

Chapter 3

Programming in the Small II: Control





The basic building blocks of programs—variables,
expressions, assignment statements, and subroutine call statements—were
covered in the previous chapter. Starting with this chapter, we look at how
these building blocks can be put together to build complex programs with more
interesting behavior.


Since we are still working on the level of "programming in the small" in
this chapter, we are interested in the kind of complexity that can occur within
a single subroutine. On this level, complexity is provided by control structures. 
The two types of control structures, loops
and branches, can be used to repeat a sequence of statements over and over or
to choose among two or more possible courses of action. Java includes several
control structures of each type, and we will look at each of them in some
detail.


Program complexity can be seen not just in control structures but also in
data structures.  A data structure is an organized collection 
of data, chunked together so that it can be treated as a unit.  
Section 3.8 in this chapter includes an introduction to one of the most common data structures:
arrays.


The chapter will also begin the study of program design. Given a problem,
how can you come up with a program to solve that problem? We'll look at a
partial answer to this question in Section 3.2.  Finally,
Section 3.9 is a very brief first look at GUI programming.
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Section 3.1

Blocks, Loops, and Branches






The ability of a computer to perform complex tasks
is built on just a few ways of combining simple commands into control
structures. In Java, there are just six such structures that are used to determine the normal
flow of control in a program—and, in fact, just
three of them would be enough to write programs to perform any task. The six
control structures are: the block, the
while loop, the do..while loop, the 
for loop, the if statement, and the 
switch statement.  Each of these structures is considered to be a single
"statement," but it is a structured statement that
can contain one or more other statements inside itself.





3.1.1  Blocks



The block is the simplest type of structured
statement. Its purpose is simply to group a sequence of statements into a
single statement. The format of a block is:


{
     statements
}


That is, it consists of a sequence of statements enclosed between a pair of
braces, "{" and "}". In fact, it is possible for a block to contain no
statements at all; such a block is called an empty block, 
and can actually be useful at times. An empty block consists of
nothing but an empty pair of braces. Block statements usually occur inside
other statements, where their purpose is to group together several statements
into a unit. However, a block can be legally used wherever a statement can
occur. There is one place where a block is required: As you might have already
noticed in the case of the main subroutine of a program, the
definition of a subroutine is a block, since it is a sequence of statements
enclosed inside a pair of braces.


I should probably note again at this point that Java is what is called a
free-format language. There are no syntax rules about how the language has to
be arranged on a page. So, for example, you could write an entire block on one
line if you want. But as a matter of good programming style, you should lay out
your program on the page in a way that will make its structure as clear as
possible. In general, this means putting one statement per line and using
indentation to indicate statements that are contained inside control
structures. This is the format that I will use in my examples.


Here are two examples of blocks:


{
   System.out.print("The answer is ");
   System.out.println(ans);
}
  
 
{  // This block exchanges the values of x and y
   int temp;      // A temporary variable for use in this block.
   temp = x;      // Save a copy of the value of x in temp.
   x = y;         // Copy the value of y into x.
   y = temp;      // Copy the value of temp into y.
}


In the second example, a variable, temp, is declared inside the
block. This is perfectly legal, and it is good style to declare a variable
inside a block if that variable is used nowhere else but inside the block. A
variable declared inside a block is completely inaccessible and invisible from
outside that block. When the computer executes the variable declaration
statement, it allocates memory to hold the value of the variable (at least conceptually). When the
block ends, that memory is discarded (that is, made available for reuse). The
variable is said to be local to the block. There
is a general concept called the "scope" of an identifier. The scope 
of an identifier is the part of the program in which
that identifier is valid. The scope of a variable defined inside a block is
limited to that block, and more specifically to the part of the block that
comes after the declaration of the variable.






3.1.2  The Basic While Loop



The block statement by itself really doesn't affect the flow of control in a
program. The five remaining control structures do. They can be divided into two
classes: loop statements and branching statements. You really just need one
control structure from each category in order to have a completely
general-purpose programming language. More than that is just convenience. In
this section, I'll introduce the while loop and the if
statement. I'll give the full details of these statements and of the other
three control structures in later sections.


A while loop is used to repeat a given
statement over and over. Of course, it's not likely that you would want to keep
repeating it forever. That would be an infinite loop, which is 
generally a bad thing.  (There is an old story about
computer pioneer Grace Murray Hopper, who read instructions on a bottle of
shampoo telling her to "lather, rinse, repeat." As the story goes, she claims
that she tried to follow the directions, but she ran out of shampoo. (In case
you don't get it, she was making a joke about the way that computers mindlessly follow
instructions.))  By the way, if you are working on the command line and need to
stop a program that has gotten into an infinite loop, you should be able to
do so with Control-C, that is, hold down the Control key and press the C key.


To be more specific, a while loop will repeat a statement over and
over, but only so long as a specified condition remains true. A while
loop has the form:


while (boolean-expression)
     statement



Since the statement can be, and usually is, a block, most while
loops have the form:


while (boolean-expression) {
    statements
}


Some programmers think that the braces should always be included as a matter
of style, even when there is only one statement between them, but I don't always
follow that advice myself.


The semantics of the while statement go like this: When the computer comes to a
while statement, it evaluates the boolean-expression, 
which yields either true or
false as its value. If the value is false, the computer skips
over the rest of the while loop and proceeds to the next command in
the program. If the value of the expression is true, the computer
executes the statement or block of statements inside the loop. Then it returns to the
beginning of the while loop and repeats the process. That is, it
re-evaluates the boolean-expression, ends the
loop if the value is false, and continues it if the value is
true. This will continue over and over until the value of the
expression is false when the computer evaluates it; if that never happens, then there will be an
infinite loop.


Here is an example of a while loop that simply prints out the
numbers 1, 2, 3, 4, 5:


int number;   // The number to be printed.
number = 1;   // Start with 1.
while ( number < 6 ) {  // Keep going as long as number is < 6.
    System.out.println(number);
    number = number + 1;  // Go on to the next number.
}
System.out.println("Done!");


The variable number is initialized with the value 1. So 
when the computer evaluates the
expression "number < 6" for the first time, 
it is asking whether 1 is less than 6, which is
true. The computer therefore proceeds to execute the two statements
inside the loop. The first statement prints out "1". The second statement adds
1 to number and stores the result back into the variable
number; the value of number has been changed to 2. The
computer has reached the end of the loop, so it returns to the beginning and
asks again whether number is less than 6. Once again this is true, so
the computer executes the loop again, this time printing out 2 as the value of
number and then changing the value of number to 3. It
continues in this way until eventually number becomes equal to 6. At
that point, the expression "number < 6" evaluates to false. So, the
computer jumps past the end of the loop to the next statement and prints out
the message "Done!". Note that when the loop ends, the value of number
is 6, but the last value that was printed was 5.


By the way, you should remember that you'll never see a while loop
standing by itself in a real program. It will always be inside a subroutine
which is itself defined inside some class. As an example of a while
loop used inside a complete program, here is a little program that computes the
interest on an investment over several years. This is an improvement over
examples from the previous chapter that just reported the results for one
year:


import textio.TextIO;

/**
 *  This class implements a simple program that will compute the amount of 
 *  interest that is earned on an investment over a period of 5 years.  The 
 *  initial amount of the investment and the interest rate are input by the 
 *  user.  The value of the investment at the end of each year is output.
 */ 
public class Interest3 {
     
 
   public static void main(String[] args) {
  
      double principal;  // The value of the investment.
      double rate;       // The annual interest rate.
      
      /* Get the initial investment and interest rate from the user. */
      
      System.out.print("Enter the initial investment: ");
      principal = TextIO.getlnDouble();
      
      System.out.println();
      System.out.println("Enter the annual interest rate.");
      System.out.print("Enter a decimal, not a percentage: ");
      rate = TextIO.getlnDouble();
      System.out.println();
      
      /* Simulate the investment for 5 years. */
      
      int years;  // Counts the number of years that have passed.
      
      years = 0;
      while (years < 5) {
         double interest;  // Interest for this year.
         interest = principal * rate;
         principal = principal + interest;     // Add it to principal.
         years = years + 1;    // Count the current year.
         System.out.print("The value of the investment after ");
         System.out.print(years);
         System.out.print(" years is $");
         System.out.printf("%1.2f", principal);
         System.out.println();
      } // end of while loop
                       
   } // end of main()
        
} // end of class Interest3


   
You should study this program, and make sure that you understand what the
computer does step-by-step as it executes the while loop.








3.1.3  The Basic If Statement



An if statement tells the computer to take one
of two alternative courses of action, depending on whether the value of a given
boolean-valued expression is true or false. It is an example of a "branching"
or "decision" statement. An if statement has the form:


if ( boolean-expression )
    statement1
else
    statement2



When the computer executes an if statement, it evaluates the
boolean expression. If the value is true, the computer executes the
first statement and skips the statement that follows the "else". If
the value of the expression is false, then the computer skips the
first statement and executes the second one. Note that in any case, one and
only one of the two statements inside the if statement is executed.
The two statements represent alternative courses of action; the computer
decides between these courses of action based on the value of the boolean
expression.


In many cases, you want the computer to choose between doing something and
not doing it. You can do this with an if statement that omits the
else part:


if ( boolean-expression )
    statement



To execute this statement, the computer evaluates the expression. If the
value is true, the computer executes the statement that is contained inside the if
statement; if the value is false, the computer skips over that statement.  In either
case, the computer then continues with whatever follows the if statement in the program.


Sometimes, novice programmers confuse while statements with simple
if statements (with no else part), although their meanings are
quite different.  The statement in an if is executed at most once,
while the statement in a while can be executed any number of times.
It can be helpful to look at diagrams of the flow of control for while and
simple if statements:



[image: Control flow diagrams for while and simple if]


   
In these diagrams, the arrows represent the flow of time as the statement is executed.
Control enters the diagram at the top and leaves at the bottom.
Similarly, a flow control diagram for an if..else statement makes it clear
that exactly one of the two nested statements is executed:



[image: Control flow diagram for if..else statement]


   



Of course, either or both of the statements
in an if statement can be a block, and again many programmers
prefer to add the braces even when they contain just a single statement.
So an if statement often looks like:


if ( boolean-expression ) {
    statements
}
else {
    statements
}


or:


if ( boolean-expression ) {
    statements
}


As an example, here is an if statement that exchanges the value of
two variables, x and y, but only if x is greater
than y to begin with. After this if statement has been
executed, we can be sure that the value of x is definitely less than
or equal to the value of y:


if ( x > y ) {
    int temp;      // A temporary variable for use in this block.
    temp = x;      // Save a copy of the value of x in temp.
    x = y;         // Copy the value of y into x.
    y = temp;      // Copy the value of temp into y.
}


Finally, here is an example of an if statement that includes an
else part. See if you can figure out what it does, and why it would be
used:


if ( years > 1 ) {  // handle case for 2 or more years
    System.out.print("The value of the investment after ");
    System.out.print(years);
    System.out.print(" years is $");
}
else {  // handle case for 1 year
    System.out.print("The value of the investment after 1 year is $");
}  // end of if statement
System.out.printf("%1.2f", principal);  // this is done in any case



I'll have more to say about control structures later in this chapter. But
you already know the essentials. If you never learned anything more about
control structures, you would already know enough to perform any possible
computing task. Simple looping and branching are all you really need!







3.1.4  Control Abstractiont



Control structures such as if statements and while loops
allow you to control processes that go on inside the CPU of a computer.  But as to
what actually goes on in the CPU, there is no such thing as an if statements or a while loops.
As discussed in Section 1.1, a CPU can only execute simple machine language
instructions.  Loops and branches must be implemented in machine language using jump instructions,
which change the value stored in the program counter register, and conditional jump instructions,
which might or might not change the program counter, depending on the result of a simple test.


Implementing Java control structures in machine language can get rather complicated.
Fortunately, you don't need to know how to do it.  You can use Java control structures
without knowing how they are implemented in machine language.  In fact, you don't need
to know anything about machine language or how CPUs work.  This is an example of
abstraction.


Abstraction is a central concept in computer science.  Abstraction allows you
to work with something without understanding how it works in detail.  It allows
you to work on a "higher level."  If statements and while loops
are examples of control abstractions.  They allow you to work
with a high-level programming language like Java, rather than with very low-level
machine language.


You will encounter other kinds of abstraction later in this book.  In fact, you've already
encountered one: A variable is a basic example of data abstraction.
A variable lets you use a name to work with a data value of a certain type.  The computer
has to keep track of the numerical address of that data in memory, how many bytes of memory
the data occupies, and how to interpret the bits that are stored in that memory to
represent the value.  The variable is an abstraction that lets you avoid all that detail.







3.1.5  Definite Assignment



I will finish this introduction to control structures with a somewhat technical
issue that you might not fully understand the first time you encounter it.
Consider the following two code segments, which seem to be entirely equivalent:


int y;                          int y;
if (x < 0) {                    if (x < 0) {
    y = 1;                           y = 1;
}                               }
else {                          if (x >= 0) {
    y = 2;                           y = 2;
}                               }
System.out.println(y);          System.out.println(y);


In the version on the left, y is assigned the value 1 if x < 0
and it is assigned the value 2 otherwise, that is, if x >= 0.  Exactly the same is true of the
version on the right.  However, there is a subtle difference.  In fact, the Java compiler will report
an error for the System.out.println statement in the code on the right, while the
code on the left is perfectly fine!  



The problem is that in the code on the right, the computer can't tell that the
variable y has definitely been assigned a value.  When an if
statement has no else part, the statement inside the if
might or might not be executed, depending on the value of the condition.  The compiler can't
tell whether it will be executed or not, since the condition will only be evaluated when
the program is running.  For the code on the right above, as far as the compiler is concerned,
it is possible that neither statement, y = 1 or y = 2,
will be evaluated, so it is possible that the output statement is trying to print an undefined value.
The compiler considers this to be an error.  The value of a variable can only be used if the
compiler can verify that the variable will have been assigned a value at that point when the
program is running.  This is called definite assignment.  (It doesn't matter
that you can tell that y will always be assigned a value in this example.
The question is whether the compiler can tell.)


Note that in the code on the left above, y is definitely assigned a value,
since in an if..else statement, one of the two alternatives will be executed
no matter what the value of the condition in the if.  
It is important that you understand that there is a 
difference between an if..else statement and a pair of plain if statements.
Here is another pair of code segments that might seem to do the same thing,
but don't.  What's the value of x after each code segment is executed?



int x;                             int x;
x = -1;                            x = -1;
if (x < 0)                         if (x < 0)
    x = 1;                             x = 1;
else                               if (x >= 0)
    x = 2;                             x = 2;



After the code on the left is executed, x is 1; after the code on the
right, x is 2.  If you don't believe this, work though the code step-by-step,
doing exactly what the computer does when it executes each step.  The key point is that for
the code on the right, both assignment statements, x = 1 and x = 2,
are executed.  Make sure that you understand why.








Section 3.2

Algorithm Development






Programming is difficult (like many activities that
are useful and worthwhile—and like most of those activities, it can also be
rewarding and a lot of fun). When you write a program, you have to tell the
computer every small detail of what to do. And you have to get everything
exactly right, since the computer will blindly follow your program exactly as
written. How, then, do people write any but the most simple programs? It's not
a big mystery, actually. It's a matter of learning to think in the right
way.


A program is an expression of an idea. A programmer starts with a general
idea of a task for the computer to perform. Presumably, the programmer has some
idea of how to perform the task by hand, at least in general outline. The
problem is to flesh out that outline into a complete, unambiguous, step-by-step
procedure for carrying out the task. Such a procedure is called an "algorithm."
(Technically, an algorithm is an unambiguous,
step-by-step procedure that always terminates after a finite number of steps. We don't
want to count procedures that might go on forever.) An algorithm is not the same as a
program. A program is written in some particular programming language. An
algorithm is more like the idea behind the program, but it's the idea of
the steps the program will take to perform its task, not just the idea
of what the task needs to accomplish in the end. When describing an algorithm, the steps 
don't necessarily have to be specified in complete detail, 
as long as the steps are unambiguous and it's clear that
carrying out the steps will accomplish the assigned task. An algorithm can be
expressed in any language, including English. Of course, an algorithm can only
be expressed as an actual program if all the details have been filled in.


So, where do algorithms come from? Usually, they have to be developed, often
with a lot of thought and hard work. Skill at algorithm development is
something that comes with practice, but there are techniques and guidelines
that can help. I'll talk here about some techniques and guidelines that are
relevant to "programming in the small," and I will return to the subject
several times in later chapters.





3.2.1  Pseudocode and Stepwise Refinement



When programming in the small, you have a few basics to work with:
variables, assignment statements, and input/output routines. You might also
have some subroutines, objects, or other building blocks that have already been
written by you or someone else. (Input/output routines fall into this class.)
You can build sequences of these basic instructions, and you can also combine
them into more complex control structures such as while loops and
if statements.


Suppose you have a task in mind that you want the computer to perform. One
way to proceed is to write a description of the task, and take that description
as an outline of the algorithm you want to develop. Then you can refine and
elaborate that description, gradually adding steps and detail, until you have a
complete algorithm that can be translated directly into programming language.
This method is called stepwise refinement, and it
is a type of top-down design. As you proceed through the stages of stepwise
refinement, you can write out descriptions of your algorithm in 
pseudocode—informal instructions that imitate the structure
of programming languages without the complete detail and perfect syntax of
actual program code.


As an example, let's see how one might develop the program from the previous
section, which computes the value of an investment over five years. The task
that you want the program to perform is: "Compute and display the value of an
investment for each of the next five years, where the initial investment and
interest rate are to be specified by the user." You might then write—or more likely
just think—that this can be expanded as:


Get the user's input
Compute the value of the investment after 1 year
Display the value
Compute the value after 2 years
Display the value
Compute the value after 3 years
Display the value
Compute the value after 4 years
Display the value
Compute the value after 5 years
Display the value


This is correct, but rather repetitive. And seeing that repetition, you
might notice an opportunity to use a loop. A loop would take less typing. More
important, it would be more general: Essentially the same loop
will work no matter how many years you want to process. So, you might rewrite
the above sequence of steps as:


Get the user's input
while there are more years to process:
    Compute the value after the next year
    Display the value


Following this algorithm would certainly solve the problem, but
for a computer we'll have to be more explicit about how to "Get the
user's input," how to "Compute the value after the next year," and what it
means to say "there are more years to process." We can expand the step, "Get
the user's input" into


Ask the user for the initial investment
Read the user's response
Ask the user for the interest rate
Read the user's response


To fill in the details of the step "Compute the value after the next year,"
you have to know how to do the computation yourself. (Maybe you need to ask
your boss or professor for clarification?) Let's say you know that the value is
computed by adding some interest to the previous value. Then we can refine the
while loop to:


while there are more years to process:
    Compute the interest
    Add the interest to the value
    Display the value


As for testing whether there are more years to process, the only way that we
can do that is by counting the years ourselves. This displays a very common
pattern, and you should expect to use something similar in a lot of programs:
We have to start with zero years, add one each time we process a year, and stop
when we reach the desired number of years.  This is sometimes called a counting loop.
So the while loop
becomes:


years = 0
while years < 5:
    years = years + 1
    Compute the interest
    Add the interest to the value
    Display the value


We still have to know how to compute the interest. Let's say that the
interest is to be computed by multiplying the interest rate by the current
value of the investment. Putting this together with the part of the algorithm
that gets the user's inputs, we have the complete algorithm:


Ask the user for the initial investment
Read the user's response
Ask the user for the interest rate
Read the user's response
years = 0
while years < 5:
    years = years + 1
    Compute interest = value * interest rate
    Add the interest to the value
    Display the value


Finally, we are at the point where we can translate pretty directly into
proper programming-language syntax. We still have to choose names for the
variables, decide exactly what we want to say to the user, and so forth. Having
done this, we could express our algorithm in Java as:


double principal, rate, interest;  // declare the variables
int years;
System.out.print("Type initial investment: ");
principal = TextIO.getlnDouble();
System.out.print("Type interest rate: ");
rate = TextIO.getlnDouble();
years = 0;
while (years < 5) {
   years = years + 1;
   interest = principal * rate;
   principal = principal + interest;
   System.out.println(principal);
}


This still needs to be wrapped inside a complete program, it still needs to
be commented, and it really needs to print out more information in a nicer format for the user.
But it's essentially the same program as the one in the previous section. (Note
that the pseudocode algorithm used indentation to show which statements are
inside the loop. In Java, indentation is completely ignored by the computer, so
you need a pair of braces to tell the computer which statements are in the
loop. If you leave out the braces, the only statement inside the loop would be
"years = years + 1;". The other statements would only be executed
once, after the loop ends. The nasty thing is that the computer won't notice
this error for you, like it would if you left out the parentheses around
"(years < 5)". The parentheses are required by the syntax of the
while statement. The braces are only required semantically. The
computer can recognize syntax errors but not semantic errors.)


