialization that we need can be done in start ().

6.1.2 Stage, Scene, and SceneGraph

The start() method has a parameter of type Stage, from package javafx.stage. A Stage
object represents a window on the computer’s screen. The stage that is passed as a parameter
to start () is constructed by the system. It represents the main window of a program, and is
often referred to as the “primary stage.” A program can create other windows by constructing
new objects of type Stage.

A window is an area on the screen that can be filled with content. It can contain GUI
components such as menus, buttons, and text input boxes, as well as drawing areas like those
used in the graphical programs from Section 3.9. Although the primary stage is created before
start () is called, the window does not have any content, and it is not yet visible on the screen.
The start () method is responsible for adding content to the window and making it visible.
The very last line of start() in the HelloWorldFX program, stage.show(), is what makes the
window visible. The rest of the method creates content, adds the content to the window, and
sets various configuration options for the content and for the window itself. For example, the
line

stage.setTitle("JavaFX Test");

sets the text that will appear in the title bar at the top of the window.

A stage shows a scene, which fills its content area and serves as a container for the GUI
components in the window. A scene is represented by an object of type Scene. In the sample
program, the statement

stage.setScene(scene) ;

sets the scene that will be displayed in the content area of the stage.

A scene can be filled with things called GUI components, such as buttons and menu bars.
Each component is represented by an object belonging to a JavaFX class. For example, a push
button such as the “Say Hello” button in the sample program, is represented by an object be-
longing to the class Button, from the package javafx.scene.control. Some components, such
as the object buttonBar of type HBox, are containers. A container represents a region in the
window that can contain other components, including other containers. So, a window contains
GUI components, inside containers, which can be inside bigger containers, each represented by
an object. All of these objects make up something called the scene graph for the window.
The scene graph shows the containment relationships among all the components in the scene.
For the sample program, the scene graph looks like this:

root
(class BorderPane)

buttonBar
(class HBox)

message
(class Label)

HelloButton § |GoodbyeButto quitButton
(class Button) (class Button) (class Button)

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 273

Note that this is not a class hierarchy. It does not show the relationships among the classes of
the objects in the program; rather, it is a containment hierarchy that shows how the components
are contained within other components on the screen. In this scene graph, root and buttonBar
are containers while message and the three buttons are simple components.

A scene contains a single “root” component, which is a container that contains all of the
other components in the scene. In the sample program, the root component is named root
(although of course that is not required), and the root of the scene is set when the Scene object
is constructed:

Scene scene = new Scene(root, 450, 200);

The numbers in this constructor specify the width and the height of the scene, in pixels. The
numbers can be omitted, in which case the size will be computed based on the contents of the
scene.

6.1.3 Nodes and Layout

Objects that can be part of a scene graph are referred to as nodes. Scene graph nodes must
belong to one of the subclasses of javafx.scene.Node. Scene graph objects that can act as
containers must belong to one of the subclasses of javafx.scene.Parent, which is a subclass
of Node. The nodes that are contained in a parent are called children of that node. The root
node in a scene graph must be a Parent.

The buttons in HelloWorldFX are represented by objects of type Button, which is a subclass
of Parent. (We'll see later that buttons can actually contain other nodes.) The constructor that
is used to create the button objects specifies the text that is displayed on the button. Similarly,
message is a node of type Label, from package javafx.scene.control, whose purpose is simply
to passively display a String. One of the properties of a Label object is a font, which specifies
the size and style of the characters in the displayed string. The font for the text is set by calling
the label’s setFont () method. The Font constructor that is used in the sample program,
new Font (40), takes a parameter that specifies the size of the font.

Containers are Nodes which can have other nodes as children. The act of arranging a
container’s children on the screen is referred to as layout. Layout means setting the size and
location of the components inside the container. While it is possible for a program to set the
sizes and locations directly, it is more commonly done automatically by the container. Different
containers implement different layout policies. For example, an HBox is a container that simply
arranges the components that it contains in a horizontal row. In the constructor

HBox buttonBar = new HBox(20, helloButton, goodbyeButton, quitButton);

the first parameter specifies the size of a gap that the HBox will place between its children, and
the remaining parameters are nodes to be added as children of the container.

A BorderPane is a container that implements a completely different layout policy. A Bor-
derPane can contain up to five components, one in the center of the pane and up to four more
placed at the top, at the bottom, to the left, and to the right of the center. In the sample
program, the root of the scene is a BorderPane and components are added in the pane’s center
and bottom positions with the statements

root.setCenter (message) ;
root.setBottom(buttonBar) ;

Layout is configurable by a large number of options. The sample program has only one
example of this,

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 274

buttonBar.setAlignment (Pos.CENTER) ;

This command centers the buttons within the HBox; without it, they would be shoved over
to the left edge of the window. Pos, short for “position,” is an enumerated type (see Subsec-
tion 2.3.4). JavaFX uses many enumerated types for specifying various options.

6.1.4 Events and Event Handlers

In addition to setting up the physical layout of the window, the start() method configures
event handling. In HelloWorldFX, an event occurs when the user clicks one of the buttons.
The application must be configured to respond to, or “handle,” these events. Handling an event
involves two objects. The event itself is represented by an object that holds information about
the event. For a button click, the event is of type ActionEvent, and the information that it carries
is the button that was clicked. The second object is of type EventHandler, a functional interface
that defines a method handle(e), where the parameter, e, is the event object. To program a
response to an event, you can create a class that implements the EventHandler interface and
provides a definition for the handle() method. However, since EventHandler is a functional
interface, the handler can alternatively be specified as a lambda expression (see Section 4.5).
Lambda expressions are very commonly used in JavaFX for writing event handlers, among
other uses. For example, the lambda expression

e -> message.setText("Hello World!")

represents an event handler that responds to an event by changing the text of the message to
read “Hello World!”. The parameter, e, is the ActionEvent object that represents the event. In
this case, the parameter is not used in the response in any way, but it still has to be there to
satisfy the syntax of the lambda expression.

In addition to writing the event handler, you also have to register the handler with the
object that will produce the event. In this case, the object is helloButton, and the handler is
registered by calling the button’s setOnAction() method:

helloButton.setOnAction(e -> message.setText("Hello World!"));
Handlers for each of the other two buttons are set up in a similar way. Remember that in each
case, there is an object that generates the event in response to a user action, an object that

represents the event, and an event handler that contains the code that is executed in response
to the event. This diagram summarizes how it all works:

User clicks button, ActionEvent object is
button generates event sent to listener

(Quit)
N ——

[instanceof EventHandler]

handle(e)

Visible button,
represented by Event-handling object
a Button object (or lambda expression)

responds to the event

About all that still remains to be explained in the sample program is the response to a click on
the “Quit” button: Platform.exit(). The static exit() method in the Platform class is the
preferred way to programmatically end a JavaFX program. It is preferred to System.exit ()
because it cleanly shuts down the application thread and gives it an opportunity to clean up
by calling the application’s stop() method before terminating.

N S 3

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 275

This section has been only a brief overview of JavaFX applications, but it has introduced
many of the fundamental concepts. We will cover all of this in much greater detail in the
following sections.

6.2 Some Basic Classes

In this section, we will look at some basic classes, including classes representing colors, fonts,
and images. We will see how these classes are used in the GraphicsContext API, which you
already encountered in a preliminary way in Section 3.9, but they are also useful in other parts
of JavaFX. There is also a brief introduction to CSS style sheets, which can be used to control
many aspects of the visual appearance of GUI components.

6.2.1 Color and Paint

Computer color uses an RGB color system. That is, a color on a computer screen is specified
by three numbers, called color components, giving the level of red, green, and blue in the
color. A color is represented by an object of type Color, from package javafx.scene.paint.
In JavaFX, each color component is a double value in the range 0.0 to 1.0. A Color object
also has a fourth component in the range 0.0 to 1.0, referred as the alpha color component,
which is generally used to represent the transparency or opaqueness of the color when it is used
for drawing. When a fully opaque color (alpha component equal to 1.0) is used for drawing,
the drawing color completely replaces the current color of the drawing surface. When a fully
transparent color (alpha component equal to 0.0) is used for drawing, it has no effect at all.
When the alpha component is between 0.0 and 1.0, the drawing color is combined with the
current color to give the new color of the drawing surface, as if the original contents of the
drawing surface were being viewed through colored, translucent glass. A Color object can be
constructed by giving its red, green, blue, and alpha components; for example,

Color myColor = new Color(r, g, b, a);

where r, g, b, and a are in the range 0.0 to 1.0. However, the Color class also has a number
of static methods for making color objects. Static methods whose job is to create objects are
sometimes called factory methods. So instead of using the constructor, you could also say

Color myColor = Color.color(r, g, b, a);

and in the common case of a fully opaque color, with a equal to 1.0, you can use

Color myColor = Color.color(r, g, b);

These static factory methods are preferable to the constructor because they have the option of
reusing color objects. For example, two calls to Color.color(0.2,0.3,1.0) might return the
same Color object. This is OK because color objects are immutable; that is, there is no way to
change a color after it has been constructed. So there is really no reason to use two different
objects to represent the same color.

Your computer screen probably uses “32-bit color,” which means that the color of each
pixel is actually represented using just 8 bits for each of the four color components. Eight bits
can represent the 256 integers in the range 0 to 255, so computer colors have traditionally been
specified using integer color components in the range 0 to 255. The Color class has the following
static method for making colors in this way:

Color.rgb(r, g, b)

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 276

where 1, g, and b are integers in the range 0 to 255. There is also Color.rgb(r,g,b,a) where
r, g, and b are ints in the range 0 to 255, and a is a double in the range 0.0 to 1.0.

An alternative to RGB is the HSB color system. In the HSB system, a color is specified by
three numbers called the hue, the saturation, and the brightness. The hue is the basic color,
ranging from red through orange through all the other colors of the rainbow. The brightness is
pretty much what it sounds like. A fully saturated color is a pure color tone. Decreasing the
saturation is like mixing white or gray paint into the pure color. In JavaFX, the hue is given
by a double value in the range 0.0 to 360.0, while saturation and brightness are double values
in the range 0.0 to 1.0. (The hue value is given in degrees, were the colors are seen as laid
out along a circle, with both 0.0 and 360.0 representing pure red.) The Color class has static
methods Color.hsb(h,s,b) and Color.hsb(h,s,b,a) for making HSB colors. For example,
to make a color with a random hue that is as bright and as saturated as possible, you could
use:

Color randomColor = Color.hsb(360*Math.random(), 1.0, 1.0);

The RGB system and the HSB system are just different ways of describing the same set of
colors. It is possible to translate between one system and the other. The best way to understand
the color systems is to experiment with them. The sample program SimpleColorChooser.java
lets you do that. You won’t understand the source code at this time, but you can run it to play
with color selection or to find RGB or HSB values for the color that want.

The Color class also contains a large number of constants representing colors, such as
Color.RED, Color.BLACK, Color.LIGHTGRAY, and Color.GOLDENROD. It might be worth men-
tioning that Color.GREEN is the fairly dark green color given by Color.rgb(0,128,0); the
constant representing Color.rgb(0,255,0) is Color.LIME. There is also Color.TRANSPARENT,
which represents a fully transparent color, with all RGBA color components equal to zero.

Given a Color, c, you can find out the values of the various color components by calling
functions such as c.getRed (), c.getHue (), and c.getOpacity (). These methods return dou-
ble values in the range 0.0 to 1.0, except for c.getHue (), which returns a double in the range
0.0 to 360.0.

N 3

Color is a subclass of another class, Paint, which represents the more general idea of “some-
thing that can be used to fill and to stroke shapes.” In addition to colors, there are image
paints and gradient paints. I will not use these more general paints in this chapter, but they
will be covered in Subsection 13.2.2. For now, you should just know that when a method has
a parameter of type Paint, you can use a Color.

6.2.2 Fonts

A font represents a particular size and style of text. The same character will appear different
in different fonts. In JavaFX, a font is represented by an object of type Font, from the package
javafx.scene.text. Although the Font defines a couple of constructors, the best way to make
a font object is with one of the static factory methods from that class.

A font has a name, which is a string that specifies a font family such as “Times New Roman.”
A given family can have variations such as a bold or an italic version of the font. And a font
has a size, which is specified in “points,” where a point should really be 1/72 inch but might in
practice be equal to the size of a pixel. The most general function for making fonts can specify
all of these options:

http://math.hws.edu/eck/cs124/javanotes8/source/chapter6/SimpleColorChooser.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 277

Font myFont = Font.font(family, weight, posture, size);

If the system can’t match the requested font properties exactly, it will return the font that it
thinks best matches the parameters. Here, family is a String that should specify a font family
that is available to the program. Unfortunately, there is no set of fonts that is required to be
available. “Times New Roman,” “Arial,” and “Verdana” are likely to work. (These are fonts
that were created by Microsoft and released for free use; they are installed on many systems.)
You can pass null as the familyName to use the default font family.

Font “weight” is given as an enumerated type value from the enum FontWeight. It will
usually be either FontWeight.BOLD or FontWeight.NORMAL, although there are a few other
values such as FontWeight.EXTRA_BOLD. Similarly, font “posture” is one of the constants
FontPosture.ITALIC or FontPosture.REGULAR. Both FontWeight and FontPosture are from
package javafx.scene.text.

The Font class has several other static functions for making fonts, which specify only a sub-
set of the four properties family, weight, posture, and size. These include: Font.font (size),
Font.font(family), Font.font (family,weight,size), and a few others. The missing prop-
erties will have default values, which can depend on the computer where the program is running.
The static function Font.getDefault () returns a font that has default values for all the prop-
erties. You can call Font.getDefault().getSize() to find the default point size. (It’s 13.0
on my computer, but might be different on yours.) Here are a few examples of making fonts:

Font fontl = Font.font(40);

Font font2 = Font.font("Times New Roman", FontWeight.BOLD, 24);

Font font3 = Font.font(null, FontWeight.BOLD, FontPosture.ITALIC, 14);
6.2.3 Image

The term “image” refers to something like a photograph or drawing—anything that can be
represented by a rectangular grid of colored pixels. Images are often stored in files. JavaFX
makes it easy to load an image from a file so that it can be displayed by a program. An image
is represented by an object of type Image, from package javafx.scene.image. The constructor

new Image(path)

is used to load an image from an image file. The path parameter is a string that specifies the
location of the file. The location can be very general, such as an image on the Internet or on
the user’s computer, but for now I'm interested in images from resource files. A resource is
something that is part of a program but is not code. Resources can include things like sounds,
data files, and fonts, as well as images. The system can load resources for a program from the
same places where it looks for the program’s .class files. For a resource file in the program’s top-
level directory, the path to the file is simply the name of the file. If the file is in a subdirectory
of the main directory, then the path includes the subdirectory name. For example, the path
“images/cards.png” refers to a file named “cards.png” inside a subdirectory named “images,”
and “resources/sounds/beep.aiff” refers to a file named “beep.aiff” inside a directory named
“sounds” that is in turn inside a directory named “resources.”

There are many kinds of image files, which store the image data in a variety of formats. For
JavaFX Image objects, you can use image files whose names end with .gif, .jpeg (or .jpg), .png,
and .bmp. So, for example, if “cards.png” is a file in the top-level program directory, you can
create the image object

Image cards = new Image("cards.png");

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 278

The image can then be displayed in a GraphicsContext, as we will soon see. There will be other
uses for images later in this chapter.

6.2.4 Canvas and GraphicsContext

The screen of a computer is a grid of little squares called pixels. The color of each pixel can
be set individually, and drawing on the screen just means setting the colors of individual pixels.
Every visible GUI component is drawn by coloring pixels, and every component has a coordinate
system that maps (x,y) coordinates to points within the component. Most components draw
themselves, but there is one JavaFX component on which you can draw anything you want
by calling the appropriate methods. Such “drawing surface” components are of type Canvas,
in package javafx.scene.canvas. A Canvas is a Node and so can be part of a scene graph.
(However, it is not a Parent, so it cannot act as a container for other nodes and it cannot be
the root of a scene graph. This means that even when a canvas is the only thing that you want
to show in a window, it must still be placed into a container that will serve as the root of the
scene graph.)

A Canvas appears on the screen as a rectangle made up of pixels. A position in the rectangle
is specified by a pair of coordinates, (x,y). The upper left corner has coordinates (0,0). The x
coordinate increases from left to right, and the y coordinate increases from top to bottom. The
illustration shows a 20-pixel by 12-pixel canvas (with very large pixels). A small line, rectangle,
and oval are shown as they would be drawn by coloring individual pixels:

x = width

-
C

[e]

X =

A

y=0-7%

y = height

Note that, properly speaking, the coordinates don’t belong to the pixels but to the grid lines
between them, and coordinates can, in fact, be numbers of type double and can refer to points
inside a pixel. For example, the center of the top left pixel in a canvas has coordinates (0.5,0.5).
In fact, all drawing is done using coordinates of type double.

The width and height of a Canvas can be specified in the constructor that used to create
the canvas object. For example, to create a tiny 20-by-12 canvas:

Canvas canvas = new Canvas(20,12)

You can query the size of a canvas by calling canvas.getWidth() and canvas.getHeight (),
which return values of type double. Canvasses are usually meant to be non-resizable, but the
size can be changed if necessary by calling canvas.setWidth(w) and canvas.setHeight (h).

When a canvas is first created, it is filled with “transparent black,” that is, with a color
that has all RGBA components set to zero. This makes the canvas transparent: You will see
whatever lies behind the canvas in the scene.