One thing you should have noticed here is that my original specification of
the problem—"Compute and display the value of an investment for each of the
next five years"—was far from being complete. Before you start writing a
program, you should make sure you have a complete specification of exactly what
the program is supposed to do. In particular, you need to know what information
the program is going to input and output and what computation it is going to
perform. Here is what a reasonably complete specification of the problem might
look like in this example:




"Write a program that will compute and display the value of an investment
for each of the next five years. Each year, interest is added to the value. The
interest is computed by multiplying the current value by a fixed interest rate.
Assume that the initial value and the rate of interest are to be input by the
user when the program is run."








3.2.2  The 3N+1 Problem



Let's do another example, working this time with a program that you haven't
already seen. The assignment here is an abstract mathematical problem that is
one of my favorite programming exercises. This time, we'll start with a more
complete specification of the task to be performed:




"Given a positive integer, N, define the '3N+1' sequence starting from N as
follows: If N is an even number, then divide N by two; but if N is odd, then
multiply N by 3 and add 1. Continue to generate numbers in this way until N
becomes equal to 1. For example, starting from N = 3, which is odd, we multiply
by 3 and add 1, giving N = 3*3+1 = 10. Then, since N is even, we divide by 2,
giving N = 10/2 = 5. We continue in this way, stopping when we reach 1.
The complete sequence is: 3, 10, 5, 16, 8, 4, 2, 1.


"Write a program that will read a positive integer from the user and will
print out the 3N+1 sequence starting from that integer. The program should also
count and print out the number of terms in the sequence."




A general outline of the algorithm for the program we want is:


   Get a positive integer N from the user.
   Compute, print, and count each number in the sequence.
   Output the number of terms.


The bulk of the program is in the second step. We'll need a loop, since we
want to keep computing numbers until we get 1. To put this in terms appropriate
for a while loop, we need to know when to continue the
loop rather than when to stop it: We want to continue as long as the number is
not 1. So, we can expand our pseudocode algorithm to:


Get a positive integer N from the user;
while N is not 1:
    Compute N = next term;
    Output N;
    Count this term;
Output the number of terms;


In order to compute the next term, the computer must take different actions
depending on whether N is even or odd. We need an if statement to
decide between the two cases:


Get a positive integer N from the user;
while N is not 1:
    if N is even:
       Compute N = N/2;
    else
       Compute N = 3 * N + 1;
    Output N;
    Count this term;
Output the number of terms;


We are almost there. The one problem that remains is counting. Counting
means that you start with zero, and every time you have something to count, you
add one. We need a variable to do the counting. The variable must be set
to zero once, before the loop starts, and it must be incremented
within the loop.  (Again, this is a common
pattern that you should expect to see over and over.) With the counter added,
we get:


Get a positive integer N from the user;
Let counter = 0;
while N is not 1:
    if N is even:
       Compute N = N/2;
    else
       Compute N = 3 * N + 1;
    Output N;
    Add 1 to counter;
Output the counter;


We still have to worry about the very first step. How can we get a
positive integer from the user? If we just read in a number,
it's possible that the user might type in a negative number or zero. If you
follow what happens when the value of N is negative or zero, you'll see that
the program will go on forever, since the value of N will never become equal to
1. This is bad. In this case, the problem is probably no big deal, but in
general you should try to write programs that are foolproof. One way to fix
this is to keep reading in numbers until the user types in a positive
number:


Ask user to input a positive number;
Let N be the user's response;
while N is not positive:
   Print an error message;
   Read another value for N;
Let counter = 0;
while N is not 1:
    if N is even:
       Compute N = N/2;
    else
       Compute N = 3 * N + 1;
    Output N;
    Add 1 to counter;
Output the counter;


The first while loop will end only when N is a positive number, as
required. (A common beginning programmer's error is to use an if
statement instead of a while statement here: "If N is not positive,
ask the user to input another value." The problem arises if the second number
input by the user is also non-positive. The if statement is only
executed once, so the second input number is never tested, and the program
proceeds into an infinite loop. With the
while loop, after the second number is input, the computer jumps back
to the beginning of the loop and tests whether the second number is positive.
If not, it asks the user for a third number, and it will continue asking for
numbers until the user enters an acceptable input.  After the while loop ends, we
can be absolutely sure that N is a positive number.)


Here is a Java program implementing this algorithm. It uses the operators
<= to mean "is less than or equal to" and != to mean "is
not equal to." To test whether N is even, it uses "N % 2 == 0". All
the operators used here were discussed in Section 2.5.


import textio.TextIO;

/**  
 * This program prints out a 3N+1 sequence starting from a positive 
 * integer specified by the user.  It also counts the number of 
 * terms in the sequence, and prints out that number.
 */
 public class ThreeN1 {
 
      public static void main(String[] args) {                
        
         int N;       // for computing terms in the sequence
         int counter; // for counting the terms
        
         System.out.print("Starting point for sequence: ");
         N = TextIO.getlnInt();
         while (N <= 0) {
            System.out.print(
                   "The starting point must be positive. Please try again: " );
            N = TextIO.getlnInt();
         }
         // At this point, we know that N > 0
        
         counter = 0;
         while (N != 1) {
             if (N % 2 == 0)
                N = N / 2;
             else
                N = 3 * N + 1;
             System.out.println(N);
             counter = counter + 1;
         }
        
         System.out.println();
         System.out.print("There were ");
         System.out.print(counter);
         System.out.println(" terms in the sequence.");
                           
     }  // end of main()
 
 }  // end of class ThreeN1



Two final notes on this program: First, you might have noticed that the
first term of the sequence—the value of N input by the user—is not
printed or counted by this program. Is this an error? It's hard to say. Was the
specification of the program careful enough to decide? This is the type of
thing that might send you back to the boss/professor for clarification. The
problem (if it is one!) can be fixed easily enough. Just replace the line
"counter = 0" before the while loop with the two lines:


System.out.println(N);   // print out initial term
counter = 1;       // and count it


Second, there is the question of why this problem might be interesting.
Well, it's interesting to mathematicians and computer scientists because of a
simple question about the problem that they haven't been able to answer: Will
the process of computing the 3N+1 sequence finish after a finite number of
steps for all possible starting values of N? Although individual sequences are
easy to compute, no one has been able to answer the general question. To put
this another way, no one knows whether the process of computing 3N+1 sequences
can properly be called an algorithm, since an algorithm is required to
terminate after a finite number of steps!  (Note: This discussion 
really applies to integers, not to values of type int!  That is, it
assumes that
the value of N can take on arbitrarily large integer values, which
is not true for a variable of type int in a Java program.
When the value of N in the program becomes too large to be
represented as a 32-bit int, the values output by the program
are no longer mathematically correct.  So the Java program does not compute
the correct 3N+1 sequence if N becomes too large.  See Exercise 8.2.)




   



3.2.3  Coding, Testing, Debugging




It would be nice if, having developed an algorithm for your program, you
could relax, press a button, and get a perfectly working program.
Unfortunately, the process of turning an algorithm into Java source code
doesn't always go smoothly. And when you do get to the stage of a working
program, it's often only working in the sense that it does something.
Unfortunately not what you want it to do.


After program design comes coding: translating the design into a program
written in Java or some other language. Usually, no matter how careful you are,
a few syntax errors will creep in from somewhere, and the Java compiler will
reject your program with some kind of error message. Unfortunately, while a
compiler will always detect syntax errors, it's not very good about telling you
exactly what's wrong. Sometimes, it's not even good about telling you where the
real error is. A spelling error or missing "{" on line 45 might cause the
compiler to choke on line 105. You can avoid lots of errors by making sure that
you really understand the syntax rules of the language and by following some
basic programming guidelines. For example, I never type a "{" without typing
the matching "}". Then I go back and fill in the statements between the braces.
A missing or extra brace can be one of the hardest errors to find in a large
program. Always, always indent your program nicely. If you change the program,
change the indentation to match. It's worth the trouble. Use a consistent
naming scheme, so you don't have to struggle to remember whether you called
that variable interestrate or interestRate. In general, when
the compiler gives multiple error messages, don't try to fix the second error
message from the compiler until you've fixed the first one. Once the compiler
hits an error in your program, it can get confused, and the rest of the error
messages might just be guesses. Maybe the best advice is: Take the time to
understand the error before you try to fix it. Programming is not an
experimental science.


When your program compiles without error, you are still not done. You have
to test the program to make sure it works correctly. Remember that the goal is
not to get the right output for the two sample inputs that the professor gave
in class. The goal is a program that will work correctly for all reasonable
inputs. Ideally, when faced with an unreasonable input, it should respond by
gently chiding the user rather than by crashing. Test your program on a wide
variety of inputs. Try to find a set of inputs that will test the full range of
functionality that you've coded into your program. As you begin writing larger
programs, write them in stages and test each stage along the way. You might
even have to write some extra code to do the testing—for example to call a
subroutine that you've just written. You don't want to be faced, if you can
avoid it, with 500 newly written lines of code that have an error in there
somewhere.



The point of testing is to find bugs—semantic 
errors that show up as incorrect behavior rather than as compilation
errors. And the sad fact is that you will probably find them. Again, you can
minimize bugs by careful design and careful coding, but no one has found a way
to avoid them altogether. Once you've detected a bug, it's time for
debugging. You have to track down the cause of the
bug in the program's source code and eliminate it. Debugging is a skill that,
like other aspects of programming, requires practice to master. So don't be
afraid of bugs. Learn from them. One essential debugging skill is the ability
to read source code—the ability to put aside preconceptions about what you
think it does and to follow it the way the computer does—mechanically, 
step-by-step—to see what it really does. This is hard. I can
still remember the time I spent hours looking for a bug only to find that a
line of code that I had looked at ten times had a "1" where it should have had
an "i", or the time when I wrote a subroutine named WindowClosing
which would have done exactly what I wanted except that the computer was
looking for windowClosing (with a lower case "w"). Sometimes it can
help to have someone who doesn't share your preconceptions look at your
code.


Often, it's a problem just to find the part of the program that contains the
error. Most programming environments come with a debugger, 
which is a program that can help you find bugs.
Typically, your program can be run under the control of the debugger. The
debugger allows you to set "breakpoints" in your program. A breakpoint is a
point in the program where the debugger will pause the program so you can look
at the values of the program's variables. The idea is to track down exactly
when things start to go wrong during the program's execution. The debugger will
also let you execute your program one line at a time, so that you can watch
what happens in detail once you know the general area in the program where the
bug is lurking.


I will confess that I only occasionally use debuggers myself. A more traditional
approach to debugging is to insert debugging statements into your program. 
These are output statements that print out
information about the state of the program. Typically, a debugging statement
would say something like


System.out.println("At start of while loop, N = " + N);
 

You need to be able to tell from the output where in your program the output is
coming from, and you want to know the value of important variables. Sometimes,
you will find that the computer isn't even getting to a part of the program
that you think it should be executing. Remember that the goal is to find the
first point in the program where the state is not what you expect it to be.
That's where the bug is.


And finally, remember the golden rule of debugging: If you are absolutely
sure that everything in your program is right, and if it still doesn't work,
then one of the things that you are absolutely sure of is wrong.

   

   




Section 3.3

The while and do..while Statements






Statements in Java can be either simple statements
or compound statements. Simple statements, such as assignment statements and
subroutine call statements, are the basic building blocks of a program.
Compound statements, such as while loops and if statements,
are used to organize simple statements into complex structures, which are
called control structures because they control the order in which the
statements are executed. The next five sections explore the details of
control structures that are available in Java, starting with the while
statement and the do..while statement in this section. At the same
time, we'll look at examples of programming with each control structure and
apply the techniques for designing algorithms that were introduced in the
previous section.






3.3.1  The while Statement



The while statement was already introduced in Section 3.1. 
A while loop has the form


while ( boolean-expression )
   statement



The statement can, of course, be a block
statement consisting of several statements grouped together between a pair of
braces. This statement is called the body of the loop. 
The body of the loop is repeated as long as the boolean-expression is true. This boolean expression is
called the continuation condition, or more simply
the test, of the loop. There are a few points that
might need some clarification. What happens if the condition is false in the
first place, before the body of the loop is executed even once? In that case,
the body of the loop is never executed at all. The body of a while loop can be
executed any number of times, including zero. What happens if the condition is
true, but it becomes false somewhere in the middle of the loop
body? Does the loop end as soon as this happens? It doesn't, because the
computer continues executing the body of the loop until it gets to the end.
Only then does it jump back to the beginning of the loop and test the
condition, and only then can the loop end.


Let's look at a typical problem that can be solved using a while
loop: finding the average of a set of positive integers entered by the user.
The average is the sum of the integers, divided by the number of integers. The
program will ask the user to enter one integer at a time. It will keep count of
the number of integers entered, and it will keep a running total of all the
numbers it has read so far. Here is a pseudocode algorithm for the program:


Let sum = 0     // The sum of the integers entered by the user.
Let count = 0   // The number of integers entered by the user.
while there are more integers to process:
    Read an integer
    Add it to the sum
    Count it
Divide sum by count to get the average
Print out the average


But how can we test whether there are more integers to process? A typical
solution is to tell the user to type in zero after all the data have been
entered. This will work because we are assuming that all the data are positive
numbers, so zero is not a legal data value. The zero is not itself part of the
data to be averaged. It's just there to mark the end of the real data. A data
value used in this way is sometimes called a sentinel value. 
So now the test in the while loop becomes "while the input
integer is not zero". But there is another problem! The first time the test is
evaluated, before the body of the loop has ever been executed, no integer has
yet been read. There is no "input integer" yet, so testing whether the input
integer is zero doesn't make sense. So, we have to do something
before the while loop to make sure that the test makes sense.
Setting things up so that the test in a while loop makes sense the
first time it is executed is called priming the loop. 
In this case, we can simply read the first integer before the
beginning of the loop. Here is a revised algorithm:


Let sum = 0
Let count = 0
Read an integer
while the integer is not zero:
    Add the integer to the sum
    Count it
    Read an integer
Divide sum by count to get the average
Print out the average


Notice that I've rearranged the body of the loop. Since an integer is read
before the loop, the loop has to begin by processing that integer. At the end
of the loop, the computer reads a new integer. The computer then jumps back to
the beginning of the loop and tests the integer that it has just read. Note
that when the computer finally reads the sentinel value, the loop ends before
the sentinel value is processed. It is not added to the sum, and it is not
counted. This is the way it's supposed to work. The sentinel is not part of the
data. The original algorithm, even if it could have been made to work without
priming, was incorrect since it would have summed and counted all the integers,
including the sentinel. (Since the sentinel is zero, the sum would still be
correct, but the count would be off by one. Such so-called off-by-one errors 
are very common. Counting turns out to be
harder than it looks!)


We can easily turn the algorithm into a complete program. Note that the
program cannot use the statement "average = sum/count;" to compute the
average. Since sum and count are both variables of type
int, the value of sum/count is an integer. The average should
be a real number. We've seen this problem before: we have to convert one of the
int values to a double to force the computer to compute the
quotient as a real number. This can be done by type-casting one of the
variables to type double. The type cast "(double)sum" converts the
value of sum to a real number, so in the program the average is
computed as "average = ((double)sum) / count;". Another solution in
this case would have been to declare sum to be a variable of type
double in the first place.


One other issue is addressed by the program: If the user enters zero as the
first input value, there are no data to process. We can test for this case by
checking whether count is still equal to zero after the while
loop. This might seem like a minor point, but a careful programmer should cover
all the bases.



Here is the full source code for the program (with comments added, of course!):


import textio.TextIO;

/**
 * This program reads a sequence of positive integers input
 * by the user, and it will print out the average of those
 * integers.  The user is prompted to enter one integer at a
 * time.  The user must enter a 0 to mark the end of the
 * data.  (The zero is not counted as part of the data to
 * be averaged.)  The program does not check whether the
 * user's input is positive, so it will actually add up
 * both positive and negative input values.
 */
public class ComputeAverage {
        
   public static void main(String[] args) {
      
      int inputNumber;   // One of the integers input by the user.
      int sum;           // The sum of the positive integers.
      int count;         // The number of positive integers.
      double average;    // The average of the positive integers.
      
      /* Initialize the summation and counting variables. */
      
      sum = 0;
      count = 0;
      
      /* Read and process the user's input. */
      
      System.out.print("Enter your first positive integer: ");
      inputNumber = TextIO.getlnInt();
      
      while (inputNumber != 0) {
         sum += inputNumber;   // Add inputNumber to running sum.
         count++;              // Count the input by adding 1 to count.
         System.out.print("Enter your next positive integer, or 0 to end: ");
         inputNumber = TextIO.getlnInt();
      }
      
      /* Display the result. */
      
      if (count == 0) {
         System.out.println("You didn't enter any data!");
      }
      else {
         average = ((double)sum) / count;
         System.out.println();
         System.out.println("You entered " + count + " positive integers.");
         System.out.printf("Their average is %1.3f.\n", average);
      }
 
   } // end main()
   
} // end class ComputeAverage



   



3.3.2  The do..while Statement


   

Sometimes it is more convenient to test the continuation condition at the
end of a loop, instead of at the beginning, as is done in the while
loop. The do..while statement is very similar to the while
statement, except that the word "while," along with the condition that it
tests, has been moved to the end. The word "do" is added to mark the beginning
of the loop. A do..while statement has the form


do
    statement
while ( boolean-expression );


or, since, as usual, the statement can be a
block,


do {
    statements
} while ( boolean-expression );


Note the semicolon, ';', at the very  end. This semicolon is part of the
statement, just as the semicolon at the end of an assignment statement or
declaration is part of the statement. Omitting it is a syntax error. (More
generally, every statement in Java ends either with a
semicolon or a right brace, '}'.)


To execute a do loop, the computer first executes the body of the
loop—that is, the statement or statements inside the loop—and then it
evaluates the boolean expression. If the value of the expression is
true, the computer returns to the beginning of the do loop and repeats
the process; if the value is false, it ends the loop and continues
with the next part of the program. Since the condition is not tested until the
end of the loop, the body of a do loop is always executed at least once.


For example, consider the following pseudocode for a game-playing program.
The do loop makes sense here instead of a while loop because
with the do loop, you know there will be at least one game. Also, the
test that is used at the end of the loop wouldn't even make sense at the
beginning:


do {
   Play a Game
   Ask user if he wants to play another game
   Read the user's response
} while ( the user's response is yes );


Let's convert this into proper Java code. Since I don't want to talk about
game playing at the moment, let's say that we have a class named
Checkers, and that the Checkers class contains a static
member subroutine named playGame() that plays one game of checkers
against the user. Then, the pseudocode "Play a game" can be expressed as the
subroutine call statement "Checkers.playGame();". We need a variable
to store the user's response. The TextIO class makes it convenient to
use a boolean variable to store the answer to a yes/no question. The
input function TextIO.getlnBoolean() allows the user to enter the
value as "yes" or "no" (among other acceptable responses). 
"Yes" is considered to be true, and "no" is
considered to be false. So, the algorithm can be coded as


boolean wantsToContinue;  // True if user wants to play again.
do {
   Checkers.playGame();
   System.out.print("Do you want to play again? ");
   wantsToContinue = TextIO.getlnBoolean();
} while (wantsToContinue == true);


When the value of the boolean variable is set to false, it
is a signal that the loop should end. When a boolean variable is used
in this way—as a signal that is set in one part of the program and tested in
another part—it is sometimes called a flag or
flag variable (in the sense of a signal flag).


By the way, a more-than-usually-pedantic programmer would sneer at the test
"while (wantsToContinue == true)". This test is exactly equivalent to
"while (wantsToContinue)". Testing whether "wantsToContinue == true" 
is true amounts to the same thing as testing whether
"wantsToContinue" is true. A little less offensive is an expression of
the form "flag == false", where flag is a boolean variable.
The value of "flag == false" is exactly the same as the value of
"!flag", where ! is the boolean negation operator. So you can
write "while (!flag)" instead of "while (flag == false)", and
you can write "if (!flag)" instead of "if (flag == false)".


Although a do..while statement is sometimes more convenient than a
while statement, having two kinds of loops does not make the language
more powerful. Any problem that can be solved using do..while loops
can also be solved using only while statements, and vice versa. In
fact, if doSomething represents any block of
program code, then


do {
    doSomething
} while ( boolean-expression );


has exactly the same effect as



doSomething
while ( boolean-expression ) {
    doSomething
}


Similarly,


while ( boolean-expression ) {
    doSomething
} 


can be replaced by


if ( boolean-expression ) {
   do {
       doSomething
   } while ( boolean-expression );
}


without changing the meaning of the program in any way.




   



3.3.3  break and continue



The syntax of the while and do..while loops allows you to
test the continuation condition at either the beginning of a loop or at the
end. Sometimes, it is more natural to have the test in the middle of the loop,
or to have several tests at different places in the same loop. Java provides a
general method for breaking out of the middle of any loop. It's called the
break statement, which takes the form


break;


When the computer executes a break statement in a loop, it will
immediately jump out of the loop. It then continues on to whatever follows the
loop in the program. Consider for example:


while (true) {  // looks like it will run forever!
   System.out.print("Enter a positive number: ");
   N = TextIO.getlnInt();
   if (N > 0)   // the input value is OK, so jump out of loop
      break;
   System.out.println("Your answer must be > 0.");
}
// continue here after break


If the number entered by the user is greater than zero, the break
statement will be executed and the computer will jump out of the loop.
Otherwise, the computer will print out "Your answer must be > 0." and will
jump back to the start of the loop to read another input value.


The first line of this loop, "while (true)" might look a bit
strange, but it's perfectly legitimate. The condition in a while loop
can be any boolean-valued expression. The computer evaluates this expression
and checks whether the value is true or false. The boolean
literal "true" is just a boolean expression that always evaluates to
true. So "while (true)" can be used to write an infinite loop, or one
that will be terminated by a break statement.


A break statement terminates the loop that immediately encloses the
break statement. It is possible to have nested loops, 
where one loop statement is contained inside
another. If you use a break statement inside a nested loop, it will
only break out of that loop, not out of the loop that contains the nested loop. 
There is something called a labeled break statement that allows you to
specify which loop you want to break. This is not very common, so I will go over it quickly.
Labels work like this:  You can put a label in
front of any loop.  A label consists of a simple identifier followed
by a colon.  For example, a while with a label might
look like "mainloop: while...".  Inside
this loop you can use the labeled break statement "break mainloop;"
to break out of the labeled loop.  For example, here is a code segment that checks
whether two strings, s1 and s2, have a character in common.
If a common character is found, the value of the flag variable nothingInCommon
is set to false, and a labeled break is used to end the processing
at that point:


boolean nothingInCommon;
nothingInCommon = true;  // Assume s1 and s2 have no chars in common.
int i,j;  // Variables for iterating through the chars in s1 and s2.

i = 0;
bigloop: while (i < s1.length()) {
   j = 0;
   while (j < s2.length()) {
      if (s1.charAt(i) == s2.charAt(j)) { // s1 and s2 have a common char...
          nothingInCommon = false;  // so nothingInCommon is actually false.
          break bigloop;  // break out of BOTH loops
      }
      j++;  // Go on to the next char in s2.
   }
   i++;  //Go on to the next char in s1.
}




   
The continue statement is related to break, but less
commonly used. A continue statement tells the computer to skip the
rest of the current iteration of the loop. However, instead of jumping out of
the loop altogether, it jumps back to the beginning of the loop and continues
with the next iteration (including evaluating the loop's continuation condition to
see whether any further iterations are required).  As with break,
when a continue is in a nested loop, it will continue the loop
that directly contains it; a "labeled continue" can be used to continue
the containing loop instead.



break and continue can be used in while loops and
do..while loops. They can also be used in for loops, which
are covered in the next section. 
In Section 3.6, we'll see that break can also be used to
break out of a switch statement.   A break can occur
inside an if statement, but only if the if statement
is nested inside a loop or inside a switch statement.
In that case, it does not mean
to break out of the if.  Instead, it breaks out of the loop or
switch statement that contains the if statement.
The same consideration applies to continue statements inside ifs.



   




Section 3.4

The for Statement



   


We turn in this section to another type of loop,
the for statement. Any for loop is equivalent to some
while loop, so the language doesn't get any additional power by having
for statements. But for a certain type of problem, a for loop
can be easier to construct and easier to read than the corresponding
while loop. It's quite possible that in real programs, for
loops actually outnumber while loops (and I know of at least one person
who only uses for loops).





3.4.1  For Loops



The for statement makes a common type of while loop easier to
write. Many while loops have the general form:



initialization
while ( continuation-condition ) {
    statements
    update
}


For example, consider this example, copied from an example in Section 3.2:


years = 0;  // initialize the variable years
while ( years < 5 ) {   // condition for continuing loop

    interest = principal * rate;    //
    principal += interest;          // do three statements
    System.out.println(principal);  //
    
    years++;   // update the value of the variable, years
}


This loop can be written as the following equivalent for
statement:


for ( years = 0;  years < 5;  years++ ) {
   interest = principal * rate;
   principal += interest;
   System.out.println(principal);
}


The initialization, continuation condition, and updating have all been
combined in the first line of the for loop. This keeps everything
involved in the "control" of the loop in one place, which helps make the loop
easier to read and understand. The for loop is executed in exactly the
same way as the original code: The initialization part is executed once, before
the loop begins. The continuation condition is executed before each execution
of the loop (including the first execution), and the loop ends when this condition is false. The
update part is executed at the end of each execution of the loop, just before
jumping back to check the condition.


The formal syntax of the for statement is as follows:


for ( initialization; continuation-condition; update )
     statement



or, using a block statement:


for ( initialization; continuation-condition; update ) {
     statements
}


The continuation-condition must be a
boolean-valued expression. The initialization
is usually a declaration or an assignment statement, but it
can be any expression that would be allowed as a statement in a program.
The update can be any simple statement, but is usually
an increment, a decrement, or an assignment statement. Any
of the three parts can be empty, but the two semicolons are required in any case. 
If the continuation condition is empty, it is
treated as if it were "true," so the loop will be repeated forever or
until it ends for some other reason, such as a break statement. (Some
people like to begin an infinite loop with "for (;;)" instead of
"while (true)".)  Here's a flow control diagram for a for
statement:



[image: control diagram for a for loop]



Usually, the initialization part of a for statement assigns a value
to some variable, and the update changes the value of that variable with an
assignment statement or with an increment or decrement operation. The value of
the variable is tested in the continuation condition, and the loop ends when
this condition evaluates to false. A variable used in this way is
called a loop control variable. In the
example given above, the loop control variable was years.


Certainly, the most common type of for loop is the counting loop, 
where a loop control variable takes on all
integer values between some minimum and some maximum value. A counting loop has
the form


for ( variable = min;  variable <= max; variable++ ) {
     statements
}


where min and max are integer-valued expressions (usually constants). The
variable takes on the values min, min+1, 
min+2, ..., max. The value
of the loop control variable is often used in the body of the loop. The
for loop at the beginning of this section is a counting loop in which
the loop control variable, years, takes on the values 1, 2, 3, 4, 5.
Here is an even simpler example, in which the numbers 1, 2, ..., 10 are
displayed on standard output:


for ( N = 1 ;  N <= 10 ;  N++ )
   System.out.println( N );


For various reasons, Java programmers like to start counting at 0 instead of
1, and they tend to use a "<" in the condition, rather than a
"<=". The following variation of the above loop prints out the ten
numbers 0, 1, 2, ..., 9:


for ( N = 0 ;  N < 10 ;  N++ )
   System.out.println( N );


Using < instead of <= in the test, or vice versa, is
a common source of off-by-one errors in programs. You should always stop and
think, Do I want the final value to be processed or not?


It's easy to count down from 10 to 1 instead of counting up. Just start with
10, decrement the loop control variable instead of incrementing it, and
continue as long as the variable is greater than or equal to one.


for ( N = 10 ;  N >= 1 ;  N-- )
   System.out.println( N );


Now, in fact, the official syntax of a for statement actually
allows both the initialization part and the update part to consist of several
expressions, separated by commas. So we can even count up from 1 to 10 and
count down from 10 to 1 at the same time!


for ( i=1, j=10;  i <= 10;  i++, j-- ) {
   System.out.printf("%5d", i); // Output i in a 5-character wide column.
   System.out.printf("%5d", j); // Output j in a 5-character column.
   System.out.println();       //     and end the line.
}


As a final introductory example, let's say that we want to use a for loop that
prints out just the even numbers between 2 and 20, that is: 2, 4, 6, 8, 10, 12,
14, 16, 18, 20. There are several ways to do this. Just to show how even a very
simple problem can be solved in many ways, here are four different solutions
(three of which would get full credit):


 (1)   // There are 10 numbers to print.           
       // Use a for loop to count 1, 2,            
       // ..., 10.  The numbers we want            
       // to print are 2*1, 2*2, ... 2*10.         
   
       for (N = 1; N <= 10; N++) {              
          System.out.println( 2*N );                
       }
       
       
 (2)   // Use a for loop that counts
       // 2, 4, ..., 20 directly by
       // adding 2 to N each time through
       // the loop.
       
       for (N = 2; N <= 20; N = N + 2) {
          System.out.println( N );
       }
       
       
 (3)   // Count off all the numbers    
       // 2, 3, 4, ..., 19, 20, but                
       // only print out the numbers               
       // that are even.                           
    
       for (N = 2; N <= 20; N++) {               
          if ( N % 2 == 0 ) // is N even?           
             System.out.println( N );               
       } 
   
   
 (4)   // Irritate the professor with
       // a solution that follows the
       // letter of this silly assignment
       // while making fun of it.
       
       for (N = 1; N <= 1; N++) {
          System.out.println("2 4 6 8 10 12 14 16 18 20");
       }



   
Perhaps it is worth stressing one more time that a for statement,
like any statement except for a variable declaration, never occurs on its own in a real program. A statement must
be inside the main routine of a program or inside some other
subroutine. And that subroutine must be defined inside a class. I should also
remind you that every variable must be declared before it can be used, and that
includes the loop control variable in a for statement. In all the
examples that you have seen so far in this section, the loop control variables
should be declared to be of type int. It is not required that a loop
control variable be an integer. Here, for example, is a for loop in
which the variable, ch, is of type char, using
the fact that the ++ operator can be applied to characters as
well as to numbers:


// Print out the alphabet on one line of output.
char ch;  // The loop control variable; 
          //       one of the letters to be printed.
for ( ch = 'A';  ch <= 'Z';  ch++ )
    System.out.print(ch);
System.out.println();

   




3.4.2  Example: Counting Divisors



Let's look at a less trivial problem that can be solved with a for
loop. If N and D are positive integers, we say that
D is a divisor of N if the
remainder when D is divided into N is zero. (Equivalently, we
could say that N is an even multiple of D.) In terms of Java
programming, D is a divisor of N if N % D is
zero.


Let's write a program that inputs a positive integer, N, from the
user and computes how many different divisors N has. The numbers that
could possibly be divisors of N are 1, 2, ..., N. To compute
the number of divisors of N, we can just test each possible divisor of
N and count the ones that actually do divide N evenly. (This is
a correct solution, but there are much more efficient ways to perform this task.)  In
pseudocode, the algorithm takes the form


Get a positive integer, N, from the user
Let divisorCount = 0
for each number, testDivisor, in the range from 1 to N:
    if testDivisor is a divisor of N:
        Count it by adding 1 to divisorCount
Output the count


This algorithm displays a common programming pattern that is used when some,
but not all, of a sequence of items are to be processed. The general pattern
is


for each item in the sequence:
   if the item passes the test:
       process it


The for loop in our divisor-counting algorithm can be translated
into Java code as


for (testDivisor = 1; testDivisor <= N; testDivisor++) {
   if ( N % testDivisor == 0 )
      divisorCount++;
}


On a modern computer, this loop can be executed very quickly. It is not
impossible to run it even for the largest legal int value, 2147483647.
(If you wanted to run it for even larger values, you could use variables of
type long rather than int.) However, it does take a
significant amount of time for very large numbers. So when I implemented this
algorithm, I decided to output a dot every time the computer has tested ten
million possible divisors. In the improved version of the program, there are
two types of counting going on. We have to count the number of divisors and we
also have to count the number of possible divisors that have been tested. So
the program needs two counters. When the second counter reaches 10000000, the program
outputs a '.' and resets the counter to zero so that we can start counting the
next group of ten million. Reverting to pseudocode, the algorithm now looks
like


Get a positive integer, N, from the user
Let divisorCount = 0  // Number of divisors found.
Let numberTested = 0  // Number of possible divisors tested
                      //       since the last period was output.
for each number, testDivisor, in the range from 1 to N:
    if testDivisor is a divisor of N:
        Count it by adding 1 to divisorCount
    Add 1 to numberTested
    if numberTested is 10000000:
        print out a '.'
        Reset numberTested to 0
Output the count


Finally, we can translate the algorithm into a complete Java program:


import textio.TextIO;

/**
 * This program reads a positive integer from the user.
 * It counts how many divisors that number has, and
 * then it prints the result.
 */   
public class CountDivisors {
   
   public static void main(String[] args) {
      
      int N;  // A positive integer entered by the user.
              // Divisors of this number will be counted.
              
      int testDivisor;  // A number between 1 and N that is a
                        // possible divisor of N.
      
      int divisorCount;  // Number of divisors of N that have been found.
      
      int numberTested;  // Used to count how many possible divisors
                         // of N have been tested.  When the number
                         // reaches 10000000, a period is output and
                         // the value of numberTested is reset to zero.
                         
      /* Get a positive integer from the user. */
   
      while (true) {
         System.out.print("Enter a positive integer: ");
         N = TextIO.getlnInt();
         if (N > 0)
            break;
         System.out.println("That number is not positive.  Please try again.");
      }
      
      /* Count the divisors, printing a "." after every 10000000 tests. */
    
      divisorCount = 0;
      numberTested = 0;
      
      for (testDivisor = 1; testDivisor <= N; testDivisor++) {
         if ( N % testDivisor == 0 )
            divisorCount++;
         numberTested++;
         if (numberTested == 10000000) {
            System.out.print('.');
            numberTested = 0;
         }
      }
      
      /* Display the result. */
      
      System.out.println();
      System.out.println("The number of divisors of " + N
                          + " is " + divisorCount);
      
   } // end main()
   
} // end class CountDivisors









3.4.3  Nested for Loops


   
Control structures in Java are statements that contain other, simpler statements. In
particular, control structures can contain control structures. You've already
seen several examples of if statements inside loops, and one example of
a while loop inside another while, but any
combination of one control structure inside another is possible. We say that
one structure is nested inside another. You can
even have multiple levels of nesting, such as a while loop inside an
if statement inside another while loop. The syntax of Java
does not set a limit on the number of levels of nesting. As a practical matter,
though, it's difficult to understand a program that has more than a few levels
of nesting, and it is a style rule that excessive nesting should be avoided.


Nested for loops arise naturally in many algorithms, and it is
important to understand how they work. Let's look at a couple of examples.
First, consider the problem of printing out a multiplication table like this
one:


 1   2   3   4   5   6   7   8   9  10  11  12
 2   4   6   8  10  12  14  16  18  20  22  24
 3   6   9  12  15  18  21  24  27  30  33  36
 4   8  12  16  20  24  28  32  36  40  44  48
 5  10  15  20  25  30  35  40  45  50  55  60
 6  12  18  24  30  36  42  48  54  60  66  72
 7  14  21  28  35  42  49  56  63  70  77  84
 8  16  24  32  40  48  56  64  72  80  88  96
 9  18  27  36  45  54  63  72  81  90  99 108
10  20  30  40  50  60  70  80  90 100 110 120
11  22  33  44  55  66  77  88  99 110 121 132
12  24  36  48  60  72  84  96 108 120 132 144


The data in the table are arranged into 12 rows and 12 columns. The process
of printing them out can be expressed in a pseudocode algorithm as


for each rowNumber = 1, 2, 3, ..., 12:
   Print the first twelve multiples of rowNumber on one line
   Output a carriage return


The first step in the for loop can itself be expressed as a
for loop.  We can expand "Print the first twelve multiples of rowNumber 
on one line" as:


for N = 1, 2, 3, ..., 12:
   Print N * rowNumber


so a refined algorithm for printing the table has one for loop
nested inside another:


for each rowNumber = 1, 2, 3, ..., 12:
   for N = 1, 2, 3, ..., 12:
      Print N * rowNumber
   Output a carriage return


We want to print the output in neat columns, with each output number
taking up four spaces. This can be done using formatted output with format specifier %4d.
Assuming that rowNumber and N have been declared to be
variables of type int, the algorithm can be expressed in Java as


for ( rowNumber = 1;  rowNumber <= 12;  rowNumber++ ) {
   for ( N = 1;  N <= 12;  N++ ) {
               // print in 4-character columns
      System.out.printf( "%4d", N * rowNumber );  // No carriage return !
   }
   System.out.println();  // Add a carriage return at end of the line.
}


This section has been weighed down with lots of examples of numerical
processing. For our next example, let's do some text processing. Consider the
problem of finding which of the 26 letters of the alphabet occur in a given
string. For example, the letters that occur in "Hello World" are D, E, H, L, O,
R, and W. More specifically, we will write a program that will list all the
letters contained in a string and will also count the number of different
letters. The string will be input by the user. Let's start with a pseudocode
algorithm for the program.


Ask the user to input a string
Read the response into a variable, str
Let count = 0  (for counting the number of different letters)
for each letter of the alphabet:
   if the letter occurs in str:
      Print the letter
      Add 1 to count
Output the count


Since we want to process the entire line of text that is entered by the
user, we'll use TextIO.getln() to read it. The line of the algorithm
that reads "for each letter of the alphabet" can be expressed as "for
(letter='A'; letter<='Z'; letter++)". But the if statement inside the for
loop needs still more thought before we can write the program. How do we check whether the given letter,
letter, occurs in str? One idea is to look at each character in
the string in turn, and check whether that character is equal to letter.
We can get the i-th character of str with the function call
str.charAt(i), where i ranges from 0 to str.length() - 1.