In order to draw on a canvas, you need an object of type GraphicsContext. Every Canvas has
an associated GraphicsContext; different GraphicsContexts draw on different Canvases. You can

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 279

get the graphics context for a Canvas, canvas, by calling canvas.getGraphicsContext2D().
For any given Canvas, this method will always return the same GraphicsContext object. Sec-
tion 3.9 discussed some of the things that can be done with a graphics context. In particular,
you learned that a shape can be stroked and, if it has an interior, it can also be filled. Methods
in GraphicsContext, g, that can be used for drawing include the following, where all numeric
parameters are of type double:

e g.strokeRect(x,y,w,h) and g.fillRect(x,y,w,h) — Draw a rectangle with top left
corner at (x,y), with width w and with height h. If w or h is less than or equal to zero,
nothing is drawn.

e g.clearRect(x,y,w,h) — Fill the same rectangle with a fully transparent color, so that
whatever lies behind the rectangle will be visible through the canvas. Note that this is
not the same as calling g.fillRect(x,y,w,h) with a transparent fill color; doing that
has no effect at all on the contents of the rectangle.

e g.strokeOval(x,y,w,h) and g.fi110val(x,y,w,h) — Draw an oval that just fits inside
the rectangle with top left corner at (x,y), with width w and with height h.

e g.strokeRoundRect (x,y,w,h,rh,rv) and g.fillRoundRect(x,y,w,h,rh,rv) — Draw
a rectangle with rounded corners. The rectangle has top left corner at (x,y), with width
w and with height h. A quarter oval is cut off each corner, where the horizontal radius of
the oval is rh and its vertical radius is rv.

e g.strokeText (str,x,y) and g.fillText(str,x,y) — Draw the text of the String str.
The point (x,y) is the left end of the baseline of the text. (A string is drawn on top of
its baseline, with descenders such as the tail of a “y” extending below the baseline.) The
string can contain multiple lines separated by newline ("\n’) characters; (x,y) then gives
the baseline of the first line of the string. Note that stroking text means drawing just the
outlines of the characters.

e g.strokePolygon(xcoords,ycoords,n) and g.fillPolygon(xcoords,ycoords,n) —
Draw a polygon, consisting of line segments connecting a sequence of points. The num-
ber of points is given by the third parameter, n. The first two parameters are arrays
of type double[] containing the coordinates of the points. An extra line segment is
automatically added to connect the last point back to the first. That is, the poly-
gon connects the points (xcoords[0],ycoords[0]), (xcoords[1],ycoords[1]), ...,
(xcoords[n-1],ycoords[n-1]), (xcoords[0],ycoords[0]).

e g.strokeLine(x1,y1,x2,y2) — Draws a line from (x1,y1) to (x2,y2). (It’s no use
trying to fill a line, since it has no interior.)

The GraphicsContext object, g has a number of properties that affect drawing. When any-
thing is drawn using g, the current values of the relevant properties are used. This means that
changing the value of a property does not affect anything that has already been drawn; the
change only applies to things drawn in the future. Each property has a setter method and a
getter method. One of the properties is the Paint that is used for filling (which in this chapter
will always be a Color); this property can be set by calling g.setFill(paint), and you can
get its current value by calling g.getFill(). Similarly, the Paint that is used for stroking can
be set and get using g.setStroke(paint) and g.getStroke(), and the width of strokes can
be set and get using g.setLineWidth(w) and g.getLineWidth(), where w is of type double.
And you can set and get the font that will be used for drawing text with g.setFont (font)
and g.getFont ().

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 280

Note that stroking a shape is like dragging the center of a pen along the outline of the
shape. The size of the pen is given by the linewidth property. The stroke that is drawn extends
on both sides of the actual path of the pen by an amount equal to half of the linewidth. For
example, if you draw a horizontal line of width 1 with endpoints (100,100) and (300,100), half
of the stroke lies above the geometric line and half lies below it. The computer might show this
by blending the color of the stroke color with the current color. If you want the stroke to nicely
cover complete pixels, you should actually use (100.5,100.5) and (300.5,100.5) as the coordinates
of the endpoints of the line. (Whenever you draw something, you might find that for pixels
that are only partially covered, the drawing color is blended with the current color instead of
replacing it. This is done to decrease the jagged appearance of shapes that are made out of
whole pixels, like the line and oval in the above illustration. This is known as antialiasing.)

It is also possible to draw an image onto a canvas, where the image is represented by an
object of type Image. There are several methods for drawing images:

e g.drawImage (image,x,y) — Draws the image with its upper left corner at (x,y), using
the actual size of the image.

e g.drawImage (image,x,y,w,h) — Draws the image in the rectangle with upper left corner
at (x,y), with width w, and with height h. The image is stetched or shrunk to fit that
rectangle if necessary.

e g.drawImage (image, sx,sy,sw,sh, dx,dy,dh,dw) — Draws the contents of a specified
“source” rectangle in the image to a specified “destination” rectangle on the canvas. This
method lets you draw just part of an image. The source rectangle has upper left corner
at (sx,sy), width sw, and height sh. The last four parameters specify the destination
rectangle in a similar way.

S S 3

It’s time for a couple of actual examples. First, an example that draws some text using a
variety of fonts. The program draws multiple copies of the string “Hello JavaFX” using random
fonts and locations. The text is filled with random colors and stroked with a thin black stroke:

Random Strings

The program uses five fonts, which are created in the start () method using several different
static factory methods from the Font class:

fontl = Font.font("Times New Roman", FontWeight.BOLD, 20);

font2 = Font.font("Arial", FontWeight.BOLD, FontPosture.ITALIC, 28);
font3 = Font.font("Verdana", 32);
font4 = Font.font(40);

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 281

font5 = Font.font("Times New Roman",FontWeight.BOLD,FontPosture.ITALIC,60);

The program defines a draw() method that completely redraws the content of a canvas. It is
called when the canvas is first created, and it is also called when the user clicks the “Redraw”
button. The method first fills the canvas with a white background, which erases the previous
contents of the canvas. It then fills and strokes 25 copies of “Hello JavaFX”, using a random
fill color, a random position for the text, and a randomly selected font for each copy:

private void draw() {
GraphicsContext g = canvas.getGraphicsContext2D() ;

double width = canvas.getWidth();
double height = canvas.getHeight();

g.setFill(Color.WHITE); // £ill with white background
g.fillRect (0, 0, width, height);

for (int i = 0; 1 < 25; i++) {

// Draw one string. First, set the font to be one of the five
// available fonts, at random.

int fontNum = (int) (5*%Math.random()) + 1;
switch (fontNum) {
case 1:
g.setFont (font1) ;
break;
case 2:
g.setFont (font2);
break;
case 3:
g.setFont (font3);
break;
case 4:
g.setFont (font4) ;
break;
case b5:
g.setFont (font5) ;
break;
} // end switch

// Set the color to a bright, saturated color, with random hue.

double hue = 360*Math.random();
g.setFill(Color.hsb(hue, 1.0, 1.0));

// Select the position of the string, at random.

double x,y;
x = -50 + Math.random()*(width+40) ;
y = Math.random()*(height+20) ;

// Draw the message.
g.fillText ("Hello JavaFX",x,y);

// Also stroke the outline of the strings with black.

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 282

g.setStroke (Color.BLACK) ;
g.strokeText ("Hello JavaFX",x,y);

} // end for

} // end draw()

You can find the full source code for the program in RandomStrings.java.
The second sample program is similar, but instead of drawing random strings, it draws five
playing cards dealt at random from a deck:

Random Cards -

A A B o8 AW I 5o o5
v
) v.v » + ¢
v LI M M B 5 *8

The deck and cards are represented using the Deck and Card classes from Section 5.4. The card
images come from the file cards.png, which is a resource file for the program. The file contains
a single image that contains images of all the cards, arranged in rows and columns. Here it is,
shown at reduced size:

+O

0 a3 e Pt aife a3%a a8lla alfa a%3a &f
& 1 s |aaats 4.:-1- oo
VoOOE T oEE Y oEpY v vafs® ¥ Iz viE® ¥
M2 o 2 o e ¢330 o350 o570 0750 0570 o7
4 + PO AN IO
'R AR AE AL A A AR AL AL
oM w %P ow e elle viiw ¢ile v v ville ¢
\J \J vy
v v v |ve|ve ve vl
§oElE BN N AGaN AN AL ANaA Aise AL
Y 02 & 7 & 3da adia a3ia afla allfa a8 o
'y . o | oo o:-b o
VoOouE Y R Y YRV VIV v vy vIY Y
S A
i_b 36
?; ’":

(This image is from the Gnome desktop project, http://www.gnome.org.) The image file is
loaded into the program in the start () method simply by saying

cardImages = new Image("cards.png");

where cardImages is an instance variable of type Image. Suppose that we want to draw the
card from row number R and column number C in a GraphicsContext g (where both rows and
columns are numbered starting at zero). Each card in the image is 79 pixels by 123 pixels, so

http://math.hws.edu/eck/cs124/javanotes8/source/chapter6/RandomStrings.java
http://math.hws.edu/eck/cs124/javanotes8/source/chapter6/cards.png
http://www.gnome.org

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 283

the card that we want has its top left corner at (79*C,123*R). If we want to place the card on
the canvas with its top left corner at (x,y), we can use the third drawImage () method given
above, which specifies a source rectangle in the image and a destination rectangle on the canvas:

g.drawImage(cardImages, 79%C,123%R,79,123, x,y,79,123);

In the program, the card that we want to draw is given by a variable card of type Card. The
row and column in the image are determined by the suit and value of the card, which are given
by card.getSuit() and card.getValue(). The values returned by these functions have to be
manipulated a little to get the correct row and column numbers, and the position of the card
on the canvas is calculated to leave a 20-pixel gap between one card and the next. Here is the
draw() method from the program, which deals five random cards from a deck and draws them:

private void draw() {
GraphicsContext g = canvas.getGraphicsContext2D();

Deck deck = new Deck();
deck.shuffle();

double sx,sy; // top left corner of source rect for card in cardImages
double dx,dy; // corner of destination rect for card in the canvas

for (int 1 = 0; i < 5; i++) {
Card card = deck.dealCard();
System.out.println(card); // for testing
sx = 79 * (card.getValue()-1);

sy = 123 * (3 - card.getSuit());
dx = 20 + (79+20) * i;
dy = 20;

g.drawImage(cardImages, sx,sy,79,123, dx,dy,79,123);
}

} // end draw()

For the complete program, see RandomCards.java.