One more difficulty: A letter such as 'A' can occur in str in
either upper or lower case, 'A' or 'a'. We have to check for both of these. But
we can avoid this difficulty by converting str to upper case before
processing it. Then, we only have to check for the upper case letter. We can
now flesh out the algorithm fully:


Ask the user to input a string
Read the response into a variable, str
Convert str to upper case
Let count = 0
for letter = 'A', 'B', ..., 'Z':
    for i = 0, 1, ..., str.length()-1:
        if letter == str.charAt(i):
            Print letter
            Add 1 to count
            break  // jump out of the loop, to avoid counting letter twice
Output the count


Note the use of break in the nested
for loop. It is required to avoid printing or counting a given letter
more than once (in the case where it occurs more than once in the string). 
The break statement breaks out of the inner
for loop, but not the outer for loop.  Upon executing the
break, the computer continues the outer loop with the next value of
letter.  You should try to figure out exactly what count
would be at the end of this program, if the break statement were omitted.
Here is the complete program:



import textio.TextIO;

/**
 * This program reads a line of text entered by the user.
 * It prints a list of the letters that occur in the text,
 * and it reports how many different letters were found.
 */
public class ListLetters {
   
   public static void main(String[] args) {
   
      String str;  // Line of text entered by the user.
      int count;   // Number of different letters found in str.
      char letter; // A letter of the alphabet.
      
      System.out.println("Please type in a line of text.");
      str = TextIO.getln();
      
      str = str.toUpperCase();
      
      count = 0;
      System.out.println("Your input contains the following letters:");
      System.out.println();
      System.out.print("   ");
      for ( letter = 'A'; letter <= 'Z'; letter++ ) {
          int i;  // Position of a character in str.
          for ( i = 0; i < str.length(); i++ ) {
              if ( letter == str.charAt(i) ) {
                  System.out.print(letter);
                  System.out.print(' ');
                  count++;
                  break;
              }
          }
      }
      
      System.out.println();
      System.out.println();
      System.out.println("There were " + count + " different letters.");
   
   } // end main()
   
} // end class ListLetters



   
In fact, there is actually an easier way to determine whether a given letter occurs
in a string, str. The built-in function str.indexOf(letter)
will return -1 if letter does not occur in
the string. It returns a number greater than or equal to zero if it does occur.
So, we could check whether letter occurs in str simply by
checking "if (str.indexOf(letter) >= 0)". If we used this technique
in the above program, we wouldn't need a nested for loop. This gives
you a preview of how subroutines can be used to deal with complexity.


   

   





Section 3.5

The if Statement






The first of the two branching statements in Java
is the if statement, which you have already seen in Section 3.1. It takes the form


if (boolean-expression)
     statement-1
else
     statement-2



As usual, the statements inside an if statement can be blocks. The
if statement represents a two-way branch. The else part of an
if statement—consisting of the word "else" and the statement that
follows it—can be omitted.





3.5.1  The Dangling else Problem


   
Now, an if statement is, in particular, a statement. This means
that either statement-1 or statement-2 in the above if statement can itself
be an if statement. A problem arises, however, 
if statement-1 is an if statement that has no
else part. This special case is effectively forbidden by the syntax of
Java. Suppose, for example, that you type


if ( x > 0 )
    if (y > 0)
       System.out.println("First case");
else
    System.out.println("Second case");


Now, remember that the way you've indented this doesn't mean anything at all
to the computer. You might think that the else part is the second half
of your "if (x > 0)" statement, but the rule that the computer
follows attaches the else to "if (y > 0)", which is
closer. That is, the computer reads your statement as if it were formatted:


if ( x > 0 )
    if (y > 0)
       System.out.println("First case");
    else
        System.out.println("Second case");


You can force the computer to use the other interpretation by enclosing the
nested if in a block:


if ( x > 0 ) {
    if (y > 0)
       System.out.println("First case");
}
else
    System.out.println("Second case");


These two if statements have different meanings: In the case when x <= 0, the
first statement doesn't print anything, but the second statement prints "Second
case".



   



3.5.2  Multiway Branching

   
   
Much more interesting than this technicality is the case where statement-2, 
the else part of the if
statement, is itself an if statement. The statement would look like
this (perhaps without the final else part):


if (boolean-expression-1)
     statement-1
else
     if (boolean-expression-2)
         statement-2
     else
         statement-3



However, since the computer doesn't care how a program is laid out on the
page, this is almost always written in the format:


if (boolean-expression-1)
     statement-1
else if (boolean-expression-2)
     statement-2
else
     statement-3



You should think of this as a single statement representing a three-way
branch. When the computer executes this, one and only one of the three
statements—statement-1, statement-2, or statement-3—will 
be executed. The computer starts by evaluating boolean-expression-1. If it is true, the computer
executes statement-1 and then jumps all the way
to the end of the outer if statement, skipping the other two statements. If boolean-expression-1 
is false, the computer skips
statement-1 and executes the second, nested if
statement. To do this, it tests the value of boolean-expression-2 and uses it to decide between
statement-2 and statement-3.


Here is an example that will print out one of three different messages,
depending on the value of a variable named temperature:


if (temperature < 50)
   System.out.println("It's cold.");
else if (temperature < 80)
   System.out.println("It's nice.");
else
   System.out.println("It's hot.");


If temperature is, say, 42, the first test is true. The
computer prints out the message "It's cold", and skips the rest—without even
evaluating the second condition. For a temperature of 75, the first test is
false, so the computer goes on to the second test. This test is
true, so the computer prints "It's nice" and skips the rest. If the
temperature is 173, both of the tests evaluate to false, so the
computer says "It's hot" (unless its circuits have been fried by the heat, that
is).


You can go on stringing together "else-if's" to make multiway branches with
any number of cases:


if (test-1)
     statement-1
else if (test-2)
     statement-2
else if (test-3)
     statement-3
  .
  . // (more cases)
  .
else if (test-N)
     statement-N
else
     statement-(N+1)



The computer evaluates the tests, which are boolean expressions, one after the other until it
comes to one that is true. It executes the associated statement and
skips the rest. If none of the boolean expressions evaluate to true,
then the statement in the else part is executed. This statement is
called a multiway branch because one and only one of the statements will be executed.
The final else part can be omitted. In that case, if all the boolean
expressions are false, none of the statements are executed. Of course, each of
the statements can be a block, consisting of a number of statements enclosed
between { and }. Admittedly, there is lot of syntax here; as you study and
practice, you'll become comfortable with it.  It might be useful to look at a 
flow control diagram for the general "if..else if" statement shown above:



[image: Flow control diagram for a multiway if statement]








3.5.3  If Statement Examples



As an example of using if statements, let's suppose that x,
y, and z are variables of type int, and that each
variable has already been assigned a value. Consider the problem of printing
out the values of the three variables in increasing order. For example, if the
values are 42, 17, and 20, then the output should be in the order 17, 20,
42.


One way to approach this is to ask, where does x belong in the
list? It comes first if it's less than both y and z. It comes
last if it's greater than both y and z. Otherwise, it comes
in the middle. We can express this with a 3-way if statement, but we
still have to worry about the order in which y and z should
be printed. In pseudocode,


if (x < y && x < z) {
    output x, followed by y and z in their correct order
}
else if (x > y && x > z) {
    output y and z in their correct order, followed by x
}
else {
    output x in between y and z in their correct order
}


Determining the relative order of y and z requires another
if statement, so this becomes


if (x < y && x < z) {        // x comes first
    if (y < z)
       System.out.println( x + " " + y + " " + z );
    else
       System.out.println( x + " " + z + " " + y );
}
else if (x > y && x > z) {   // x comes last
    if (y < z)
       System.out.println( y + " " + z + " " + x );
    else
       System.out.println( z + " " + y + " " + x );
}
else {                       // x in the middle
    if (y < z)
       System.out.println( y + " " + x + " " + z);
    else
       System.out.println( z + " " + x + " " + y);
}


You might check that this code will work correctly even if some of the
values are the same. If the values of two variables are the same, it doesn't
matter which order you print them in.


Note, by the way, that even though you can say in English "if x is less than
y and z," you can't say in Java "if (x < y && z)". The
&& operator can only be used between boolean values, so you
have to make separate tests, x<y and x<z, and then
combine the two tests with &&.


There is an alternative approach to this problem that begins by asking,
"which order should x and y be printed in?" Once that's
known, you only have to decide where to stick in z. This line of
thought leads to different Java code:


if ( x < y ) {  // x comes before y
   if ( z < x )   // z comes first
      System.out.println( z + " " + x + " " + y);
   else if ( z > y )   // z comes last
      System.out.println( x + " " + y + " " + z);
   else   // z is in the middle
      System.out.println( x + " " + z + " " + y);
}
else {          // y comes before x
   if ( z < y )   // z comes first
      System.out.println( z + " " + y + " " + x);
   else if ( z > x )  // z comes last
      System.out.println( y + " " + x + " " + z);
   else  // z is in the middle
      System.out.println( y + " " + z + " " + x);
}


Once again, we see how the same problem can be solved in many different
ways. The two approaches to this problem have not exhausted all the
possibilities. For example, you might start by testing whether x is
greater than y. If so, you could swap their values. Once you've done
that, you know that x should be printed before y.





Finally, let's write a complete program that uses an if statement
in an interesting way. I want a program that will convert measurements of
length from one unit of measurement to another, such as miles to yards or
inches to feet. So far, the problem is extremely under-specified. Let's say
that the program will only deal with measurements in inches, feet, yards, and
miles. It would be easy to extend it later to deal with other units. The user
will type in a measurement in one of these units, such as "17 feet" or "2.73
miles". The output will show the length in terms of each of
the four units of measure. (This is easier than asking the user which units to
use in the output.) An outline of the process is


Read the user's input measurement and units of measure
Express the measurement in inches, feet, yards, and miles
Display the four results


The program can read both parts of the user's input from the same line by
using TextIO.getDouble() to read the numerical measurement and
TextIO.getlnWord() to read the unit of measure. The conversion into
different units of measure can be simplified by first converting the user's
input into inches. From there, the number of inches can easily be converted into feet, yards, and miles.
Before converting into inches, we have to test the input to determine which unit of measure the user has
specified:


Let measurement = TextIO.getDouble()
Let units = TextIO.getlnWord()
if the units are inches
   Let inches = measurement
else if the units are feet
   Let inches = measurement * 12         // 12 inches per foot
else if the units are yards
   Let inches = measurement * 36         // 36 inches per yard
else if the units are miles
   Let inches = measurement * 12 * 5280  // 5280 feet per mile
else
   The units are illegal!
   Print an error message and stop processing
Let feet = inches / 12.0
Let yards = inches / 36.0
Let miles = inches / (12.0 * 5280.0)
Display the results


Since units is a String, we can use
units.equals("inches") to check whether the specified unit of measure
is "inches". However, it would be nice to allow the units to be specified as
"inch" or abbreviated to "in". To allow these three possibilities, we can check
if (units.equals("inches") || units.equals("inch") ||
units.equals("in")). It would also be nice to allow upper case letters, as
in "Inches" or "IN". We can do this by converting units to lower case
before testing it or by substituting the function
units.equalsIgnoreCase for units.equals.


In my final program, I decided to make things more interesting by allowing
the user to repeat the process of entering a measurement and seeing the
results of the conversion for each measurement.  The program will end only
when the user inputs 0. To program that, I just had to wrap the above algorithm
inside a while loop, and make sure that the loop ends when the user
inputs a 0. Here's the complete program:


import textio.TextIO;

/**
 * This program will convert measurements expressed in inches,
 * feet, yards, or miles into each of the possible units of
 * measure.  The measurement is input by the user, followed by
 * the unit of measure.  For example:  "17 feet", "1 inch", or
 * "2.73 mi".  Abbreviations in, ft, yd, and mi are accepted.
 * The program will continue to read and convert measurements
 * until the user enters an input of 0.
 */
 public class LengthConverter {
 
    public static void main(String[] args) {
       
       double measurement;  // Numerical measurement, input by user.
       String units;        // The unit of measure for the input, also
                            //    specified by the user.
       
       double inches, feet, yards, miles;  // Measurement expressed in
                                           //   each possible unit of
                                           //   measure.
       
       System.out.println("""
                Enter measurements in inches, feet, yards, or miles.
                For example:  1 inch    17 feet    2.73 miles
                You can use abbreviations:   in   ft  yd   mi
                I will convert your input into the other units
                of measure.
                """);
       
       while (true) {
          
          /* Get the user's input, and convert units to lower case. */
          
          System.out.print("Enter your measurement, or 0 to end:  ");
          measurement = TextIO.getDouble();
          if (measurement == 0)
             break;  // Terminate the while loop.
          units = TextIO.getlnWord();            
          units = units.toLowerCase();  // convert units to lower case
          
          /* Convert the input measurement to inches. */
          
          if (units.equals("inch") || units.equals("inches") 
                                          || units.equals("in")) {
              inches = measurement;
          }
          else if (units.equals("foot") || units.equals("feet") 
                                          || units.equals("ft")) {
              inches = measurement * 12;
          }
          else if (units.equals("yard") || units.equals("yards") 
                                           || units.equals("yd")) {
              inches = measurement * 36;
          }
          else if (units.equals("mile") || units.equals("miles") 
                                             || units.equals("mi")) {
              inches = measurement * 12 * 5280;
          }
          else {
              System.out.println("Sorry, but I don't understand \"" 
                                                   + units + "\".");
              continue;  // back to start of while loop
          }
          
          /* Convert measurement in inches to feet, yards, and miles. */
          
          feet = inches / 12;
          yards = inches / 36;
          miles = inches / (12*5280);
          
          /* Output measurement in terms of each unit of measure. */
          
          System.out.printf("""
                    That's equivalent to:
                    %14.5g inches
                    %14.5g feet
                    %14.5g yards
                    %14.5g miles
                    """, inches, feet, yards, miles);

          System.out.println();
       
       } // end while
       
       System.out.println();
       System.out.println("OK!  Bye for now.");
       
    } // end main()
    
 } // end class LengthConverter



   
(Note that this program uses text blocks for multiline outputs (see Subsection 2.3.4;
text blocks require Java 17).
It also uses formatted output with the "g" format specifier.  In this program,
we have no control over how large or how small the numbers might be.  It could easily make
sense for the user to enter very large or very small measurements.  The "g" format will
print a real number in exponential form if it is very large or very small, and in the usual decimal form
otherwise.  Remember that in the format specification %14.5g, the 5 is the total
number of significant digits that are to be printed, so we will always get the same number of
significant digits in the output, no matter what the size of the number.  If we had used an
"f" format specifier such as %14.5f, the output would be in decimal form with
5 digits after the decimal point.  This would print the number 0.000000000745482 as 0.00000,
with no significant digits at all!
With the "g" format specifier, the output would be 7.4549e-10.)

   





3.5.4  The Empty Statement



As a final note in this section, I will mention one more type of statement
in Java: the empty statement. This is a statement
that consists simply of a semicolon and which tells the computer to
do nothing. The existence of the empty statement makes
the following legal, even though you would not ordinarily see a semicolon after
a } :


if (x < 0) {
    x = -x;
};


The semicolon is legal after the }, but the computer considers it to be an
empty statement, not part of the if statement. Occasionally, you might
find yourself using the empty statement when what you mean is, in fact, "do
nothing." For example, the rather contrived if statement

   
if ( done )
   ;  // Empty statement
else
   System.out.println( "Not done yet.");

   
does nothing when the boolean variable done is true,
and prints out "Not done yet" when it is false. You can't just leave out the semicolon
in this example, since Java syntax requires an actual statement between the if
and the else.   I prefer, though, to use an empty block, consisting 
of { and } with nothing between, for such cases.


Occasionally, stray empty statements can cause annoying, hard-to-find errors
in a program. For example, the following program segment prints out "Hello"
just once, not ten times:


for (i = 0; i < 10; i++);
    System.out.println("Hello");


Why? Because the ";" at the end of the first line is a statement, and it is
this empty statement that is executed ten times. The System.out.println
statement is not really inside the for statement at all, so it is
executed just once, after the for loop has completed.  The
for loop just does nothing, ten times!







Section 3.6

The switch Statement



   


The second branching statement in Java is the
switch statement, which is introduced in this section. The
switch statement is used much less often than the if statement, but it
is sometimes useful for expressing a certain type of multiway branch.


   



3.6.1  The Basic switch Statement



A switch statement allows you to test the value of an expression and,
depending on that value, to jump directly to some location within the switch statement.
Only expressions of certain types can be used.  The value of the expression
can be one of the primitive integer types int,
short, or byte.
It can be the primitive char type.  
It can be String.
Or it can be an enum type (see Subsection 2.3.5 for an introduction to enum types).  
In particular, note that the expression cannot be a double or 
float value.  


Java has two different syntaxes for switch statements.  The original switch syntax,
which like other Java control structures
was modeled on the C programming language, is error-prone and kind-of ugly.
The new syntax, which requires Java 17, is an improvement.  You still need to know 
the traditional syntax, since it is used in a lot of existing code, but my advice would
be to use the new syntax when you write new code.  We look at the new syntax first, and will
cover the traditional syntax at the end of this section.


The positions within a switch statement to which it
can jump are marked with case labels that take the form: 
"case constantList".  The constantList here consists
of one or more literals of the same type as the expression in the switch,
separated by commas.  For example:
 

       case 2, 4, 8
or 
       case "Paper"
 

The case label is followed by ->, that is by a symbol made up
of a hyphen and a greater-than character, and then by a single statement.
The statement can be a subroutine call statement, a throw statement,
or a block statement, containing several nested statements.
A switch statement can also, optionally, have one jump point labeled with default
instead of with a case label.  The syntax for the statement can be specified as follows,
noting that there can be at most one default case and that all the constants
in the case labels must be different:


switch ( expression ) {
    case-label-or-default -> statement 
    case-label-or-default -> statement 
        .
        .
        .
    case-label-or-default -> statement
}


When the computer executes this switch statement, it evaluates the expression.
If the value is one of the constants in a case label, the computer executes
the statement that follows that case label, and then jumps out of the switch statement.
If the value of the expression does not match any of the case constants, then the
computer looks for a default case, and if one is present, executes the
statement that follows it.


It is probably easiest to look at an example.   This is not a useful example, but
it should be easy to follow:


switch ( N ) {   // (Assume N is an integer variable.)
   case 1 -> System.out.println("The number is 1.");
   case 2, 4, 8 -> {
      System.out.println("The number is 2, 4, or 8.");
      System.out.println("(That's a power of 2!)");
   }
   case 3, 6, 9 -> {
      System.out.println("The number is 3, 6, or 9.");
      System.out.println("(That's a multiple of 3!)");
   }
   case 5 -> System.out.println("The number is 5.");
   default ->
      System.out.println("The number is 7 or is outside the range 1 to 9.");
}


The braces, { and }, in this example are required to group
multiple statements into a single block statement.  Braces could also be
added to the other cases, but are not required there.
This switch statement has exactly the same effect as the
following multiway if statement:


if ( N == 1 ) {
    System.out.println("The number is 1.");
}
else if ( N == 2 || N == 4 || N == 8 ) {
    System.out.println("The number is 2, 4, or 8.");
    System.out.println("(That's a power of 2!)");
}
else if ( N == 3 || N == 6 || N == 9 ) {
    System.out.println("The number is 3, 6, or 9.");
    System.out.println("(That's a multiple of 3!)");
}
else if ( N == 5 ) {
    System.out.println("The number is 5.");
}
else {
    System.out.println("The number is 7 or is outside the range 1 to 9.");
}


More generally, any switch statement could be replaced by a
multiway if statement.  The switch statement can be easier to read.
And it might be more efficient since the computer can jump directly
to the correct case instead of working through a series of tests to get to
the correct case.


   





3.6.2  Menus and switch Statements



One application of switch statements is in processing menus. A menu
is a list of options. The user selects one of the options. The computer has to
respond to each possible choice in a different way. If the options are numbered
1, 2, ..., then the number of the chosen option can be used in a
switch statement to select the proper response.


In a command-line program, the menu can be presented as a numbered
list of options, and the user can choose an option by typing in its number.
It can be convenient to use a text block (see Subsection 2.3.4) to present the menu.
Here is an example that could be used in a variation of the
LengthConverter example from the previous
section:


int optionNumber;   // Option number from menu, selected by user.
double measurement; // A numerical measurement, input by the user.
                    //    The unit of measurement depends on which
                    //    option the user has selected.
double inches;      // The same measurement, converted into inches.

/* Display menu of options, and get user's selected option number. */

System.out.println("""
        What unit of measurement does your input use?
        
                1. inches
                2. feet
                3. yards
                4. miles
                
        Enter the number of your choice:
        """);

optionNumber = TextIO.getlnInt();

/* Read user's measurement and convert to inches. */

switch ( optionNumber ) {
   case 1 -> {
       System.out.println("Enter the number of inches: ");
       measurement = TextIO.getlnDouble();
       inches = measurement;
   }
   case 2 -> {
       System.out.println("Enter the number of feet: ");
       measurement = TextIO.getlnDouble();
       inches = measurement * 12;
   }
   case 3 -> {
       System.out.println("Enter the number of yards: ");
       measurement = TextIO.getlnDouble();
       inches = measurement * 36;
   }
   case 4 -> {
       System.out.println("Enter the number of miles: ");
       measurement = TextIO.getlnDouble();
       inches = measurement * 12 * 5280;
    }
   default -> {
       System.out.println("Error!  Illegal option number!  I quit!");
       System.exit(1);
   }

} // end switch

/* Now go on to convert inches to feet, yards, and miles... */


Alternatively, this example could be designed to ask the use to enter
the unit of measure as a string, instead of as an option number, and then 
use that string directly in a switch statement:


String units;       // Unit of measurement, entered by user.
double measurement; // A numerical measurement, input by the user.
double inches;      // The same measurement, converted into inches.

/* Read the user's unit of measurement. */

System.out.println("What unit of measurement does your input use?");
units = TextIO.getln().toLowerCase();

/* Read user's measurement and convert to inches. */

System.out.print("Enter the number of " + units + ":  ");
measurement = TextIO.getlnDouble();

switch ( units ) {
   case "inch", "inches", "in" ->  inches = measurement;
   case "foot", "feet", "ft"   ->  inches = measurement * 12;
   case "yard", "yards", "yd"  ->  inches = measurement * 36;
   case "mile", "miles", "mi"  ->  inches = measurement * 12 * 5280;
   default -> {
       System.out.println("Wait a minute!  Illegal unit of measure!  I quit!");
       System.exit(1);
   }
} // end switch


   





3.6.3  Enums in switch Statements


   
The type of the expression in a switch can be an enum
type.  In that case, the constants in the case labels must
be values from the enum type.  For example, suppose that the type of
the expression is the enumerated type Season
defined by


enum Season { SPRING, SUMMER, FALL, WINTER }


and that the expression in a switch statement is an expression
of type Season.  The constants in the case label must be chosen from among
the values Season.SPRING, Season.SUMMER, Season.FALL, or
Season.WINTER.  However, there is a quirk in the syntax:
when an enum  constant is used in a case label, only the simple name,
such as "SPRING" is used, not the full name, such as "Season.SPRING".
Of course, the computer already knows that the value in the case label
must belong to the enumerated type, since it can tell that from the type of expression
used, so there is really no need to specify the type name in the constant.  For example,
assuming that currentSeason is a variable of type Season,
then we could have the switch statement:

  
System.out.print("The months in " + currentSeason + " are: ");

switch ( currentSeason ) {
   case WINTER ->   // ( NOT Season.WINTER ! )
      System.out.println("December, January, February");
   case SPRING ->
      System.out.println("March, April, May");
   case SUMMER ->
      System.out.println("June, July, August");
   case FALL ->
      System.out.println("September, October, November");
}








3.6.4  Definite Assignment and switch Statements


   
As a somewhat more realistic example, the following switch statement
makes a random choice among three possible alternatives.  Recall that the
value of the expression (int)(3*Math.random()) is one of the
integers 0, 1, or 2, selected at random with equal probability, so the
switch statement below will assign one of the values
"Rock", "Paper", "Scissors" to computerMove,
with probability 1/3 for each case:


switch ( (int)(3*Math.random()) ) {
   case 0 -> computerMove = "Rock";
   case 1 -> computerMove = "Paper";
   case 2 -> computerMove = "Scissors";
}


This switch statement is perfectly OK, but suppose that we use it in the
following code segment:

   

String computerMove;
switch ( (int)(3*Math.random()) ) {
   case 0 -> computerMove = "Rock";
   case 1 -> computerMove = "Paper";
   case 2 -> computerMove = "Scissors";
}
System.out.println("The computer's move is " + computerMove);  // ERROR!


Now there is a subtle error on the last line!  The problem here is due to
definite assignment, the idea that the Java compiler must be able to determine
that a variable has definitely been assigned a value before its value is used.
Definite assignment was introduced in Subsection 3.1.5.
In this example, it's true that the three cases in the switch
cover all the possibilities, but the compiler is not smart enough to figure
that out; it just sees that there is an integer-valued expression in the switch
but not all possible integer values are covered by the given cases.



A simple solution is to replace the final case in the switch
statement with default.  With a default case, all
possible values of the expression in the switch are certainly covered,
and the compiler knows that computerMove is definitely assigned
a value:


String computerMove;
switch ( (int)(3*Math.random()) ) {
   case 0 -> computerMove = "Rock";
   case 1 -> computerMove = "Paper";
   default -> computerMove = "Scissors";
}
System.out.println("The computer's move is " + computerMove);  // OK!








3.6.5  Switch Expressions



Often, the whole purpose of a switch statement
is to assign a value to a variable, where the value that is to be
assigned depends on the value of the expression in the switch
statement.  For example, this is true for the switch statement
in the previous subsection.


This type of thing can be handled more elegantly by using a switch expression
instead of a switch statement.  Like any
expression, a switch expression computes and returns a single value.
The syntax is similar to a switch statement, but instead of a statement
in each case, there is an expression (or a throw statement).  For example,


String computerMove = switch ( (int)(3*Math.random()) ) {
        case 1 -> "Rock";
        case 2 -> "Paper";
        default -> "Scissors";
    };


This is a single assignment statement, where the value to be
assigned to computerMove is computed by the switch
expression.  The semicolon on the last line is the semicolon that is required
at the end of the assignment statement; it is not part of the switch
expression.


A switch expression must always compute a value (or throw an exception) and therefore
will usually have a default case.
The expression in a case
can be replaced by a block containing several statements; the value for that case
should then be specified by a yield statement, which takes a form
such as "yield 42;".  The value after the word yield is
then returned as the value of the switch expression.


Of course, switch expressions are not limited to assignment statements.
You can use a switch expression any place where any other kind of expression
could be used, such as in an output statement or as part of a larger expression.







3.6.6  The Traditional switch Statement



The older traditional syntax for switch statements is more complicated,
but you should be aware of it since it has been widely used in Java and in other
programming languages. As it is most often used, the traditional switch
has the form:


switch (expression) {
   case constant-1:
      statements-1
      break;
   case constant-2:
      statements-2
      break;
      .
      .   // (more cases)
      .
   case constant-N:
      statements-N
      break;
   default:  // optional default case
      statements-(N+1)
} // end of switch statement



Note that in the traditional syntax, only one constant is allowed in a case label
(but Java 17 allows a comma-separated list of constants here). 
A case label can be followed by any number of statements.  This traditional syntax uses a colon
after each case label, rather than ->.  The default case
is optional.

  
To execute this switch statement, the computer will evaluate
the expression and jump to the case label that contains that constant, 
if there is one, or to the default case if not.
The break statements in this switch are not actually
required by the syntax of the switch statement. The effect of a
break is to make the computer jump past the end of the switch statement,
skipping over all the remaining cases.
If you leave out the break statement, the computer will just forge ahead after
completing one case and will execute the statements associated with the next
case label. This is called "fall through"; it is rarely what you want, and
it is a common source of bugs. However, it is legal and is even occasionally useful.


Note that you can leave out one of the groups of statements entirely
(including the break). You then have two case labels in a row,
containing two different constants. This just means that the computer will jump
to the same place and perform the same action for each of the two
constants.


Here is how our first example switch statement would
be written using the traditional syntax:


switch ( N ) {   // (Assume N is an integer variable.)
   case 1:
      System.out.println("The number is 1.");
      break;
   case 2:
   case 4:
   case 8:
      System.out.println("The number is 2, 4, or 8.");
      System.out.println("(That's a power of 2!)");
      break;
   case 3:
   case 6:
   case 9:
      System.out.println("The number is 3, 6, or 9.");
      System.out.println("(That's a multiple of 3!)");
      break;
   case 5:
      System.out.println("The number is 5.");
      break;
   default:
      System.out.println("The number is 7 or is outside the range 1 to 9.");
}

   


   




Section 3.7

Introduction to Exceptions and try..catch






In addition to the control structures that
determine the normal flow of control in a program, Java has a way to deal
with "exceptional" cases that throw the flow of control off its normal
track.  When an error occurs during the execution of a program, the default
behavior is to terminate the program and to print an error message.  However,
Java makes it possible to "catch" such errors and program a response different
from simply letting the program crash.  This is done with the
try..catch statement.  In this section, we will
take a preliminary and incomplete look the try..catch statement,
leaving out a lot of the rather complex syntax of this statement.
Error handling is a complex topic, which we will return to in
Section 8.3, and we will cover the full syntax
of try..catch at that time.

   



3.7.1  Exceptions



The term exception is used to refer to the type of
event that one might want to handle with a try..catch.  An
exception is an exception to the normal flow of control in the program.
The term is used in preference to "error" because in some cases,
an exception might not be considered to be an error at all.  You can
sometimes think of an exception as just another way to organize
a program.

   
Exceptions in Java are represented as objects of type Exception.
Actual exceptions are usually defined by subclasses of Exception.
Different subclasses represent different types of exceptions.  We will look at only
two types of exception in this section:  NumberFormatException
and IllegalArgumentException.

   
A NumberFormatException can occur when an attempt
is made to convert a string into a number.  Such conversions are done by
the functions Integer.parseInt and Double.parseDouble.
(See Subsection 2.5.7.)  Consider the function call Integer.parseInt(str)
where str is a variable of type String.
If the value of str is the string "42", then the
function call will correctly convert the string into the int 42.
However, if the value of str is, say, "fred", the function call 
will fail because "fred" is not a legal string representation of
an int value.  In this case, an exception of type
NumberFormatException occurs.  If nothing is done
to handle the exception, the program will crash.


An IllegalArgumentException can occur when an illegal
value is passed as a parameter to a subroutine.  For example, if a subroutine
requires that a parameter be greater than or equal to zero, an IllegalArgumentException
might occur when a negative value is passed to the subroutine.
How to respond to the illegal value is up to the person who wrote the subroutine, 
so we can't simply say that every illegal parameter value will result in an
IllegalArgumentException.  However, it is a common response.







3.7.2  try..catch


   
When an exception occurs, we say that the exception is "thrown."
For example, we say that Integer.parseInt(str) throws
an exception of type NumberFormatException when the value of 
str is illegal.  When an exception is thrown, it is possible
to "catch" the exception and prevent it from crashing the program.  This is
done with a try..catch statement.  In simplified
form, the syntax for a try..catch statement can be:


try {
   statements-1
}
catch ( exception-class-name  variable-name ) {
   statements-2
}

   
The exception-class-name could be NumberFormatException,
IllegalArgumentException, or some other exception class.
When the computer executes this try..catch statement, 
it executes statements-1, the statements inside the try
part.  If no exception occurs during the execution of statements-1, then the computer
just skips over the catch part and proceeds with the rest of the program.
However, if an exception of type exception-class-name occurs during the
execution of statements-1, the computer immediately jumps from the point where the
exception occurs to the
catch part and executes statements-2, skipping any remaining statements in
statements-1.  
Note that only one type of exception is caught; if some other type of exception occurs
during the execution of statements-1, it will crash the program as usual.


An exception is represented by an object. During the execution of statements-2, the
variable-name represents that exception object, so that you can, for example,
print it out.  The exception object contains information about the cause of the exception.
This includes an error message, which will be displayed if you print out the exception object.


After the end of the
catch part, the computer proceeds with the rest of the program;
the exception has been caught and handled and does not crash the program.


   
By the way, note that the braces, { and }, are part of the syntax of the
try..catch statement.  They are required even if there is only one
statement between the braces.  This is different from the other statements we
have seen, where the braces around a single statement are optional.

   
As an example, suppose that str is a variable of type String
whose value might or might not represent a legal real number.  Then we could say:

   
double x;
try {
   x = Double.parseDouble(str);
   System.out.println( "The number is " + x );
}
catch ( NumberFormatException e ) {
   System.out.println( "Not a legal number." );
   x = Double.NaN;
}

   
If an error is thrown by the call to Double.parseDouble(str), then the
output statement in the try part is skipped, and the statement in the
catch part is executed.  (In this example, I set x to be
the value Double.NaN when an exception occurs.  Double.NaN
is the special "not-a-number" value for type double.)


   
It's not always a good idea to catch exceptions and continue with the program.  Often
that can just lead to an even bigger mess later on, and it might be better just to let
the exception crash the program at the point where it occurs.  However, sometimes it's
possible to recover from an error.


Suppose, for example, we want a program that will
find the average of a sequence of real numbers entered by the user, and we want the user
to signal the end of the sequence by entering a blank line.  (This is similar
to the sample program ComputeAverage.java from Section 3.3,
but in that program the user entered a zero to signal end-of-input.)
If we use TextIO.getlnInt()
to read the user's input, we will have no way of detecting the blank line, since that
function simply skips over blank lines.  A solution is to use TextIO.getln()
to read the user's input.  This allows us to detect a blank input line, and we can
convert non-blank inputs to numbers using Double.parseDouble.  And we
can use try..catch to avoid crashing the program when the user's input
is not a legal number.  In this example, it makes sense to simply print an error
message, ignore the bad input, and let the program continue.  Here's the program:


import textio.TextIO;

public class ComputeAverage2 {

   public static void main(String[] args) {
       String str;     // The user's input.
       double number;  // The input converted into a number.
       double total;   // The total of all numbers entered.
       double avg;     // The average of the numbers.
       int count;      // The number of numbers entered.
       total = 0;
       count = 0;
       System.out.println("Enter your numbers, press return to end.");
       while (true) {
          System.out.print("? ");
          str = TextIO.getln();
          if (str.equals("")) {
             break; // Exit the loop, since the input line was blank.
          }
          try {
              number = Double.parseDouble(str);
              // If an error occurs, the next 2 lines are skipped!
              total = total + number;
              count = count + 1;
          }
          catch (NumberFormatException e) {
              System.out.println("Not a legal number!  Try again.");
          }
       }
       avg = total/count;
       System.out.printf("The average of %d numbers is %1.6g%n", count, avg);
   }

}



   



3.7.3  Exceptions in TextIO


   
When TextIO reads a numeric value from the user, it makes sure
that the user's response is legal, using a technique similar to the while
loop and try..catch in the previous example.  However, TextIO
can read data from other sources besides the user.  (See Subsection 2.4.4.)
When it is reading from a file,
there is no reasonable way for TextIO to recover from an illegal
value in the input, so it responds by throwing an exception.
To keep things simple, TextIO only throws exceptions of type
IllegalArgumentException, no matter what type of error it
encounters.  For example, an exception
will occur if an attempt is made to read from a file after all the data in the
file has already been read.  In TextIO, the exception is of type
IllegalArgumentException.
If you have a better response to file errors than to let the
program crash, you can use a try..catch to catch exceptions of
type IllegalArgumentException.  


   
As an example, we will look at yet another number-averaging program.  In this case,
we will read the numbers from a file.
Assume that the file contains nothing but real numbers, and we
want a program that will read the numbers and find their sum and their average.
Since it is unknown how many numbers are in the
file, there is the question of when to stop reading.  One approach is simply
to try to keep reading indefinitely.  When the end of the file is reached,
an exception occurs.  This exception is not really an error—it's just
a way of detecting the end of the data. So, we can catch the exception and
finish up the program when it occurs.  We can read the data in a while (true) loop
and break out of the loop when an exception occurs.  This is an example
of the somewhat unusual technique of using an exception as part of the 
expected flow of control in a program.


   
To read from the file, we need to know the file's name.  To make the program
more general, we can let the user enter the file name, instead of hard-coding
a fixed file name in the program.  However, it is possible that the user will
enter the name of a file that does not exist.  When we use TextIO.readfile
to open a file that does not exist, an exception of type 
IllegalArgumentException occurs.  We can catch
this exception and ask the user to enter a different file name.  Here is
a complete program that uses all these ideas:


import textio.TextIO;

/**
 * This program reads numbers from a file.  It computes the sum and 
 * the average of the numbers that it reads.  The file should contain 
 * nothing but numbers of type double; if this is not the case, the 
 * output will be the sum and average of however many numbers were 
 * successfully read from the file.  The name of the file will be
 * input by the user.  (The user can choose to end the program by
 * typing Control-C.)
 */
public class AverageNumbersFromFile {
   
   public static void main(String[] args) {
            
      while (true) {
         String fileName;  // The name of the file, to be input by the user.
         System.out.print("Enter the name of the file: ");
         fileName = TextIO.getln();
         try {
            TextIO.readFile( fileName );  // Try to open the file for input.
            break;  // If that succeeds, break out of the loop.
         }
         catch ( IllegalArgumentException e ) {
            System.out.println("Can't read from the file \"" + fileName + "\".");
            System.out.println("Please try again.\n");
         }
      }
      
      /* At this point, TextIO is reading from the file. */
      
      double number;  // A number read from the data file.
      double sum;     // The sum of all the numbers read so far.
      int count;      // The number of numbers that were read.
      
      sum = 0;
      count = 0;
      
      try {
         while (true) { // Loop ends when an exception occurs.
             number = TextIO.getDouble();
             count++;  // This is skipped when the exception occurs
             sum += number;
         }
      }
      catch ( IllegalArgumentException e ) {
         // We expect this to occur when the end-of-file is encountered.
         // We don't consider this to be an error, so there is nothing to do
         // in this catch clause.  Just proceed with the rest of the program.
      }
      
      // At this point, we've read the entire file.
      
      System.out.println();
      System.out.println("Number of data values read: " + count);
      System.out.println("The sum of the data values: " + sum);
      if ( count == 0 )
         System.out.println("Can't compute an average of 0 values.");
      else
         System.out.println("The average of the values:  " + (sum/count));
      
   }

}
  


   




Section 3.8

Introduction to Arrays






In previous sections of this chapter, we have 
already covered all of Java's control structures.  But before moving on to the next chapter, we will
take preliminary looks at two additional topics that are at least somewhat related to control structures.

This section
is an introduction to arrays.  Arrays are a basic and very commonly used
data structure, and array processing is often an exercise in using control
structures. The next section will
introduce computer graphics and will allow you to apply what you know
about control structures in another context.