6.2.5 A Bit of CSS

JavaFX makes it possible to control the style—that is, the visual appearance—of components
in a GUI using CSS (Cascading Style Sheets). CSS is one of several languages that are used
to make web pages. It can control things like colors, fonts, and borders of elements of a web
page. It has been adapted to play a similar role in other contexts, such as JavaFX. I do not
intend to cover CSS in any detail, and anything that can be done with CSS can also be done
with Java code. However, there are some things that are just easier to do with CSS; I will cover
a few of them in this short section and will use them in my programs. For people who already
know CSS, a guide to its use in JavaFX is available as I write this at
https://docs.oracle.com/javase /8 /javafx/api/javafx /scene/doc-files/cssref.html

A CSS style rule consists of a property and a value for that property. For example, CSS
can be used to place a border around many kinds of GUI components. A border has properties
with names such as -fx-border-color and -fx-border-width. (All JavaFX CSS properties
have names that begin with “-fx-” to distinguish them from regular CSS properties.) A value for
-fx-border-color can be a color name such as red or 1lightblue, among other formats. One
color format that I will use takes the form #RRGGBB, where R, G, and B stand for hexadecimal

http://math.hws.edu/eck/cs124/javanotes8/source/chapter6/RandomCards.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 284

digits. A two-digit hexadecimal number can represent numbers from 0 to 255. The RR, GG,
and BB in #RRGGBB represent the red, green, and blue components of a color, each in the range
0 to 255. For example, #FF0000 represents pure red, and #004444 represents a dark blue-green.

For the border width, the value can be a single size, such as 3px or 0.2cm. The syntax is
a number followed by a unit of measure, with no space between them. Here, “px” stands for
“pixels,” and 3px means 3 pixels. When a width is given by a single size, the size applies to all
four sides of the border. Alternatively, four sizes can be given, separated by spaces, specifying
the border width on the top, right, bottom, and left, in that order. For example, a thick, blue
border could be specified as

-fx-border-color: blue; -fx-border-width: 5px

and for a dark red border that is thicker on the top than on the other sides, you can use

-fx-border-color: #550000; -fx-border-width: 3px 1px 1px 1px

When several CSS rules are used together, they should be separated by semicolons.

The background color of a component can be set using -fx-background-color as the
property name. The value is the same sort of color specification that would be used with
-fx-border-color.

And the CSS property -fx-padding represents space that is left between the content of a
component and its edge (or border if there is one). Like border width, padding can be specified
as either a single size or a list of four sizes. For example: -fx-padding: 8px.

You can apply a style to a component using its setStyle() method, whose parameter is a
String containing one or more CSS style rules. For example, suppose message is a Label. By
default, labels have no padding or border. They can be added with a command such as

message.setStyle(
"-fx-padding: 5px; -fx-border-color: black; -fx-border-width: 1px");

You can set the font for a component that displays text using the -fx-font property. The
value for this property specifies the size and font family for the font, and can optionally be
modified by a weight (“bold”), or by a style (“italic”), or both. Some examples:

-fx-font: 30pt "Times New Roman";
-fx-font: bold italic 18pt serif;
-fx-font: bold 42pt monospace;

Note that if the font family name contains spaces, it must be enclosed in quotes. The font
families in the last two examples, “serif” and “monospace”, are so-called generic family names
that specify a certain style of font. Other generic names include “sans-serif’, “cursive”, and
“fantasy”. The characters in a serif font have short lines as decorations such as at the top and
bottom of an upper case “I”. A “sans-serif” font lacks these decorations. The characters in a
“monospace” font all have the same width. Monospace fonts are good for drawing characters
that are meant to line up in columns.

Many other properties can be set using CSS, but I will not cover them here. T will use CSS
only for borders, padding, background colors, and fonts.

X Kk ok
Setting the style for many components can be tedious. A CSS style sheet can be used to
apply style to all components of a given type as well as to individual components and sets of

components. A style sheet is a file, usually with a name ending with .css. I will not discuss the
syntax, but here is a style sheet that will apply some style rules to all Labels and Buttons:

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 285

Button {
-fx-font: bold 16pt "Times New Roman";
—-fx-text-fill: darkblue;

by

Label {
-fx-font: 15pt sans-serif;
-fx-padding: 7px;
-fx-border-color: darkred;
-fx-border-width: 2px;
-fx-text-fill: darkred;
-fx-background-color: pink;

}

A style sheet file, just like an image file, can be a resource for a program. That is, it can
be stored in the same place as the .class files for the program. Suppose that a style sheet
named “mystyle.css” is in the program’s top-level directory. You can then apply the style to
all components in a scene with the statement

scene.getStylesheets() .add("mystyle.css");

A Scene can have several style sheets, and style sheets can also be added to individual containers.

6.3 Basic Events

EVENTS ARE CENTRAL to programming for a graphical user interface. A GUI program doesn’t
have amain () routine that outlines what will happen when the program is run, in a step-by-step
process from beginning to end. Instead, the program must be prepared to respond to various
kinds of events that can happen at unpredictable times and in an order that the program doesn’t
control. The most basic kinds of events are generated by the mouse and keyboard. The user
can press any key on the keyboard, move the mouse, or press a button on the mouse. The user
can do any of these things at any time, and the computer has to respond appropriately.

In Java, events are represented by objects. When an event occurs, the system collects all
the information relevant to the event and constructs an object to contain that information.
Different types of events are represented by objects belonging to different classes. For example,
when the user presses one of the buttons on a mouse, an object belonging to a class called
MouseEvent is constructed. The object contains information such as the target of the event
(that is, the component on which the user clicked), the (x,y) coordinates of the point in the
component where the click occurred, which modifier keys (such as the shift key) are being
held down, and which button on the mouse was pressed. When the user presses a key on the
keyboard, on the other hand, it is a KeyEvent object that is created, containing information
relevant to an event generated by using the keyboard. After the event object is constructed,
it can be passed as a parameter to a designated method. That method is called an event
handler for the event. In JavaFX, event handlers are often written as lambda expressions. By
writing an event handler, the programmer says what should happen when the event occurs.

As a Java programmer, you get a fairly high-level view of events. There is a lot of processing
that goes on between the time that the user presses a key or moves the mouse and the time
that a method in your program is called to respond to the event. Fortunately, you don’t need
to know much about that processing. But you should understand this much: Even though you
didn’t write it, there is a routine running somewhere that executes a loop of the form

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 286

while the program is still running:
Wait for the next event to occur
Handle the event

This loop is called an event loop. Every GUI program has an event loop. In Java, you
don’t have to write the loop. It’s part of “the system.” If you write a GUI program in some
other language, you might have to provide a main routine that runs the event loop.

In this section, we’ll look at handling mouse and key events in Java, and we’ll cover the
framework for handling events in general. We will also see how to make an animation.

6.3.1 Event Handling

For an event to have any effect, a program must detect the event and react to it. In order
to detect an event, the program must “listen” for it. Listening for events is something that is
done by an event listener, which contains an event handler method that can respond to the
event. An event listener is defined by an interface that specifies the event handling methods
that it contains. Listeners for different kinds of events are defined by different interfaces. In
most cases, the interface is a functional interface, defining a single event handler method; in
that case, the listener can be given by a lambda expression.

For many kinds of events in JavaFX, listeners are defined by a functional interface named
EventHandler, which defines the method handle (event). The parameter to this method, event,
is the event object that contains information about the event. When you provide a definition
for handle (), you write the code that will be executed to handle the event.

(EventHandler is actually a parameterized type, something that we have not encoun-
tered before and will not encounter officially until Section 7.3. Basically, all this re-
ally means is that EventHandler really defines many different types, with names like Even-
tHandler< MouseEvent>, EventHandler<KeyEvent>, and EventHandler<ActionEvent>. The type
EventHandler< MouseEvent> defines a handle(event) method in which the event is of type
MouseEvent, the type EventHandler<KeyEvent> defines a handle(event) method in which the
event is of type KeyEvent, and so on. Fortunately, you don’t need to understand parameterized
types in this chapter; you only need to know that the event object that you use when handling
an event will have the appropriate type for that event. For example, when handling a mouse
event, the event object is of type MouseEvent.)

Many events in JavaFX are associated with GUI components. For example, when the user
presses a button on the mouse, the associated component is the one that contains the mouse
cursor when the button is pressed. This object is called the target of the event. In order to
respond to the event, you need to register a listener either with the target of the event or with
some other object that knows about the event. For example, lets look again at this statement
from HelloWorldFX.java, our first GUI program from Section 6.1:

helloButton.setOnAction(e -> message.setText("Hello World!"));

Here, helloButton is an object of type Button. When the user clicks on the button, an event
of type ActionEvent is generated. The target of that event is helloButton. The method
helloButton.setOnAction() registers an event listener that will receive notification of any
ActionEvents from the button. The listener in this case is defined by a lambda expression. In
the lambda expression, the parameter, e, is the ActionEvent object, and the code in the lambda
expression is what happens in response to the event. Most event handling in this chapter will
be set up in a similar way.

http://math.hws.edu/eck/cs124/javanotes8/source/chapter6/HelloWorldFX.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 287

For key events and some mouse events, it’s not just the event target that gets a chance to
respond to the event. For example, suppose that you press a mouse button over a Canvas that
is inside a BorderPane that is in turn inside a Scene. The target of the mouse event is the Canvas
but the BorderPane and the Scene also have a chance to respond to the event. That is, you
can register a mouse event listener on any or all of these objects to respond to the event. The
object that the listener is registered with is called the source of the event. The event object
parameter, evt, in an event handler method has both a source, given by evt.getSource(),
and a target, given by evt.getTarget (); often they are the same, but they don’t have to be.
Note that the same event can be sent to several handlers. A handler can “consume” an event,
by calling evt.consume (), to stop it from being sent to any additional handlers. For example,
when you are typing in a text input box, the input box consumes the key events that you
generate by typing, so that the scene doesn’t get a chance to handle them.

(Actually, it’s more complicated than that. For key events and some kinds of mouse events,
the event first travels down through the scene and then through scene graph nodes that contain
the event target; this is called the “event filtering” or “bubble down” phase of event processing.
After reaching the target, the event travels back up through the scene graph and finally to
the scene; this is the “event handling” or “bubble up” phase. The event can be consumed
at any point along the way, and if that happens, the process stops. None of this is used in
this chapter, but for more information, see the documentation for the addEventFilter () and
addEventHandler () methods in the Scene and Node classes.)

Most of this section is concerned with mouse and key events. It is important to understand
that many GUI programs do not need to deal with such events directly. Instead, you work with
GUI components that are already programmed to handle mouse and key events on their own.
For example, when the user clicks a Button, it is the button that listens for mouse events and
responds to them. When the button detects that it has been clicked, it generates an ActionEvent.
When you write an application that uses buttons, you program responses to ActionEvents, not
to mouse events. Similarly, when the user types in a text input box, it is the input box that
listens for key events and responds to them. Nevertheless, at base, it’s mouse and keyboard
events that drive the action in a program. It’s useful to understand them—and you can do
some interesting things by processing them directly.

6.3.2 Mouse Events

A mouse event is represented by an object of type MouseEvent. (In fact, mouse events can actu-
ally be generated by other input devices, such as a trackpad or touch screen; events from these
devices are translated by the system into MouseEvents.) That class, and all of the classes related
to mouse and key events, can be found in package javafx.scene.input. As the user manipu-
lates the mouse, several kinds of event are generated. For example, clicking a mouse button gen-
erates three events, a “mouse pressed” event, a “mouse released” event, and a “mouse clicked”
event. Simply moving the mouse generates a sequence of events as the mouse cursor moves from
point to point on the screen. To respond to mouse events on a component, you can register
listeners with that component. You can register a separate listener for each kind of mouse
event on a component ¢ using instance methods such as c.setOnMousePressed(handler) and
c.setOnMouseMoved (handler). The parameter is a mouse event handler, generally given as
a lambda expression. Suppose, for example, that canvas is a component of type canvas, and
that you would like a method, redraw(), to be called when the user clicks the canvas. You can
make that happen by saying

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 288

canvas.setOnMousePressed(evt -> redraw());

Generally, you would put this statement in the start () method of an Application, while setting
up the GUI for the program. Mouse clicks on the canvas could be also be handled by the scene
or by any scene graph node that contains the canvas, directly or indirectly, but it is much more
usual for the target of a mouse event to handle the event.

Mouse event types include: MouseEntered, generated when the mouse cursor moves from
outside a component into the component; MouseExited, generated when the mouse cursor
moves out of a component; MousePressed, generated when the user presses one of the buttons
on the mouse; MouseReleased, generated when the user releases one of the buttons on the
mouse; MouseClicked, generated after a mouse released event if the user pressed and released
the mouse button on the same component; MouseDragged, generated when the user moves the
mouse while holding down a mouse button; and MouseMoved, generated when the user moves
the mouse without holding down a button.

The target of a MouseDragged, MouseReleased, or MouseClicked event is the same com-
ponent where the mouse button was pressed, even if the mouse has moved outside of that
component. The target of a MousePressed or MouseMoved event is the component that con-
tains the mouse cursor when the event occurs. And for MouseEntered and MouseExited, the
target is the component that is being entered or exited.

Often, when a mouse event occurs, you want to know the location of the mouse cursor.
This information is available from the MouseEvent parameter in the event-handling method,
which contains instance methods that return information about the event. If evt is the pa-
rameter, then you can find out the coordinates of the mouse cursor by calling evt.getX() and
evt.getY(). These methods return values of type double that give the x and y coordinates
where the mouse cursor was positioned at the time when the event occurred. The coordinates
are expressed in the coordinate system of the source of the event, where the top left corner of
the component is (0,0). (The source is the component on which the event listener is registered;
this is not necessarily the same as the event target, but it usually is.)

The user can hold down certain modifier keys while using the mouse. The possible
modifier keys include: the Shift key, the Control key, the Alt key (called the Option key
on the Mac), and the Meta key (called the Command or Apple key on the Mac). Not
every computer has a Meta key. You might want to respond to a mouse event differ-
ently when the user is holding down a modifier key. The boolean-valued instance methods
evt.isShiftDown(), evt.isControlDown(), evt.isAltDown(), and evt.isMetaDown() can
be called to test whether the modifier keys are pressed.

You might also want to have different responses depending on whether the user presses
the left mouse button, the middle mouse button, or the right mouse button. For events trig-
gered by a mouse button, you can determine which button was pressed or released by calling
evt.getButton(), which returns one of the enumerated type constants MouseButton.PRIMARY,
MouseButton.MIDDLE, or MouseButton.SECONDARY. Generally, the left mouse button is the pri-
mary button and the right mouse button is secondary. For events such as mouseEntered and
mouselxited that are not triggered by buttons, evt.getButton() returns MouseButton.NONE.

The user can hold down several mouse buttons at the same time. If you want to
know which mouse buttons are actually down at the time of an event, you can use
the boolean-valued functions evt.isPrimaryButtonDown (), evt.isMiddleButtonDown (), and
evt.isSecondaryButtonDown().

As a simple example, suppose that when the user clicks a Canvas, canvas, you would like
to draw a red rectangle at the point where the user clicked. But if the shift key is down, you

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 289

want to draw a blue oval instead. An event handler to do that can be defined as:

canvas.setOnMousePressed(evt -> {
GraphicsContext g = canvas.getGraphicsContext2D() ;
if (evt.isShiftDown()) {
g.setFill(Color.BLUE);
g.fill0val(evt.getX() - 30, evt.getY() - 15, 60, 30)

}
else {

g.setFill(Color.RED);

g.fillRect(evt.getX() - 30, evt.getY() - 15, 60, 30);
}

)

To get a better idea of how mouse events work, you should try the sample program Simple-
TrackMouse.java. This program responds to any of the seven different kinds of mouse events
by displaying the coordinates of the mouse, the type of event, and a list of the modifier keys
and buttons that are down. You can experiment with the program to see what happens as you
do various things with the mouse. I also encourage you to read the source code.

6.3.3 Dragging

A drag gesture occurs when the user moves the mouse while holding down one of the buttons
on the mouse. It is interesting to look at what a program needs to do in order to respond to
dragging operations. The drag gesture starts when the user presses a mouse button, it continues
while the mouse is dragged, and it ends when the user releases the button. This means that
the programming for the response to one dragging gesture must be spread out over the three
event handlers, one for MousePressed, one for MouseDragged, and one for MouseReleased!
Furthermore, the MouseDragged handler can be called many times as the mouse moves. To keep
track of what is going on between one method call and the next, you need to set up some instance
variables. In many applications, for example, in order to process a MouseDragged event, you
need to remember the previous coordinates of the mouse. You can store this information in two
instance variables prevX and prevY of type double. It can also be useful to save the starting
coordinates, where the original MousePressed event occurred, in instance variables. And I
suggest having a boolean variable, dragging, which is set to true while a dragging gesture
is being processed. This is necessary because in many applications, not every MousePressed
event starts a dragging operation to which you want to respond. Also, if the user presses a
second mouse button without releasing the first, there will be two MousePressed events before
the MouseReleased event; usually, you don’t want the second MousePressed to start a new
drag operation. The event-handling methods can use the value of dragging to check whether
a drag operation is actually in progress. Often, I will write instance methods to handle the
events, which in outline look something like this:

private double startX, startY; // Point where original mouse press occurred.

private double prevX, prevY; // Most recently processed mouse coords.

private boolean dragging; // Set to true when dragging is in progress.
. // other instance variables for use in dragging

public void mousePressed(MouseEvent evt) {
if (dragging) {
// The user pressed a second mouse button before releasing the first.
// Ignore the second button press.

http://math.hws.edu/eck/cs124/javanotes8/source/chapter6/SimpleTrackMouse.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 290

return;

}

if ((we-want-to-start-dragging)) {
dragging = true;
startX = evt.getX(); // Remember starting position.
startY = evt.getY(Q;
prevX = startX; // Remember most recent coords.
prevY = startY;

. // Other processing.

}

public void mouseDragged(MouseEvent evt) {
if (dragging == false) // First, check if we are

return; // processing a dragging gesture.
int x = evt.getX(); // Current position of Mouse.
int y = evt.getY();

// Process a mouse movement from (prevX, prevY) to (x,y).

prevX = x; // Remember the current position for the next call.
prevY = y;

}

public void mouseReleased(MouseEvent evt) {
if (dragging == false) // First, check if we are
return; // processing a dragging gesture.
dragging = false; // We are done dragging.

// Other processing and clean-up.