3.8.1  Creating and Using Arrays



A data structure consists of a number of data items
chunked together so that they can be treated as a unit.  An array is
a data structure in which the items are arranged as a numbered sequence,
so that each individual item can be referred to by its position number.
In Java—but not in some other programming languages—all the items must 
be of the same type, and the numbering always starts at zero.
You will need to learn several new terms to talk about arrays:
The number of items in an array is called the
length of the array. 
The type of the individual items in an array is called the 
base type of the array. And the position number of an
item in an array is called the index of that item.


Suppose that you want to write a program that will process the names of, say, one thousand people.
You will need a way to deal with all that data.  Before you knew about arrays,
you might have thought that the program would need a thousand variables to hold
the thousand names, and if you wanted to print out all the names, you would need
a thousand print statements.  Clearly, that would be ridiculous!  In reality,
you can put all the names into an array.  The array is represented by a single
variable, but it holds the entire list of names.  The length of the array would
be 1000, since there are 1000 individual names.  The base type of the array
would be String since the items in the array are
strings.  The first name would be at index 0 in the array, the second name
at index 1, and so on, up to the thousandth name at index 999.


The base type of an array can be any Java type, but for now, we will stick to
arrays whose base type is String or one of the eight primitive
types.   If the base type of an
array is int, it is referred to as an "array of ints." An
array with base type String is referred to as an "array of
Strings." However, an array is not, properly speaking, a list of
integers or strings or other values. It is better thought of
as a list of variables of type int, or a list of variables of type
String, or of some other type. As always, there is some potential for
confusion between the two uses of a variable: as a name for a memory location
and as a name for the value stored in that memory location. Each position in an
array acts as a variable. Each position can hold a value of a specified type
(the base type of the array), just as a variable can hold a value.
The value can be changed at any time, just as the value of a variable can be
changed.  The items in an array—really, the individual variables that make up the
array—are more often referred to as the elements 
of the array.


As I mentioned above, when you use an array in a program, you can use a variable
to refer to the array as a whole.  But you often need to refer to the individual elements
of the array.  The name for an element of an array is based on the name for the array
and the index number of the element.  The syntax for referring to an element
looks, for example, like this:  namelist[7].  Here, namelist
is the variable that names the array as a whole, and namelist[7] refers to the
element at index 7 in that array.   That is, to refer to an element of an array,
you use the array name, followed by element index enclosed in square brackets.
An element name of this form can be used like any other variable: You can assign
a value to it, print it out, use it in an expression, and so on.


An array also contains a kind of variable representing its length.  For example,
you can refer to the length of the array namelist as namelist.length.
However, you cannot assign a value to namelist.length, since the length of an
array cannot be changed.



Before you can use a variable to refer to an array, that
variable must be declared, and it must
have a type.  For an array of Strings, for example,
the type for the array variable would be String[], and
for an array of ints, it would be int[].
In general, an array type consists of the base type of the array followed
by a pair of empty square brackets.  Array types can be used to declare
variables; for example,


String[] namelist;
int[] A;
double[] prices;



and variables declared in this way can refer to arrays.  However, declaring
a variable does not make the actual array.  Like all variables, an array variable has
to be assigned a value before it can be used.  In this case, the value is
an array.  Arrays have to be created using a special syntax.  (The syntax
is related to the fact that arrays in Java are actually objects, but that doesn't
need to concern us here.)  Arrays are created with an operator named new.
Here are some examples:


namelist = new String[1000];
A = new int[5];
prices = new double[100];


The general syntax is



array-variable = new base-type[array-length];


The length of the array can be given as either an integer or an integer-valued
expression.  For example, after the assignment statement
"A = new int[5];", A is an array
containing the five integer elements A[0], A[1], A[2], 
A[3], and A[4].  Also, A.length would have
the value 5.  It's useful to have a picture in mind:



[image: illustration of an array of 5 ints]


   
When you create an array of int, each element of the array is
automatically initialized to zero.  Any array of numbers is filled with zeros
when it is created.  An array of boolean is filled with the
value false.  And an array of char is filled
with the character that has Unicode code number zero.  (For an array of
String, the initial value is null,
a special value used for objects that we won't encounter officially until
Section 5.1.)








3.8.2  Arrays and For Loops



A lot of the real power of arrays comes from the fact that
the index of an element can be given by an integer variable or
even an integer-valued expression.  For example, if list
is an array and i is a variable of type int,
then you can use list[i] and even list[2*i+1]
as variable names.  The meaning of list[i] depends on
the value of i.  This becomes especially useful when we want to
process all the elements of an array, since that can be
done with a for loop.  For example, to print out
all the items in an array, list, we can just
write



int i;  // the array index
for (i = 0; i < list.length; i++) {
    System.out.println( list[i] );
}


The first time through the loop, i is 0, and list[i]
refers to list[0]. So, it is the value stored in the variable
list[0] that is printed. The second time through the loop, i
is 1, and the value stored in list[1] is printed. If the length of the list is 5, then the loop ends after
printing the value of list[4], when i becomes equal to 5 and
the continuation condition "i < list.length" is no longer true. This
is a typical example of using a loop to process an array.


Let's look at a few more examples.  Suppose that A is an array
of double, and we want to find the average of all the elements of
the array.  We can use a for loop to add up the numbers, and then
divide by the length of the array to get the average:


double total;    // The sum of the numbers in the array.
double average;  // The average of the numbers.
int i;  // The array index.
total = 0;
for ( i = 0; i < A.length; i++ ) {
    total = total + A[i];  // Add element number i to the total.
}
average = total / A.length;  // A.length is the number of items


Another typical problem is to find the largest number in the array A. The
strategy is to go through the array, keeping track of the largest number found
so far. We'll store the largest number found so far in a variable called
max. As we look through the array, whenever we find a number larger
than the current value of max, we change the value of max to
that larger value. After the whole array has been processed, max is
the largest item in the array overall. The only question is, what should the
original value of max be? One possibility is to start with
max equal to A[0], and then to look through the rest of the
array, starting from A[1], for larger items:


double max;  // The largest number seen so far.
max = A[0];   // At first, the largest number seen is A[0].
int i;
for ( i = 1; i < A.length; i++ ) {
    if (A[i] > max) {
       max = A[i];
    }
}
// at this point, max is the largest item in A


Sometimes, you only want to process some elements of the array.  In that
case, you can use an if statement inside the for
loop to decide whether or not to process a given element.  Let's look
at the problem of averaging the elements of an array, but this time,
suppose that we only want to average the non-zero elements.  In this case,
the number of items that we add up can be less than the length of the array,
so we will need to keep a count of the number of items added to the sum:


double total;    // The sum of the non-zero numbers in the array.
int count;       // The number of non-zero numbers.
double average;  // The average of the non-zero numbers.
int i;
total = 0;
count = 0;
for ( i = 0; i < A.length; i++ ) {
    if ( A[i] != 0 ) {  // Only process non-zero elements!
        total = total + A[i];  // Add element to the total
        count = count + 1;     //      and count it.
    }
}
if (count == 0) {
    System.out.println("There were no non-zero elements.");
}
else {
    average = total / count;  // Divide by number of items
    System.out.printf("Average of %d elements is %1.5g%n",
                            count, average);
}









3.8.3  Random Access



So far, my examples of array processing have used sequential access. 
That is, the elements of the array were
processed one after the other in the sequence in which they occur in the array.
But one of the big advantages of arrays is that they allow random access. 
That is, every element of the array is equally accessible at any given time.


As an example, let's look at a well-known problem called the birthday
problem: Suppose that there are N people in a room. What's the chance
that there are two people in the room who have the same birthday? (That is,
they were born on the same day in the same month, but not necessarily in the
same year.) Most people severely underestimate the probability. We will actually
look at a different version of the question:  Suppose you choose people at random
and check their birthdays. How many people will you check before you find one
who has the same birthday as someone you've already checked? Of course, the
answer in a particular case depends on random factors, but we can simulate the
experiment with a computer program and run the program several times to get an
idea of how many people need to be checked on average.


To simulate the experiment, we need to keep track of each birthday that we
find. There are 365 different possible birthdays. (We'll ignore leap years.)
For each possible birthday, we need to keep track of whether or not we
have already found a person who has that birthday.
The answer to this question is a boolean value, true or false. To hold the data
for all 365 possible birthdays, we can
use an array of 365 boolean values:


boolean[] used; 
used = new boolean[365];


For this problem, the days of the year are numbered from 0 to 364. The value of
used[i] is true if someone has been selected whose birthday is day
number i. Initially, all the values in the array are
false. (Remember that this is done automatically when the array is created.)
When we select someone whose birthday is day number i, we first
check whether used[i] is true. If it is true, then this is the second person
with that birthday. We are done. On the other hand, if used[i] is false, we set
used[i] to be true to record the fact that we've encountered someone
with that birthday, and we go on to the next person. Here is a program that
carries out the simulated experiment (of course, in the program, there are
no simulated people, only simulated birthdays):


/**
 * Simulate choosing people at random and checking the day of the year they 
 * were born on.  If the birthday is the same as one that was seen previously, 
 * stop, and output the number of people who were checked.
 */
public class BirthdayProblem {

   public static void main(String[] args) {

       boolean[] used;  // For recording the possible birthdays
                        //   that have been seen so far.  A value
                        //   of true in used[i] means that a person
                        //   whose birthday is the i-th day of the
                        //   year has been found.

       int count;       // The number of people who have been checked.

       used = new boolean[365];  // Initially, all entries are false.
   
       count = 0;

       while (true) {
             // Select a birthday at random, from 0 to 364.
             // If the birthday has already been used, quit.
             // Otherwise, record the birthday as used.

          int birthday;  // The selected birthday.
          birthday = (int)(Math.random()*365);
          count++;

          System.out.printf("Person %d has birthday number %d%n", count, birthday);

          if ( used[birthday] ) {  
                // This day was found before; it's a duplicate.  We are done.
             break;
          }

          used[birthday] = true;

       } // end while

       System.out.println();
       System.out.println("A duplicate birthday was found after " 
                                             + count + " tries.");
   }

} // end class BirthdayProblem



You should study the program to understand how it works and how
it uses the array.  Also,
try it out!  You will probably find that a duplicate
birthday tends to occur sooner than you expect.









3.8.4  Partially Full Arrays



Consider an application where the number of items that we want to store in
an array changes as the program runs. Since the size of the array can't
be changed, a separate counter variable must be used to keep track of
how many spaces in the array are in use. (Of course, every space in the array
has to contain something; the question is, how many spaces contain useful or
valid items?)


Consider, for example, a program that reads positive integers entered by the
user and stores them for later processing. The program stops reading when the
user inputs a number that is less than or equal to zero. The input numbers can
be kept in an array, numbers, of type int[]. Let's say that
no more than 100 numbers will be input. Then the size of the array can be fixed
at 100. But the program must keep track of how many numbers have actually been
read and stored in the array. For this, it can use an integer variable.
Each time a number is stored in the array, we have to count it;
that is, the value of the counter variable must be incremented by one. 
One question is, when we add a new item to the array, where do we put
it?  Well, if the number of items is count, then they would
be stored in the array in positions number 0, 1, ..., (count-1).
The next open spot would be position number count, so that's
where we should put the new item.


As a rather silly example, let's write a program that
will read the numbers input by the user and then print them in the reverse of the
order in which they were entered.  Assume that an input value equal to zero
marks the end of the data.
(This is, at least, a processing task that requires that the numbers be saved
in an array. Note that many types of processing, such as finding the sum or
average or maximum of the numbers, can be done without saving the individual
numbers.)


import textio.TextIO;

public class ReverseInputNumbers {

   public static void main(String[] args) {
   
     int[] numbers;  // An array for storing the input values.
     int count;      // The number of numbers saved in the array.
     int num;        // One of the numbers input by the user.
     int i;          // for-loop variable.
     
     numbers = new int[100];   // Space for 100 ints.
     count = 0;                // No numbers have been saved yet.
     
     System.out.println("Enter up to 100 positive integers; enter 0 to end.");
     
     while (true) {   // Get the numbers and put them in the array.
        System.out.print("? ");
        num = TextIO.getlnInt();
        if (num <= 0) {
              // Zero marks the end of input; we have all the numbers.
           break;
        }
        numbers[count] = num;  // Put num in position count.
        count++;  // Count the number
     }
     
     System.out.println("\nYour numbers in reverse order are:\n");
     
     for ( i = count - 1; i >= 0; i-- ) {
         System.out.println( numbers[i] );
     }
     
   } // end main();
   
}  // end class ReverseInputNumbers


It is especially important to note how the variable count plays a
dual role. It is the number of items that have been entered into the array.
But it is also the index of the next available spot in the array.


 When the time comes to print
out the numbers in the array, the last occupied spot in the array is location
count - 1, so the for loop prints out values starting from
location count - 1 and going down to 0.  This is also a nice
example of processing the elements of an array in reverse order.





You might wonder what would happen in this program if the user tries to input
more than 100 numbers.  The result would be an error that would crash the
program.  When the user enters the 101-st number, the program tries to store
that number in an array element number[100].  However, there is
no such array element.  There are only 100 items in the array, and the index
of the last item is 99.  The attempt to use number[100]
generates an exception of type ArrayIndexOutOfBoundsException.
Exceptions of this type are a common source of run-time errors in programs that use arrays.








3.8.5  Two-dimensional Arrays



The arrays that we have considered so far are "one-dimensional."  This means that the
array consists of a sequence of elements that can be thought of as being laid out along a line.
It is also possible to have two-dimensional arrays, where the elements can
be laid out in a rectangular grid.  We consider them only briefly here, but will return
to the topic in Section 7.6.


In a two-dimensional, or "2D," array, the elements can be
arranged in rows and columns.  Here, for example, is a 2D array of int
that has five rows and seven columns:



[image: an array of its with 5 rows and 7 columns]



This 5-by-7 grid contains a total of 35 elements.
The rows in a 2D array are numbered 0, 1, 2, ..., up to the number of rows minus one.
Similarly, the columns are numbered from zero up to the number of columns minus one.  Each individual
element in the array can be picked out by specifying its row number and its column number.
(The illustration shown here is not what the array actually looks like in the computer's
memory, but it does show the logical structure of the array.)


In Java, the syntax for two-dimensional arrays is similar to the syntax for one-dimensional
arrays, except that an extra index is involved, since picking out an element requires both
a row number and a column number.  For example, if A is a 2D array of int, then
A[3][2] would be the element in row 3, column 2.  That would pick out the
number 17 in the array shown above.  The type for A
would be given as int[][], with two pairs of empty brackets.  To declare the
array variable and create the array, you could say,


int[][]  A;
A  =  new int[5][7];


The second line creates a 2D array with 5 rows and 7 columns.  Two-dimensional arrays
are often processed using nested for loops.  For example, the following code 
segment will print out the elements of A in neat columns:


int row, col;  // loop-control-variables for accessing rows and columns in A
for ( row = 0; row < 5; row++ ) {
    for ( col = 0; col < 7; col++ ) {
        System.out.printf( "%7d",  A[row][col] );
    }
    System.out.println();
}



The base type of a 2D array can be anything, so you can have arrays of type
double[][], String[][], and so on.


There are some natural uses for 2D arrays.  For example,
a 2D array can be used to store the contents of the board in a game such as
chess or checkers.  And an example in Subsection 4.7.3 uses a 2D array
to hold the colors of a grid of colored squares.  But sometimes 
two-dimensional arrays are used in problems in which the grid is
not so visually obvious. Consider a company that owns 25 stores. Suppose that
the company has data about the profit earned at each store for each month in
the year 2022. If the stores are numbered from 0 to 24, and if the twelve
months from January 2022 through December 2022 are numbered from 0 to 11, then
the profit data could be stored in an array, profit, created as
follows:


double[][]  profit;
profit  =  new double[25][12];



profit[3][2] would be the amount of profit earned at store number 3
in March, and more generally, profit[storeNum][monthNum] would be the
amount of profit earned in store number storeNum in month number
monthNum (where the numbering, remember, starts from zero).


Let's assume that the profit array has already been filled with
data. This data can be processed in a lot of interesting ways. For example, the
total profit for the company—for the whole year from all its stores—can
be calculated by adding up all the entries in the array:


double totalProfit;  // Company's total profit in 2022.
int store, month;  // variables for looping through the stores and the months
totalProfit = 0;
for ( store = 0; store < 25; store++ ) {
   for ( month = 0; month < 12; month++ )
      totalProfit += profit[store][month];
}


Sometimes it is necessary to process a single row or a single column of an
array, not the entire array. For example, to compute the total profit earned by
the company in December, that is, in month number 11, you could use the
loop:


double decemberProfit;
int storeNum;
decemberProfit = 0.0;
for ( storeNum = 0; storeNum < 25; storeNum++ ) {
   decemberProfit += profit[storeNum][11];
}


Two-dimensional arrays are sometimes useful, but they are much less common
than one-dimensional arrays.  Java actually allows arrays of even higher dimension,
but they are only rarely encountered in practice.









Section 3.9

Introduction to GUI Programming






For the past two chapters, you've been learning the
sort of programming that is done inside a single subroutine, "programming in the small."
In the rest of this
book, we'll be more concerned with the larger scale structure of programs, but
the material that you've already learned will be an important foundation for
everything to come.  In this section, we see how techniques that you have  
learned so far can be applied in the context of graphical user interface programming.  GUI programs
here, and in the rest of this book, are written using JavaFX, a collection of classes
that form a "toolkit" for writing GUI programs.  All of the classes mentioned in this
section are part of JavaFX, and they must be imported into any program that uses them.
See Subsection 2.6.7 and Subsection 2.6.8 for information about compiling and running programs 
that use JavaFX.


When you run a GUI program, it opens one or more windows on your computer
screen.  As a programmer, you can have complete control over what appears in the
window and how the user can interact with it.  For our first encounter, we look
at one simple example: the ability of a program to display simple shapes like
rectangles and lines in the window, with no user interaction.  For now, the
main point is to take a look at how programming-in-the-small can be used in other contexts besides
text-based, command-line-style programs.   You will see that
a knowledge of programming-in-the-small applies to writing the guts of
any subroutine, not just main().





3.9.1  Drawing Shapes



To understand computer graphics, you need to know a little about pixels and 
coordinate systems.  The computer screen is made up of small squares called 
pixels, arranged in rows and columns, usually about 100 pixels
per inch.  (Many screens now have many more physical pixels per inch.  On these
"high-resolution" screens, a "pixel" might refer to a physical pixel, but
it might also refer to a "logical pixel," which is a unit of measure
somewhere close to 1/100 inch.)
 

The computer controls the color of the pixels, and drawing is done by
changing the colors of individual pixels.  Each pixel has a pair of integer coordinates,
often called x and y, that specify the pixel's horizontal and vertical
position.  When drawing to a rectangular area on the screen,
the coordinates of the pixel in the upper left corner of the rectangle are (0,0).
The x coordinate increases from left to right, and the y
coordinate increases from top to bottom.  Shapes are specified using pixels.
For example, a rectangle is specified by the x and y coordinates of
its upper left corner and by its width and height measured in pixels.
Here's a picture of a rectangular drawing area, showing the ranges of x
and y coordinates.  The "width" and "height" in this picture 
give the size of the drawing area, in pixels:




[image: A drawing area showing x and y coordinate ranges]


     
Assuming that the drawing area is 800-by-500 pixels, the rectangle in the upper
left of the picture would have, approximately, width 200, height 150, and upper left
corner at coordinates (50,50).