}
I will then install event handlers on the relevant component that simply call these methods:

c.setOnMousePressed(e -> mousePressed(e));
c.setOnMouseDragged(e -> mouseDragged(e));
c.setOnMouseReleased(e -> mouseReleased(e));

Note that the event handlers in these statements simply call another method in the same class,
and that method has the same parameter as the event handler. That means that it’s possible
to write the lambda expressions as method references (Subsection 4.5.4). The methods that are
called are instance methods in the object “this”, so the method references would have names
like this: :mousePressed, and the event handlers could be installed using

c.setOnMousePressed(this::mousePressed);
c.setOnMouseDragged(this::mouseDragged);
c.setOnMouseReleased(this::mouseReleased);

I S 3

As an example, let’s look at a typical use of dragging: allowing the user to sketch a curve by
dragging the mouse. This example also shows many other features of graphics and mouse pro-
cessing. In the program, you can draw a curve by dragging the mouse on a large white drawing

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 291

area, and you can select a color for drawing by clicking on one of several colored rectangles
to the right of the drawing area. The complete source code can be found in SimplePaint.java.
Here is a picture of the program window after some drawing has been done:

B i

CLEAR

I will discuss a few aspects of the source code here, but I encourage you to read it carefully
in its entirety. There are lots of informative comments in the source code.

In this program, all drawing is done on a single canvas that fills the entire window. The
program is designed to work for any reasonable canvas size, that is, unless the canvas is too small.
This means that coordinates are computed in terms of the actual width and height of the canvas.
(The width and height are obtained by calling canvas.getWidth() and canvas.getHeight().)
This makes things quite a bit harder than they would be if we assumed some particular fixed
size for the canvas. Let’s look at some of these computations in detail. For example, the
large white drawing area extends from y = 3 toy = height - 3 vertically and from x = 3 to
x = width - 56 horizontally. These numbers are needed in order to interpret the meaning of
a mouse click. They take into account a gray border around the canvas and the color palette
along the right edge of the canvas. The gray border is 3 pixels wide. The colored rectangles
are 50 pixels wide. Together with the 3-pixel border around the canvas and a 3-pixel divider
between the drawing area and the colored rectangles, this adds up to put the right edge of the
drawing area 56 pixels from the right edge of the canvas.

A white square labeled “CLEAR” occupies the region beneath the colored rectangles on the
right edge of the canvas. Allowing for this region, we can figure out how much vertical space
is available for the seven colored rectangles, and then divide that space by 7 to get the vertical
space available for each rectangle. This quantity is represented by a variable, colorSpace. Out
of this space, 3 pixels are used as spacing between the rectangles, so the height of each rectangle
is colorSpacing - 3. The top of the N-th rectangle is located (N*colorSpacing + 3) pixels
down from the top of the canvas, assuming that we count the rectangles starting with zero.
This is because there are N rectangles above the N-th rectangle, each of which uses colorSpace
pixels. The extra 3 is for the border at the top of the canvas. After all that, we can write down
the command for drawing the N-th rectangle:

g.fillRect(width - 53, N*colorSpace + 3, 50, colorSpace - 3);

That was not easy! But it shows the kind of careful thinking and precision graphics that are
sometimes necessary to get good results.

http://math.hws.edu/eck/cs124/javanotes8/source/chapter6/SimplePaint.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 292

The mouse in this program is used to do three different things: Select a color, clear the
drawing, and draw a curve. Only the third of these involves dragging, so not every mouse
click will start a dragging operation. The mousePressed() method has to look at the (x,y)
coordinates where the mouse was clicked and decide how to respond. If the user clicked on the
CLEAR rectangle, the drawing area is cleared by calling a clearAndDrawPalette () method that
redraws the entire canvas. If the user clicked somewhere in the strip of colored rectangles, the
corresponding color is selected for drawing. This involves computing which color the user clicked
on, which is done by dividing the y coordinate by colorSpacing. Finally, if the user clicked on
the drawing area, a drag operation is initiated. In this case, a boolean variable, dragging, is
set to true so that the mouseDragged and mouseReleased methods will know that a curve is
being drawn. The code for this follows the general form given above. The actual drawing of the
curve is done in the mouseDragged () method, which draws a line from the previous location of
the mouse to its current location. Some effort is required to make sure that the line does not
extend beyond the white drawing area of the canvas. This is not automatic, since as far as the
computer is concerned, the border and the color bar are part of the canvas. If the user drags
the mouse outside the white drawing area while drawing a curve, the mouseDragged () routine
changes the x and y coordinates to make them lie within the drawing area.

6.3.4 Key Events

In Java, user actions become events in a program, with a GUI component as the target of the
event. When the user presses a button on the mouse, the component that contains the mouse
cursor is the target of the event. But what about keyboard events? When the user presses a
key, what component is the target of the KeyEvent that is generated?

A GUI uses the idea of input focus to determine the target of keyboard events. At any
given time, just one interface element on the screen can have the input focus, and that is where
keyboard events are directed. If the interface element happens to be a JavaFX component,
then the information about the keyboard event becomes an object of type KeyEvent, and it
is delivered to any key event handlers that are listening for KeyEvents associated with that
component. Note that because of the way key events are processed, the Scene object in the
window that contains the focused component also gets a chance to handle a key event. If there
is no other focused component in the window, then the scene itself will be the target for key
events. In my sample programs, I will usually add key event handlers to the scene object.

A program generally gives some visual feedback to the user about which component has the
input focus. For example, if the component is a text-input box, the feedback is usually in the
form of a blinking text cursor. Another possible visual clue is to draw a brightly colored border
around the edge of a component when it has the input focus. You might see that on a button
that has focus. When a button has focus, pressing the space bar is equivalent to clicking the
button.

If comp is any component, and you would like it to have the input focus, you can call
comp.requestFocus(). In a typical user interface, the user can choose to give the focus to
a component by clicking on that component with the mouse. And pressing the tab key will
often move the focus from one component to another. This is handled automatically by the
components involved, without any programming on your part. However, some components do
not automatically request the input focus when the user clicks on them. That includes, for
example, a Canvas. Such a component can still receive the input focus if its requestFocus() is
called. However, you can’t automatically move the focus to that component with the tab key.
To enable that, you can call comp.setFocusTraversable(true). And you can test whether a

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 293

component is focused by calling comp.isFocused().

The focused component is contained in—or sometimes is itself—a window. That window is
said to be the “focused” or “active” window. It is usually the front window on the screen. In
JavaFX a Stage object is a window. You can call stage.requestFocus() to request that the
window be moved to the front of the screen and become the active window. And you can call
stage.isFocused() to test whether the window is active.

x kX

Java makes a careful distinction between the keys that you press and the characters that
you type. There are lots of keys on a keyboard: letter keys, number keys, modifier keys such as
Control and Shift, arrow keys, page up and page down keys, keypad keys, function keys, and
so on. In some cases, such as the shift key, pressing a key does not type a character. On the
other hand, typing a character sometimes involves pressing several keys. For example, to type
an uppercase “A”. you have to press the Shift key and then press the A key before releasing
the Shift key. On my Mac OS computer, I can type an accented e, by holding down the Option
key, pressing the E key, releasing the Option key, and pressing E again. Only one character was
typed, but I had to perform three key-presses and I had to release a key at the right time.

In JavaFX, there are three types of key event: KeyPressed, which is generated when the user
depresses any key on the keyboard; KeyReleased, which is generated when the user releases a
key that had been pressed; and KeyTyped, which is generated when the user types a character,
possibly using a series of key presses and key releases. Note that one user action, such as
pressing the E key, can be responsible for two events, a keyPressed event and a keyTyped
event. Typing an upper case “A” can generate two keyPressed events, two keyReleased
events, and one keyTyped event.

Usually, it is better to think in terms of two separate streams of events, one consisting of
keyPressed and keyReleased events and the other consisting of keyTyped events. For some
applications, you want to monitor the first stream; for other applications, you want to monitor
the second one. Of course, the information in the keyTyped stream could be extracted from
the keyPressed/keyReleased stream, but it would be difficult (and also system-dependent
to some extent). Some user actions, such as pressing the Shift key, can only be detected as
keyPressed events. I used to have a computer solitaire game that highlighted every card that
could be moved, when I held down the Shift key. You can do something like that in Java by
highlighting the cards when the Shift key is pressed and removing the highlight when the Shift
key is released.

There is one more complication. When you hold down a key on the keyboard, that key
might auto-repeat. This means that it will generate multiple KeyPressed events with just
one KeyReleased at the end of the sequence. It can also generate multiple KeyTyped events.
For the most part, this will not affect your programming, but you should not expect every
KeyPressed event to have a corresponding KeyReleased event.

Each key on the keyboard has a code that identifies it. In JavaFX, key codes are rep-
resented by enumerated type constants from the enum KeyCode. When an event handler
for a KeyPressed or KeyReleased event is called, the parameter, evt, contains the code of
the key that was pressed or released. The code can be obtained by calling the function
evt.getCode(). For example, when the user presses the shift key, this function will return
the value KeyCode.SHIFT. You can find all the codes in the documentation for KeyCode, but
names for most keys are easy to guess. Letter keys have names like KeyCode . A and KeyCode.Q.
The arrow keys are named KeyCode.LEFT, KeyCode.RIGHT, KeyCode.UP, and KeyCode .DOWN.
The space bar is KeyCode.SPACE. And function keys have names like KeyCode .F7.