Drawing in Java is done using a graphics context.  A graphics
context is an object.  As an object, it can include subroutines and data.  Among the
subroutines in a graphics context are routines for drawing basic shapes such as 
lines, rectangles, ovals, and text.  (When text appears on the screen, the characters have
to be drawn there by the computer, just like the computer draws any other shapes.)
Among the data in a graphics context are the color and font that are currently selected
for drawing.  (A font determines the style and size of characters.)  One other piece of
data in a graphics context is the "drawing surface" on which the drawing is done.
Different graphics context objects
can draw to different drawing surfaces.  For us, the drawing surface will be the
content area of a window, not including its border or title bar.


There are two ways to draw a shape in JavaFX:  You can fill the
shape, meaning you can set the color of each of the pixels inside the shape.
Or you can stroke the shape, meaning that you set the color of
the pixels that lie along the border of the shape.  Some shapes, such as a line,
can only be stroked.  A JavaFX graphics context actually keeps track of two separate
colors, one used for filling shapes and one used for stroking shapes.  Stroking a shape is 
like dragging a pen along the border of the
shape.  The properties of that pen (such as its size and whether it produces
a solid line or a dashed line) are properties of the graphics context.



A graphics context is represented by a variable.  The type for the variable is
GraphicsContext
(just like the type for a string variable is 
String).   The variable is often named g, but 
the name of the variable is of course up to the programmer.  Here are a few of the
subroutines that are available in a graphics context g.  Note that
all numerical parameter values can be 
of type double.




	
g.setFill(c) is called to set the
color to be used for filling shapes. The parameter, c is an object
belonging to a class named Color.  There are many constants 
representing standard colors that can be used as the parameter
in this subroutine. The standard colors range from common colors such as
Color.BLACK, Color.WHITE, Color.RED, 
Color.GREEN, Color.BLUE, and Color.YELLOW, to
more exotic color names such as Color.CORNFLOWERBLUE.
(Later, we will see that it is also possible
to create new colors.)  For example, if you want to fill shapes with red,
you would say "g.setFill(Color.RED);". The specified color is
used for all subsequent fill operations up until the next time g.setFill() is
called.  Note that previously drawn shapes are not affected!

	
g.setStroke(c) is called to set the color to be used
for stroking shapes. It works similarly to g.setFill.

	
g.setLineWidth(w) sets the size of the pen that will be used
for subsequent stroke operations, where w is measured in pixels.

	
g.strokeLine(x1,y1,x2,y2) draws a line from the point with
coordinates (x1,y1) to the point with coordinates (x2,y2).
The width of the line is 1, unless a different line width has been set by calling
g.setLineWidth(), and the color is black unless a different color has
been set by calling g.setStroke().

	
g.strokeRect(x,y,w,h) draws the outline
of a rectangle with vertical and horizontal sides.
This subroutine draws the outline of the rectangle whose
top-left corner is x pixels from the left edge of the drawing area and
y pixels down from the top. The horizontal width of the rectangle
is w pixels, and the vertical height is h pixels.  Color
and line width are set by calling g.setStroke() and g.setLineWidth().

	
g.fillRect(x,y,w,h) is similar to
g.strokeRect() except that it fills in the inside of the rectangle instead
of drawing an outline, and it uses the color set by g.setFill().

	
g.strokeOval(x,y,w,h) draws the outline
of an oval.  The oval just fits inside the rectangle that would be drawn by
g.strokeRect(x,y,w,h).  To get a circle, use the same values for w
and for h.

	
g.fillOval(x,y,w,h) is similar to
g.strokeOval() except that it fills in the inside of the oval instead
of drawing an outline.






This is enough information to draw some pictures using Java graphics.  To start
with something simple, let's say that we want to draw a set of ten parallel lines, something
like this:



[image: a stack of 10 horizontal lines]


         
Let's say that the lines are 200 pixels long and that the distance from each line
to the next is 10 pixels, and let's put the start of the first line at the pixel
with coordinates (100,50). To draw one line, we just have to call g.strokeLine(x1,y1,x2,y2)
with appropriate values for the parameters.
Now, all the lines start at x-coordinate 100, so we can use the constant 100 as the value for 
x1.  Since the lines are 200 pixels long, we can use the constant 300 as the value
for x2.  The y-coordinates of the lines are different, but we can see that
both endpoints of a line have the same y-coordinates, so we can use a single
variable as the value for y1 and for y2.  Using y as the
name of that variable, the command for drawing one of the lines becomes
g.strokeLine(100,y,300,y).  The value of y is 50 for the top line
and increases by 10 each time we move down from one line to the next.  We just need to make
sure that y takes on the correct sequence of values.  We can use a for loop
that counts from 1 to 10:


int y;   // y-coordinate for the line
int i;   // loop control variable
y = 50;  // y starts at 50 for the first line
for ( i = 1; i <= 10; i++ ) {
    g.strokeLine( 100, y, 300, y );
    y = y + 10;  // increase y by 10 before drawing the next line.
}


Alternatively, we could use y itself as the loop control variable, noting
that the value of y for the last line is 140:


int y;
for ( y = 50; y <= 140; y = y + 10 )
    g.strokeLine( 100, y, 300, y );


If we wanted the lines to be blue, we could do
that by calling g.setStroke(Color.BLUE) before drawing them.  
If we just draw
the lines without setting the color, they will be black.  If we wanted the lines to be 3 pixels wide,
we could call g.setLineWidth(3) before drawing the lines.


For something a little more complicated, let's draw a large number of randomly colored,
randomly positioned, filled circles.  Since we only know a few colors, I will randomly select
the color to be red, green, blue, or yellow.  That can be done with a simple switch statement, similar
to the ones in Section 3.6:


switch ( (int)(4*Math.random()) ) {
    case 0 -> g.setFill( Color.RED );
    case 1 -> g.setFill( Color.GREEN );
    case 2 -> g.setFill( Color.BLUE );
    case 3 -> g.setFill( Color.YELLOW );
}




I will choose the center points of the circles at random.
Let's say that the width of the drawing area is given by a variable, width.  Then
we want a random value in the range 0 to width-1 for the horizontal
position of the center.  Similarly, the vertical position of the center will be a random value
in the range 0 to height-1.  That leaves the size of the circle to
be determined; I will make the radius of each circle equal to 50 pixels.  We can draw the
circle with a statement of the form g.fillOval(x,y,w,h).  However, in this
command, x and y are not the coordinates of the center of
the circle; they are the upper left corner of a rectangle drawn around the circle.  To get
values for x and y, we have to move back from the center of the
circle by 50 pixels, an amount equal to the radius of the circle.  The parameters w
and h give the width and height of the rectangle, which have to be twice the 
radius, or 100 pixels in this case.  Taking all this into account, here is a code
segment for drawing a random circle:


centerX = (int)(width*Math.random());
centerY = (int)(height*Math.random());
g.fillOval( centerX - 50, centerY - 50, 100, 100 );


This code comes after the color-setting code given above.
In the end, I found that the picture looks better if I also draw a black outline
around each filled circle, so I added this code at the end:


g.setStroke( Color.BLACK );
g.strokeOval( centerX - 50, centerY - 50, 100, 100 );


Finally, to get a large number of circles, I put all of the above code into
a for loop that runs for 500 executions.  Here's a typical drawing from
the program, shown at reduced size:



[image: picture with 500 random filled circles]


    






3.9.2  Drawing in a Program



Now, as you know, you can't just have a bunch of Java code standing by itself.
The code has to be inside a subroutine definition that is itself inside a class
definition.  In fact, for my circle-drawing program, the complete subroutine for
drawing the picture looks like this:


public void drawPicture(GraphicsContext g, int width, int height) {

    g.setFill(Color.WHITE);
    g.fillRect(0, 0, width, height); // First, fill  with a background color.

    // As an example, draw a large number of colored disks.
    // To get a different picture, erase this code, and substitute your own. 
    
    int centerX;     // The x-coord of the center of a disk.
    int centerY;     // The y-coord of the center of a disk.
    int colorChoice; // Used to select a random color.
    int count;       // Loop control variable for counting disks
    
    for (count = 0; count < 500; count++) {

        centerX = (int)(width*Math.random());
        centerY = (int)(height*Math.random());

        colorChoice = (int)(4*Math.random());
        switch (colorChoice) {
            case 0 -> g.setFill( Color.RED );
            case 1 -> g.setFill( Color.GREEN );
            case 2 -> g.setFill( Color.BLUE );
            case 3 -> g.setFill( Color.YELLOW );
        }

        g.fillOval( centerX - 50, centerY - 50, 100, 100 );
        g.setStroke(Color.BLACK);
        g.strokeOval( centerX - 50, centerY - 50, 100, 100 );
    }

} // end drawPicture()



This is the first subroutine definition that you have seen, other than main(),
but you will learn all about defining subroutines in the next chapter.
The first line of the definition makes available certain values that are used in the
subroutine:  the graphics context g and the width and
height of the drawing area.  These
values come from outside the subroutine, but the subroutine can use them.  The point here is
that to draw something, you just have to fill in the inside of the subroutine, just
as you write a program by filling in the inside of main().


The subroutine definition still has to go inside a class that defines the program.  
In this case, the class is named SimpleGraphicsStarter, and the complete
program is available in the sample source code file SimpleGraphicsStarter.java.
You can run that program to see the drawing.  You can use this sample program as a starting
point for drawing your own pictures.


There's a lot in the program that you won't understand.  To make your own drawing,
all you have to do is erase the inside of the drawPicture() routine in
the source code and substitute your own drawing code.  You don't need to understand the
rest.


(By the way, you might notice that the main() subroutine uses the word
static in its definition, but drawPicture() does not.  This has to
do with the fact that drawPicture
is a subroutine in an object rather than in a class.  The difference between static and non-static subroutines
is important but not something that we need to worry about for the time being.  It will become
important for us in Chapter 5.)







3.9.3  Animation



We can extend the idea of drawing pictures to making animations. A computer
animation is simply a sequence of individual pictures, displayed quickly one after
the other.  If the change from each picture to the next is small, the user will perceive the
sequence of images as a continuous animation.  Each picture in the animation is
called a frame. The sample program SimpleAnimationStarter.java
can be used as a starting point for writing animations.  It contains a subroutine named
drawFrame() that draws one frame in an animation.  You can create an animation by
filling in the definition of this subroutine.  In addition to the graphics context and the
width and height of the drawing area, you can use the value of two other variables in your
code: frameNumber and elapsedSeconds.
The drawFrame subroutine will automatically
be called about 60 times per second.
The variable frameNumber takes on the values 0, 1, 2, 3, ... in successive calls to the subroutine,
and the value of elapsedSeconds is the number of seconds that the animation has been
running.  By using either of these variables in your code, you can draw a different picture each time
drawFrame() is called, and the user will see the series of pictures as an animation.


As an example of animation, we look at drawing a set of nested rectangles.
The rectangles will shrink towards the center of the drawing, giving an illusion of
infinite motion.  One frame from the animation looks like this:



[image: a set of rectangles nested one inside the next]



Consider how to draw a picture like this one.
The rectangles can be drawn with a while loop, which draws the rectangles 
starting from the one on the outside and moving in.  Think about what variables will
be needed and how they change from one iteration of the while loop to the next.
Each time through the loop, the rectangle that is drawn is smaller
than the previous one and is moved down and over a bit.  The difference between two rectangles
is in their sizes and in the coordinates of their upper left corners.  We need variables to
represent the width and height of the rectangle, which I call rectWidth
and rectHeight. 
The x and y-coordinates of the upper left corner are the same, and they can be represented by
the same variable.  I call that variable inset, since it is the amount by
which the edges of the rectangle are inset from the edges of the drawing area.   The
width and height decrease from one rectangle to the next, while the inset
increases.  The while loop ends when either the width or the height becomes less than or equal to zero. 
In general outline, the algorithm for drawing the rectangles in one frame is


Set the amount of inset for the first rectangle
Set the width and height for the first rectangle
Set the stroke color to black
while the width and height are both greater than zero:
    draw a rectangle (using the g.strokeRect subroutine)
    increase the inset (to move the next rectangle over and down)
    decrease the width and height (to make the next rectangle smaller)


In my program, each rectangle is 15 pixels away from the rectangle that
surrounds it, so the inset is increased by 15 each time through the
while loop.  The rectangle shrinks by 15 pixels on the left
and by 15 pixels on the right, so the width of the rectangle
shrinks by 30 before drawing the next rectangle. 
The height also shrinks by 30 pixels each time through the loop.


The pseudocode is then easy to translate into Java, except that we
need to know what initial values to use for the inset, width, and height of the
first rectangle.  To figure that out, we have to think about the fact that the picture is
animated, so that what we draw will depend in some way on the frame number.
From one frame to the next frame of the animation, the top-left corner of the outer rectangle moves
over and down; that is, the inset for the outer rectangle increases from
one frame to the next. We can make this happen by setting
the inset for frame number 0 to 0, the
inset for frame number 1 to 1, and so on.  But that can't go on forever, or eventually
all the rectangles would disappear.  In fact, when the animation gets to frame 15,
a new rectangle should appear at the outside of the drawing area—but it's
not really a "new rectangle," it's just that the inset for the outer rectangle
goes back to zero.  So, as
the animation proceeds, the inset should go through the sequence of values
0, 1, 2, ..., 14 over and over.  We can accomplish that very easily by setting


inset = frameNumber % 15;


Finally, note that the first rectangle that is drawn in a frame fills the drawing area except for a border
of size inset around the outside of the rectangle.  This means that
the width of the first rectangle is the width of the drawing area minus two times the inset,
and similarly for the height.  Here, then is the drawFrame() subroutine for
the moving rectangle example:


public void drawFrame(GraphicsContext g, int frameNumber, 
                            double elapsedSeconds, int width, int height) {

    g.setFill(Color.WHITE);
    g.fillRect(0,0,width,height);  // Fill drawing area with white.

    double inset; // Gap between edges of drawing area and outer rectangle.

    double rectWidth, rectHeight;   // The size of one of the rectangles.

    g.setStroke(Color.BLACK);  // Draw the rectangle outlines in black.

    inset = frameNumber % 15 + 0.5;  // (The 0.5 is a technicality that gives
                                     //  a sharper picture.)

    rectWidth = width - 2*inset;
    rectHeight = height - 2*inset;

    while (rectWidth >= 0 && rectHeight >= 0) {
        g.strokeRect(inset, inset, rectWidth, rectHeight);
        inset += 15;       // rectangles are 15 pixels apart
        rectWidth -= 30;
        rectHeight -= 30;
    }

}


You can find the full source code for the program is in the sample program
MovingRects.java.  Take a look!  It's a neat effect.
For another example of animation, see the
sample program RandomCircles.java.  That program adds one
random colored disk to the picture in each frame; it illustrates the fact
that the image from one frame is not automatically erased before the next frame
is drawn.






      




Programming Exercises for Chapter 3



Exercise 3.1:

How many times do you have
to roll a pair of dice before they come up snake eyes? You could do the
experiment by rolling the dice by hand. Write a computer program that simulates
the experiment. The program should report the number of rolls that it makes
before the dice come up snake eyes. (Note: "Snake eyes" means that both dice
show a value of 1.) Exercise 2.2 explained how to simulate rolling a pair of dice.


See the Solution




Exercise 3.2:

Which integer between 1
and 10000 has the largest number of divisors, and how many divisors does it
have? Write a program to find the answers and print out the results. It is
possible that several integers in this range have the same, maximum number of
divisors. Your program only has to print out one of them.  An example in
Subsection 3.4.2 discussed divisors. The source code for
that example is CountDivisors.java.


You might need some hints about how to find a maximum value. The basic idea
is to go through all the integers, keeping track of the largest number of
divisors that you've seen so far. Also, keep track of the integer that
had that number of divisors.


See the Solution




Exercise 3.3:

Write a program that will
evaluate simple expressions such as 17 + 3 and 3.14159 * 4.7. The expressions
are to be typed in by the user. The input always consists of a number, followed
by an operator, followed by another number. The operators that are allowed are
+, -, *, and /. You can read the numbers with TextIO.getDouble() and
the operator with TextIO.getChar(). Your program should read an
expression, print its value, read another expression, print its value, and so
on. The program should end when the user enters 0 as the first number on the
line.


See the Solution




Exercise 3.4:

Write a program that reads
one line of input text and breaks it up into words. The words should be output
one per line. A word is defined to be a sequence of letters. Any characters in
the input that are not letters should be discarded. For example, if the user
inputs the line


He said, "That's not a good idea."


then the output of the program should be


He
said
That
s
not
a
good
idea


An improved version of the program would list "that's" as a single word. An
apostrophe can be considered to be part of a word if there is a letter on each
side of the apostrophe.


To test whether a character is a letter, you might use (ch >= 'a'
&& ch <= 'z') || (ch >= 'A' && ch <= 'Z').
However, this only works in English and similar languages. A better choice is
to call the standard function Character.isLetter(ch), which returns a
boolean value of true if ch is a letter and false if
it is not. This works for any Unicode character.


See the Solution




Exercise 3.5:

Suppose that a file contains information about sales 
figures for a company in various cities.
Each line of the file contains a city name, followed by a colon (:) followed by the data for that
city.  The data is a number of type double.
However, for some cities, no data was available.  In these lines, the data is replaced by
a comment explaining why the data is missing.  For example, several lines from the file might
look like:

San Francisco:  19887.32
Chicago:  no report received
New York: 298734.12

Write a program that will compute and print the total sales from all the cities together. The
program should also report the number of cities for which data was not available.  The name of the
file is "sales.dat".

To complete this program, you'll need one fact about file input with TextIO
that was not covered in Subsection 2.4.4.  Since you don't know in advance how many
lines there are in the file, you need a way to tell when you have gotten to the end of the file.
When TextIO is reading from a file, the function TextIO.eof()
can be used to test for end of file.  This boolean-valued
function returns true if the file has been entirely read and returns false
if there is more data to read in the file.  This means that you can read the lines of the
file in a loop while (TextIO.eof() == false).... The loop will end
when all the lines of the file have been read.

Suggestion:  For each line, read and ignore characters up to the colon.  Then read the rest
of the line into a variable of type String.  Try to convert the string
into a number, and use try..catch to test whether the conversion succeeds.


See the Solution




Exercise 3.6:


Exercise 3.2 asked you to find the
number in the range 1 to 10000 that has the largest number of divisors.  You
only had to print out one such number.  Revise the program so that it will
print out all numbers that have the maximum number of divisors.  Use an
array as follows:  As you count the divisors for each number, store each
count in an array.  Then at the end of the program, 
you can go through the array and print out all the numbers
that have the maximum count.  The output from the program should look
something like this:

Among integers between 1 and 10000,
The maximum number of divisors was 64
Numbers with that many divisors include:
   7560
   9240


See the Solution




Exercise 3.7:

An example in Subsection 3.8.3
tried to answer the question, How many random people
do you have to select before you find a duplicate birthday? The source code for
that program can be found in the file
BirthdayProblem.java. Here are
some related questions:


	How many random people do you have to select before you find three
people who share the same birthday? (That is, all three people were born on the
same day in the same month, but not necessarily in the same year.)

	Suppose you choose 365 people at random. How many different birthdays will
they have? (The number could theoretically be anywhere from 1 to 365).

	How many different people do you have to check before you've found at least
one person with a birthday on each of the 365 days of the year?



Write three programs to answer these questions. Each of your programs should simulate
choosing people at random and checking their birthdays. (In each case, ignore
the possibility of leap years.)


See the Solution




Exercise 3.8:

Write a GUI program that draws
a checkerboard.  Base your solution on the sample program
SimpleGraphicsStarter.java  You will draw
the checkerboard in the drawPicture() subroutine, after
erasing the code that it already contains.