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 294

In the case of a KeyTyped event, you want to know which character was typed. This infor-
mation can be obtained by calling the function evt.getCharacter (). This function returns a
value of type String that contains the character that was typed.

As a first example, you can check out the sample program KeyboardEventDemo.java. This
program draws a small square on a canvas. The user can move the square left, right, up, and
down by pressing arrow keys. This is implemented in a method

private void keyPressed(KeyEvent evt)

that is called by an event handler for KeyPressed events. The handler is installed on the Scene
object in the start () method with the statement

scene.setOnKeyPressed(e -> keyPressed(e));

In the keyPressed() method, the value of evt.getCode() is checked. If it’s one of the arrow
keys that was pressed, the canvas is redrawn to show the square in a different position.

The program also installs handlers for KeyReleased and KeyTyped events in a similar way.
To give the KeyTyped handler something to do, it changes the color of the square when the user

types “r”, “g”, “b”, or “k”. I encourage you to run the program and to read the entire source
code.

6.3.5 AnimationTimer

There is another kind of basic event that I would like to introduce before turning to a more
interesting example; that is, events that are used to drive an animation. The events in this
case happen in the background, and you don’t have to register a listener to respond to them.
However, you do need to write a method that will be called by the system when the events
oceur.

A computer animation is just a sequence of still images, presented to the user one after
the other. If the time between images is short, and if the change from one image to another
is not too great, then the user perceives continuous motion. In JavaFX, you can program
an animation using an object of type AnimationTimer from package javafx.animation. An
AnimationTimer, animator, has a method animator.start() that you can call to start the
animation running or to restart it if it has been paused. It has the method animator.stop()
to pause the animation. It also has a method handle(time), but handle() is not a method
that you call; it’s one that you need to write to say what happens in the animation. The system
will call your handle () method once for each frame of the animation. Its job is to do whatever
is necessary to implement each frame.

The handle () method will be called on the JavaFX application thread, which means that
you can do things like draw on a canvas or manipulate a GUI component. However, whatever
you do should not take very long, since JavaFX animations are meant to run at 60 frames per
second, which means handle () will ideally be called every 1/60 second. (Note: A bug has been
reported that sometimes allows handle () to be called much more frequently than 60 times per
second. I have observed this myself in one version of Linux. To guard against this bug, some
implementations of AnimationTimer in my sample programs include some extra code to guard
against this bug—with a comment to make it clear what is going on.)

AnimationTimer itself is an abstract class, and handle() is an abstract method. This
means that to make an animation, you need to write a subclass of AnimationTimer and provide
a definition for the handle () method. Suppose, for example, that you simply want to call a
draw () method for each frame. This could be done as follows, using an anonymous subclass of
AnimationTimer (see Subsection 5.8.3):

http://math.hws.edu/eck/cs124/javanotes8/source/chapter6/KeyboardEventDemo.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 295

AnimationTimer animator = new AnimationTimer() {
public void handle(long time) {
draw() ;
}
};

Then, to get the animation started, you would need to call animator.start (). This could all
be done in an application’s start () method.

The parameter, time, gives the current time, measured as the number of nanoseconds since
some arbitrary time in the past (the same arbitrary time that is used by System.nanoTime()).
You might use time in the calculations that you do for the frame, as a way of making each
frame different from the next.

6.3.6 State Machines

We are ready to look at an a program that uses animation and key events to implement a simple
game. The program uses an AnimationTimer to drive the animation, and it uses a number of
instance variables to keep track of the current state of the game. The idea of “state” is an
important one.

The information stored in an object’s instance variables is said to represent the state of
that object. When one of the object’s methods is called, the action taken by the object can
depend on its state. (Or, in the terminology we have been using, the definition of the method
can look at the instance variables to decide what to do.) Furthermore, the state can change.
(That is, the definition of the method can assign new values to the instance variables.) In
computer science, there is the idea of a state machine, which is just something that has a
state and can change state in response to events or inputs. The response of a state machine
to an event depends on what state it’s in when the event occurs. An object is a kind of state
machine. Sometimes, this point of view can be very useful in designing classes.

The state machine point of view can be especially useful in the type of event-oriented
programming that is required by graphical user interfaces. When designing a GUI program,
you can ask yourself: What information about state do I need to keep track of? What events
can change the state of the program? How will my response to a given event depend on the
current state? Should the appearance of the GUI be changed to reflect a change in state? How
should the state be taken into account when drawing the content of a canvas? All this is an
alternative to the top-down, step-wise-refinement style of program design, which does not apply
to the overall design of an event-oriented program.

In the KeyboardEventDemo program, discussed above, the state of the program is recorded
in instance variables such as squareColor, squarelLeft, and squareTop, which record the color
and position of the colored square. These state variables are used in a draw() method that
draws the square on a canvas. Their values are changed in the key-event-handling methods.

In the rest of this section, we’ll look at another example, where the state plays an even
bigger role. In this example, the user plays a simple arcade-style game by pressing the arrow
keys. The program is defined in the source code file SubKiller.java. As usual, it would be a
good idea to compile and run the program as well as read the full source code. Here is a picture:

http://math.hws.edu/eck/cs124/javanotes8/source/chapter6/SubKiller.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 296

The entire application window is filled by a canvas. The program shows a black “submarine”
near the bottom of the canvas. The submarine moves erratically back and forth near the bottom
of the window. Near the top, there is a blue “boat.” You can move this boat back and forth
by pressing the left and right arrow keys. Attached to the boat is a red “bomb” (or “depth
charge”). You can drop the bomb by hitting the down arrow key. The objective is to blow up
the submarine by hitting it with the bomb. If the bomb falls off the bottom of the screen, you
get a new one. If the submarine explodes, a new sub is created and you get a new bomb. Try
it! Make sure to hit the sub at least once, so you can see the explosion.

Let’s think about how this game can be programmed. First of all, since we are doing object-
oriented programming, I decided to represent the boat, the depth charge, and the submarine as
objects. Each of these objects is defined by a separate nested class inside the main application
class, and each object has its own state which is represented by the instance variables in the
corresponding class. 1 use variables boat, bomb, and sub to refer to the boat, bomb, and
submarine objects.

Now, what constitutes the “state” of the program? That is, what things change from time
to time and affect the appearance or behavior of the program? Of course, the state includes the
positions of the boat, submarine, and bomb, so those objects have instance variables to store
the positions. Anything else, possibly less obvious? Well, sometimes the bomb is falling, and
sometimes it’s not. That is a difference in state. Since there are two possibilities, I represent
this aspect of the state with a boolean variable in the bomb object, bomb.isFalling. Sometimes
the submarine is moving left and sometimes it is moving right. The difference is represented
by another boolean variable, sub.isMovingleft. Sometimes, the sub is exploding. This is
also part of the state, and it is represented by a boolean variable, sub.isExploding. However,
the explosions require a little more thought. An explosion is something that takes place over
a series of frames. While an explosion is in progress, the sub looks different in each frame,
as the size of the explosion increases. Also, I need to know when the explosion is over so
that I can go back to moving and drawing the sub as usual. So, I use an integer variable,
sub.explosionFrameNumber to record how many frames have been drawn since the explosion
started; the value of this variable is used only when an explosion is in progress.

How and when do the values of these state variables change? Some of them seem to change
on their own: For example, as the sub moves left and right, the state variables that specify
its position change. Of course, these variables are changing because of an animation, and
that animation is driven by an AnimationTimer. Each time the animator’s handle () method
is called, some of the state variables have to change to get ready to draw next frame of the
animation. The changes are made in the handle() method before redrawing the canvas. The
boat, bomb, and sub objects each contain an updateForNextFrame () method that updates the

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 297

state variables of the object to get ready for the next frame of the animation. The handle ()
method calls these methods with the statements

boat.updateForNewFrame () ;
bomb . updateForNewFrame () ;
sub.updateForNewFrame () ;

There are several state variables that change in these update methods, in addition to the
position of the sub: If the bomb is falling, then its y-coordinate increases from one frame to
the next. If the bomb hits the sub, then the isExploding variable of the sub changes to
true, and the isFalling variable of the bomb becomes false. The isFalling variable also
becomes false when the bomb falls off the bottom of the screen. If the sub is exploding, then its
explosionFrameNumber increases by one in each frame, and if it has reached a certain value, the
explosion ends and isExploding is reset to false. At random times, the sub switches between
moving to the left and moving to the right. Its direction of motion is recorded in the sub’s
isMovingLeft variable. The sub’s updateForNewFrame () method includes the following lines
to change the value of isMovingleft at random times:

if (Math.random() < 0.02) {

isMovingleft = ! isMovingLeft;
}
There is a 1 in 50 chance that Math.random() will be less than 0.02, so the statement
“isMovingLeft = ! isMovingLeft” is executed in one out of every fifty frames, on average.

The effect of this statement is to reverse the value of isMovingLeft, from false to true or from
true to false. That is, the direction of motion of the sub is reversed.

In addition to changes in state that take place from one frame to the next, a few state
variables change when the user presses certain keys. In the program, this is checked in a
handler for KeyPressed events. If the user presses the left or right arrow key, the position of
the boat is changed. If the user presses the down arrow key, the bomb changes from not-falling
to falling. The handler is a long lambda expression that is registered with the scene in the
application’s start () method:

scene.setOnKeyPressed(evt —-> {

// The key listener responds to keyPressed events on the canvas.
// The left- and right-arrow keys move the boat while down-arrow
// releases the bomb.

KeyCode code = evt.getCode(); // Which key was pressed?

if (code == KeyCode.LEFT) {
boat.centerX -= 15;

}

else if (code == KeyCode.RIGHT) {
boat.centerX += 15;

}

else if (code == KeyCode.DOWN) {
if (bomb.isFalling == false)

bomb.isFalling = true;
}
s
Note that it’s not necessary to redraw the canvas in this method, since this canvas shows an

animation that is constantly being redrawn anyway. Any changes in the state will become
visible to the user as soon as the next frame is drawn. At some point in the program, I have to

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 298

make sure that the user does not move the boat off the screen. I could have done this in the
key event handler, but I chose to check for this in another routine, in the boat object.

I encourage you to read the source code in SubKiller.java. Although a few points are
tricky, you should with some effort be able to read and understand the entire program. Try to
understand the program in terms of state machines. Note how the state of each of the three
objects in the program changes in response to events from the timer and from the user.

While it’s not at all sophisticated as arcade games go, the SubKiller game does use some
interesting programming. And it nicely illustrates how to apply state-machine thinking in
event-oriented programming.

6.3.7 Observable Values

There is one more kind of basic event that plays an important role in JavaFX: events that
are generated when an observable value is modified. There is an example in the SubKiller
program. A Stage, stage, has a property of type ObservableBooleanValue that tells whether
or not stage is currently the focused window. You can access the property by calling
stage.focusedProperty(). When the value of an ObservableBooleanProperty changes, an
event is generated. You can register a Changelistener with the property, containing an event
handler method that will be called when the event occurs. The handler method in this case
has three parameters: the observable property that generated the event, the previous value
of the property, and the new value. For an ObservableBooleanValue, the old and new values
are of type boolean. There are other observable value types, such as ObservablelntegerValue,
ObservableStringValue, and ObservableObjectValue.

When I first wrote SubKiller, the animation would continue to run even when the
SubKiller window was not the focused window, which I found annoying when I was try-
ing to work in another window. I decided to pause the animation when the window loses the
input focus and to restart it when the window regains focus. When the window loses or gains
focus, the value of the observable boolean property stage.focusedProperty() changes. To
react to that change, I added a change listener to the property, which stops the animation when
the value of the property changes to false and starts the animation when the value changes
to true. So, I added this code to the start () method:

stage.focusedProperty() .addListener((obj,oldVal,newVal) -> {

// This listener turns the animation off when this program’s
// window does not have the input focus.

if (newVal) { // The window has gained focus.
timer.start();

}

else { // The window has lost focus.
timer.stop();

}

draw(); // Redraw canvas. (Appearance changes depending on focus.)

DR

The addListener () method of an observable property registers a change listener with the
property. Note that the lambda expression for the event handler takes three parameters. The
only one that I need here is newVal which represents the current value of the stage’s focused
property.

JavaFX GUI components have many observable properties, of various types. For example,
the text on a Button is a property of type ObservableStringProperty, and the width and the height

http://math.hws.edu/eck/cs124/javanotes8/source/chapter6/SubKiller.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 299

of a canvas are values of type ObservableDoubleProperty. We will encounter more examples in
the next section.

6.4 Basic Controls

IN PRECEDING SECTIONS, you’ve seen how to use a graphics context to draw on the screen
and how to handle mouse events and keyboard events. In one sense, that’s all there is to
GUI programming. If you're willing to program all the drawing and handle all the mouse and
keyboard events, you have nothing more to learn. However, you would either be doing a lot
more work than you need to do, or you would be limiting yourself to very simple user interfaces.
A typical user interface uses standard GUI components such as buttons, scroll bars, text-input
boxes, and menus. These components have already been written for you, so you don’t have to
duplicate the work involved in developing them. They know how to draw themselves, and they
can handle the details of processing the mouse and keyboard events that concern them.

Consider one of the simplest user interface components, a push button. The button has a
border, and it displays some text. This text can be changed. Sometimes the button is disabled,
so that clicking on it doesn’t have any effect. When it is disabled, its appearance changes.
When the user clicks on the button, it changes appearance when the mouse button is pressed
and changes back when the mouse button is released. In fact, it’s more complicated than that.
If the user moves the mouse outside the push button before releasing the mouse button, the
button changes to its regular appearance, and releasing the mouse at that time will not trigger
the button. To implement this, it is necessary to respond to mouse exit or mouse drag events.
Furthermore, on many platforms, a button can receive the input focus. The button changes
appearance when it has the focus. If the button has the focus and the user presses the space
bar, the button is triggered. This means that the button must respond to keyboard and focus
events as well.

Fortunately, you don’t have to program any of this, provided you use an object belonging to
the standard class javafx.scene.control.Button. A Button object draws itself and processes
mouse, keyboard, and focus events on its own. You only hear from the Button when the
user triggers it by clicking on it or pressing the space bar while the button has the input
focus. When this happens, the Button object creates an event object belonging to the class
javafx.event.ActionEvent. The event object is sent to any registered listener to tell it that
the button has been pushed. Your program gets only the information it needs—the fact that a
button was pushed.

I S 3

Many standard components that are defined as part of the JavaFX graphical user inter-
face API are defined by subclasses of the class Control, from package javafx.scene.control.
Controls (with just a couple of exceptions) can be manipulated by the user to generate input
and events for the program. A number of useful methods are defined for controls. I begin by
mentioning three methods that can be used with any Control control:

e control.setDisable(true) can be called to disable the control. The control can be re-
enabled with control.setDisable(false). When a control is disabled, its appearance
might change, and it cannot be the target of mouse or key events. This function can
actually be called with any scene graph node, not just controls; when you disable a node,
any nodes contained inside that node are also disabled. There is a boolean-valued function,
control.isDisabled() that you can call to discover whether the control is disabled, either

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 300

because it was explicitly disabled or because it is inside a container node that was explicitly
disabled.

e control.setTooltip(new Tooltip(string)) sets the specified string as a “tool tip” for
the control. The tool tip is displayed if the mouse cursor is inside the control and the
mouse is not moved for a few seconds. The tool tip should give some information about
the meaning of the control or how to use it.

e control.setStyle(cssString) sets the CSS style of the control. CSS was discussed in
Subsection 6.2.5.

Note that using a control, or any scene graph node, is a multi-step process. The component
object must be created with a constructor. It must be added to a container. In many cases,
a listener must be registered to respond to events from the component. And in some cases, a
reference to the component must be saved in an instance variable so that the component can
be manipulated by the program after it has been created. In this section, we will look at a few
of the basic standard control components that are available in JavaFX. They are all defined by
classes in the package javafx.scene.control. In the next section we will consider the problem of
laying out components in containers.

6.4.1 ImageView

But before we turn to controls, I want to mention one other node type: ImageView from package
javafx.scene.image. Recall from Subsection 6.2.3 that an Image object represents a picture,
and that images can be loaded from resource files. An Image can be drawn on a Canvas, but
an Image is not a Node. That is, it can’t be part of a scene graph.

An ImageView is a scene graph node that is a simple wrapper for an image. Its purpose is
simply to display the image. It makes it possible to add the image to a scene graph without
having to draw the image on a canvas. The image can be specified as a parameter to the
ImageView constructor. For example, suppose that “icons/tux.png” is the path to an image
resource file. Then an ImageView can be created to display the image like this:

Image tux = new Image("icons/tux.png");
ImageView tuxIcon = new ImageView(tux);

In this case, I am thinking of the image as an “icon,” that is, a small image that is typically
used on a button, label, or menu item to add a graphical element to the usual plain text. In
fact, we’ll see that you can do exactly that in JavaFX.

6.4.2 Label and Button

The first four controls that we will look at have something in common: They all display a
string of text to the user, which the user can view but not edit. Furthermore they can all
display a graphical element in addition to or instead of the text. The graphic can be any
Node but is usually a small icon, implemented as an object of type ImageView. In fact, all
four types of controls inherit their behavior from a common superclass named Labeled. In
Subsection 6.6.2, we look at menu items, which also inherit from Labeled. That class defines a
number of instance methods that can be used with labels, buttons, and other labeled controls.
Those methods include:

e setText (string) for setting the text that is displayed on the control. The text can be
multi-line. The new line character, “\n”, in the string represents a line break.

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 301

e setGraphic(node) for setting the control’s graphical element.
e setFont (font) for setting the font that is used for the text.
e setTextFill(color) for setting the paint that is used for drawing the text.

e setGraphicTextGap(size) for setting the amount of space that is put between the text
and the graphic. The parameter is of type double.

e setContentDisplay(displayCode) for setting where the graphic should be placed
with respect to the text. The parameter is a constant from an enum, ContentDis-
play, such as ContentDisplay.LEFT, ContentDisplay.RIGHT, ContentDisplay.TOP or
ContentDisplay.BOTTOM.

All of these setter methods have corresponding getters, such as getText () and getFont(). I
have not listed a setter method for the background color. It is possible to set a background
color, but it’s cumbersome. (Setting the background color of a control, c, to white looks like
this:

c.setBackground (new Background(new BackgroundFill(Color.WHITE,null,null)));

where Background and BackgroundFill are in package javafx.scene.layout.) It is more easily
done by setting the CSS style of the control with the setStyle () method. CSS is also useful for
setting the border and for setting padding (t