The checkerboard should be 400-by-400  pixels.  You can change the size of
the drawing area in SimpleGraphicsStarter.java by modifying the
first two lines of the start() subroutine to set width
and height to 400 
instead of 800 and 600.  A checkerboard
contains 8 rows and 8 columns of squares.  If the size of the drawing area is 400,
that means that each square should be 50-by-50 pixels.  
The squares are red and black (or whatever other colors you choose). Here is a tricky way
to determine whether a given square should be red or black: The rows and columns can be
thought of as numbered from 0 to 7.  If the row number of the square and the
column number of the square are either both even or both odd, then the square is red.
Otherwise, it is black. Note that a square is just a rectangle in which the
height is equal to the width, so you can use the subroutine
g.fillRect() to draw the squares. Here is a reduced-size image of the
checkerboard that you want to draw:



[image: checkerboard]




See the Solution




Exercise 3.9:

Often, some element of an animation repeats over and over, every so many frames.
Sometimes, the repetition is "cyclic,"  meaning that at the end it jumps back to the start.
Sometimes the repetition is "oscillating," like a back-and-forth motion where the second
half is the same as the first half played in reverse.

Write an animation that demonstrates both cyclic and oscillating motions at various speeds.
For cyclic motion, you can use a square that moves across the drawing area, then jumps back to
the start, and then repeats the same motion over and over.  For oscillating motion, you can do something
similar, but the square should move back and forth between the two edges of the drawing area; that is,
it moves left-to-right during the first half of the animation and then backwards from right-to-left
during the second half.  To write the program, you can start with a copy of
the sample program SimpleAnimationStarter.java.

A cyclic motion has to repeat every N frames for some value of N.  What you draw in some
frame of the animation depends on the frameNumber.  The frameNumber just keeps
increasing forever.  To implement cyclic motion, what you really want is a "cyclic frame number" that
takes on the values 0, 1, 2, ..., (N-1), 0, 1, 2, ..., (N-1), 0, 1, 2, ....  You can derive
the value that you need from frameNumber simply by saying

cyclicFrameNumber = frameNumber % N;

Then, you just have to base what you draw on cyclicFrameNumber instead of on
frameNumber.  Similarly, for an oscillating animation, you need an
"oscillation frame number" that takes on the values  0, 1, 2, ... (N-1), N, (N-1), (N-2), ... 2, 1, 0, 1, 2, 
and so on, repeating the back and forth motion forever.  You can compute the value that you need with

oscilationFrameNumber = frameNumber % (2*N);
if (oscillationFrameNumber > N)
   oscillationFrameNumber = (2*N) - oscillationFrameNumber;

Here is a screen shot from my version of the program.  I use
six squares.  The top three do cyclic motion at various speeds, while the bottom three do
oscillating motion.  I drew black lines across the drawing area to separate the squares and to give
them "channels" to move in.



[image: screenshot from CyclicAndOscillatingMotionDemo]



See the Solution






Quiz on Chapter 3


Question 1:


What is an algorithm?


Question 2:


Explain briefly what is
meant by "pseudocode" and how is it useful in the development of
algorithms.


Question 3:


What is a block
statement? How are block statements used in Java programs?


Question 4:


What is the main difference
between a while loop and a do..while loop?


Question 5:


What does it mean to
prime a loop?


Question 6:


Explain what is meant by an
animation and how a computer displays an animation.


Question 7:


Write a for loop
that will print out all the multiples of 3 from 3 to 36, that is: 3 6 9 12 15
18 21 24 27 30 33 36.


Question 8:


Fill in the following
main() routine so that it will ask the user to enter an integer, read
the user's response, and tell the user whether the number entered is even or
odd. (You can use TextIO.getInt() to read the integer. Recall that an
integer n is even if n % 2 == 0.)

public static void main(String[] args) {
 
         // Fill in the body of this subroutine!
 
}


Question 9:


Write a code segment that will print out two different random integers
selected from the range 1 to 10.  All possible outputs should have the same probability.
Hint:  You can easily select two random numbers, but you have to account for the
fact that the two numbers that you pick might be the same.


Question 10:


Suppose that s1 and s2 are variables of type
String, whose values are expected to be string representations
of values of type int.  Write a code segment that will compute and print
the integer sum of those values, or will print an error message if the values cannot
successfully be converted into integers.  (Use a try..catch statement.)


Question 11:


Show the exact output that
would be produced by the following main() routine:

public static void main(String[] args) {
    int N;
    N = 1;
    while (N <= 32) {
       N = 2 * N;
       System.out.println(N);   
    }
}


Question 12:


Show the exact output
produced by the following main() routine:

public static void main(String[] args) {
   int x,y;
   x = 5;
   y = 1;
   while (x > 0) {
      x = x - 1;
      y = y * x;
      System.out.println(y);
   }
}


Question 13:


What output is produced by
the following program segment? Why? (Recall that name.charAt(i)
is the i-th character in the string, name.)

String name;
int i;
boolean startWord;

name = "Richard M. Nixon";
startWord = true;
for (i = 0; i < name.length(); i++) {
   if (startWord)
      System.out.println(name.charAt(i));
   if (name.charAt(i) == ' ')
      startWord = true;
   else
      startWord = false;
}


Question 14:


Suppose that numbers is an array of type int[].
Write a code segment that will count and output the number of times that the
number 42 occurs in the array.


Question 15:


Define the range of an array of numbers to be
the maximum value in the array minus the minimum value.  Suppose that
raceTimes is an array of type double[].
Write a code segment that will find and print the range of raceTimes.


See the Answers






Chapter 4

Programming in the Large I: Subroutines






One way to break up a complex program into
manageable pieces is to use subroutines. A
subroutine consists of the instructions for carrying out a certain task,
grouped together and given a name. Elsewhere in the program, that name can be
used as a stand-in for the whole set of instructions. As a computer executes a
program, whenever it encounters a subroutine name, it executes all the
instructions necessary to carry out the task associated with that
subroutine.


Subroutines can be used over and over, at different places in the program. A
subroutine can even be used inside another subroutine. This allows you to write
simple subroutines and then use them to help write more complex subroutines,
which can then be used in turn in other subroutines. In this way, very complex
programs can be built up step-by-step, where each step in the construction is
reasonably simple.


Subroutines in Java can be either static or non-static. This chapter 
covers static subroutines. Non-static subroutines, which are used in 
true object-oriented programming, will be covered in the next chapter.
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Section 4.1

Black Boxes and Procedural Abstraction



   


A subroutine consists of instructions for
performing some task, chunked together and given a name. "Chunking" allows you
to deal with a potentially very complicated task as a single concept. Instead
of worrying about the many, many steps that the computer might have to go
though to perform that task, you just need to remember the name of the
subroutine. Whenever you want your program to perform the task, you just call
the subroutine. Subroutines are a major tool for dealing with complexity.


A subroutine is sometimes said to be a "black box" because you can't see
what's "inside" it (or, to be more precise, you usually don't
want to see inside it, because then you would have to deal
with all the complexity that the subroutine is meant to hide). Of course, a
black box that has no way of interacting with the rest of the world would be
pretty useless. A black box needs some kind of interface 
with the rest of the world, which allows some
interaction between what's inside the box and what's outside. A physical black
box might have buttons on the outside that you can push, dials that you can
set, and slots that can be used for passing information back and forth. Since
we are trying to hide complexity, not create it, we have the first rule of
black boxes:




The interface of a black box should be fairly straightforward,
well-defined, and easy to understand.





Are there any examples of black boxes in the real world? Yes; in fact, you
are surrounded by them. Your television, your car, your mobile phone, your
refrigerator.... You can turn your television on and off, change channels, and
set the volume by using elements of the television's interface—on/off switch, remote
control, don't forget to plug in the power—without understanding anything
about how the thing actually works. The same goes for a mobile phone, although
the interface in that case is a lot more complicated.


Now, a black box does have an inside—the code in a subroutine that
actually performs the task, or all the electronics inside your television set. The
inside of a black box is called its implementation. 
The second rule of black boxes is that:




To use a black box, you shouldn't need to know anything about its
implementation; all you need to know is its interface.





In fact, it should be possible to change the
implementation, as long as the behavior of the box, as seen from the outside,
remains unchanged. For example, when the insides of TV sets went from using
vacuum tubes to using transistors, the users of the sets didn't need to
know about it—or even know what it means. Similarly, it should be possible
to rewrite the inside of a subroutine, to use more efficient code for example,
without affecting the programs that use that subroutine.


Of course, to have a black box, someone must have designed and built the
implementation in the first place. The black box idea works to the advantage of
the implementor as well as the user of the black box. After all, the black
box might be used in an unlimited number of different situations. The
implementor of the black box doesn't need to know about any of that. The
implementor just needs to make sure that the box performs its assigned task and
interfaces correctly with the rest of the world. This is the third rule of
black boxes:




The implementor of a black box should not need to know anything about the
larger systems in which the box will be used.





In a way, a black box divides the world into two parts: the inside
(implementation) and the outside. The interface is at the boundary, connecting
those two parts.





By the way, you should not think of an interface as just
the physical connection between the box and the rest of the world. The
interface also includes a specification of what
the box does and how it can be controlled by using the elements of the physical
interface. It's not enough to say that a TV set has a power switch; you need to
specify that the power switch is used to turn the TV on and off!


To put this in computer science terms, the interface of a subroutine has a
semantic as well as a syntactic component. The syntactic part of the interface
tells you just what you have to type in order to call the subroutine. The
semantic component specifies exactly what task the subroutine will accomplish.
To write a legal program, you need to know the syntactic specification of the
subroutine. To understand the purpose of the subroutine and to use it
effectively, you need to know the subroutine's semantic specification. I will
refer to both parts of the interface—syntactic and semantic—collectively
as the contract of the subroutine.


The contract of a subroutine says, essentially, "Here is what you have to do
to use me, and here is what I will do for you, guaranteed." When you write a
subroutine, the comments that you write for the subroutine should make the
contract very clear. (I should admit that in practice, subroutines' contracts
are often inadequately specified, much to the regret and annoyance of the
programmers who have to use them.)


For the rest of this chapter, I turn from general ideas about black boxes
and subroutines in general to the specifics of writing and using subroutines in
Java. But keep the general ideas and principles in mind. They are the reasons
that subroutines exist in the first place, and they are your guidelines for
using them. This should be especially clear in Section 4.7,
where I will discuss subroutines as a tool in program development.


You should keep in mind that subroutines are not the only example of black
boxes in programming. For example, a class is also a black box. We'll see that
a class can have a "public" part, representing its interface, and a "private"
part that is entirely inside its hidden implementation. All the principles of
black boxes apply to classes as well as to subroutines.






Subsection 3.1.4 introduced the idea of "control abstraction" to 
express the fact that a Java control structure lets the user work on a
higher level than machine language, hiding the details of the process
in the CPU that implements the control structure.



In a similar way, we say that a subroutine is a procedural abstraction.
The interface of a subroutine is an abstraction that you can use to carry out some
procedure without worrying about the details of how the procedure is actually implemented.
This is just another, fancier way of saying that the subroutine can be used as a
black box, but it brings us back to abstraction as a central concept in computer science.


An important aspect of abstraction in general is information hiding.
An abstraction hides information about what is behind the abstraction, in its implementation.
Information hiding by control abstractions is what makes it possible to use the same
Java control structures on different types of CPU, with different underlying machine
language implementations.  Information hiding by procedural abstractions is what makes
it possible for the inside of a subroutine to be changed without affecting the programs
in which the subroutine is used.  Again, this is just another term for the black box principle.








Section 4.2

Static Subroutines and Static Variables






Every subroutine in Java must be defined inside
some class. This makes Java rather unusual among programming languages, since
most languages allow free-floating, independent subroutines. One purpose of a
class is to group together related subroutines and variables. Perhaps the
designers of Java felt that everything must be related to something. As a less
philosophical motivation, Java's designers wanted to place firm controls on the
ways things are named, since a Java program potentially has access to a huge
number of subroutines created by many different programmers. The fact that those
subroutines are grouped into named classes (and classes are grouped into named
"packages," as we will see later) helps control the confusion that might result from so many
different names.


There is a basic distinction in Java between static and
non-static subroutines.  A class definition can contain the
source code for both types of subroutine, but what's done with them when the
program runs is very different.  Static subroutines are easier to understand:
In a running program, a static subroutine is a member of the class itself.
Non-static subroutine definitions, on the other hand, are only there to be used
when objects are created, and the subroutines themselves become members of the
objects.  Non-static subroutines only become relevant when you are working 
with objects.  The distinction between static and non-static also applies to variables
and to other things that can occur in class definitions.  This chapter will
deal with static subroutines and static variables almost exclusively. We'll turn to non-static
stuff and to object-oriented programming in the next chapter.


A subroutine that is in a class or object is often called a method, 
and "method" is the term that most people prefer for
subroutines in Java. I will start using the term "method" occasionally,
but I will continue to prefer the more general term "subroutine" 
in this chapter, at least for static subroutines.  However, you should start
thinking of the terms "method" and "subroutine" as being essentially
synonymous as far as Java is concerned.  Other terms that you might see used to 
refer to subroutines are "procedures" and "functions."  (I generally use the term
"function" only for subroutines that compute and return a value, but in some programming
languages, it is used to refer to subroutines in general.)






4.2.1  Subroutine Definitions



A subroutine must be defined somewhere.  The definition has to include the name of the subroutine,
enough information to make it possible to call the subroutine, and the code that will be executed
each time the subroutine is called.  A subroutine definition in Java takes the form:



modifiers  return-type  subroutine-name  ( parameter-list ) {
    statements
}


It will take us a while—most of the chapter—to get through what all
this means in detail. Of course, you've already seen examples of subroutines in
previous chapters, such as the main() routine of a program and the
drawFrame() routine of the animation programs in Section 3.9. 
So you are familiar with the general format.


The statements between the braces, { and }, in a subroutine definition
make up the body of the subroutine. These
statements are the inside, or implementation part, of the "black box," as
discussed in the previous section. They are the
instructions that the computer executes when the method is called. Subroutines
can contain any of the statements discussed in Chapter 2 and
Chapter 3.


The modifiers that can occur at the
beginning of a subroutine definition are words that set certain characteristics
of the subroutine, such as whether it is static or not. The modifiers that you've
seen so far are "static" and "public". There are only about a
half-dozen possible modifiers altogether.


If the subroutine is a function, whose job is to compute some value, then
the return-type is used to specify the type of
value that is returned by the function.  It can be a type name such as
String or int or even an array type
such as double[].  We'll be looking at functions and
return types in some detail in Section 4.4. If the
subroutine is not a function, then the return-type is replaced 
by the special value void,
which indicates that no value is returned. The term "void" is meant to indicate
that the return value is empty or non-existent.


Finally, we come to the parameter-list of
the method. Parameters are part of the interface of a subroutine. They
represent information that is passed into the subroutine from outside, to be
used by the subroutine's internal computations. For a concrete example, imagine
a class named Television that includes a method named
changeChannel(). The immediate question is: What channel should it
change to? A parameter can be used to answer this question. If a channel
number is an integer, the type of the parameter would be int, and the
declaration of the changeChannel() method might look like


public void changeChannel(int channelNum) { ... }


This declaration specifies that changeChannel() has a parameter
named channelNum of type int. However, channelNum
does not yet have any particular value. A value for channelNum is
provided when the subroutine is called; for example:
changeChannel(17);



The parameter list in a subroutine can be empty, or it can consist of one or
more parameter declarations of the form type parameter-name. If there are several
declarations, they are separated by commas. Note that each declaration can name
only one parameter. For example, if you want two parameters of type
double, you have to say "double x, double y", rather than
"double x, y".


Parameters are covered in more detail in the next section.


Here are a few examples of subroutine definitions, leaving out the
statements that define what the subroutines do:


public static void playGame() {
    // "public" and "static" are modifiers; "void" is the 
    // return-type; "playGame" is the subroutine-name; 
    // the parameter-list is empty.
    . . .  // Statements that define what playGame does go here.
}

int getNextN(int N) {
    // There are no modifiers; "int" is the return-type;
    // "getNextN" is the subroutine-name; the parameter-list 
    // includes one parameter whose name is "N" and whose 
    // type is "int".
    . . .  // Statements that define what getNextN does go here.
}

static boolean lessThan(double x, double y) {
    // "static" is a modifier; "boolean" is the
    // return-type; "lessThan" is the subroutine-name; 
    // the parameter-list includes two parameters whose names are 
    // "x" and "y", and the type of each of these parameters 
    // is "double".
    . . .  // Statements that define what lessThan does go here.
}


In the second example given here, getNextN is a non-static method,
since its definition does not include the modifier "static"—and so
it's not an example that we should be looking at in this chapter! The other
modifier shown in the examples is "public". This modifier indicates
that the method can be called from anywhere in a program, even from outside the
class where the method is defined. There is another modifier,
"private", which indicates that the method can be called
only from inside the same class. The modifiers public
and private are called access specifiers.
If no access specifier is given for a method, then by default, that method can
be called from anywhere in the package that contains the class, but not from
outside that package. (You will learn more about packages later in this
chapter, in Section 4.6.)  There is one other access
modifier, protected, which will only become relevant when we turn to
object-oriented programming in Chapter 5.


Note, by the way, that the main() routine of a program follows the
usual syntax rules for a subroutine. In


public static void main(String[] args) { ... }


the modifiers are public and static, the return type is
void, the subroutine name is main, and the parameter list is
"String[] args".  In this case, the type for the parameter is
the array type String[].


You've already had some experience with filling in the implementation of a
subroutine. In this chapter, you'll learn all about writing your own complete
subroutine definitions, including the interface part.



   



4.2.2  Calling Subroutines



When you define a subroutine, all you are doing is telling the computer that
the subroutine exists and what it does. The subroutine doesn't actually get
executed until it is called. (This is true even for the main() routine
in a class—even though you don't call it, it is called by
the system when the system runs your program.) For example, the
playGame() method given as an example above could be called using the following
subroutine call statement:


playGame();


This statement could occur anywhere in the same class that includes the
definition of playGame(), whether in a main() method or in
some other subroutine. Since playGame() is a public method,
it can also be called from other classes, but in that case, you have to tell
the computer which class it comes from.  Since playGame() is a static method,
its full name includes the name of the class in which it is defined.  Let's say, for example, that
playGame() is defined in a class named Poker. Then to call
playGame() from outside the Poker class, you would
have to say


Poker.playGame();


The use of the class name here tells the computer which class to look in to
find the method.  It also lets you distinguish between Poker.playGame()
and other potential playGame() methods defined in other classes, such
as Roulette.playGame() or Blackjack.playGame().


More generally, a subroutine call statement for a static
subroutine takes the form



subroutine-name(parameters);


if the subroutine that is being called is in the same class, or



class-name.subroutine-name(parameters);


if the subroutine is defined elsewhere, in a different
class. (Non-static methods belong to objects rather than classes, and they are
called using objects instead of class names. More on that later.) Note
that the parameter list can be empty, as in the playGame() example,
but the parentheses must be there even if there is nothing between them.
The number of parameters that you provide when you call a subroutine must
match the number specified in the parameter list in the subroutine definition,
and the types of the parameters in the call statement must match the types
in the subroutine definition.



   



4.2.3  Subroutines in Programs



It's time to give an example of what a complete program looks like, when it
includes other subroutines in addition to the main() routine. Let's
write a program that plays a guessing game with the user. The computer will
choose a random number between 1 and 100, and the user will try to guess it.
The computer tells the user whether the guess is high or low or correct. If the
user gets the number after six guesses or fewer, the user wins the game. After
each game, the user has the option of continuing with another game.


Since playing one game can be thought of as a single, coherent task, it
makes sense to write a subroutine that will play one guessing game with the
user. The main() routine will use a loop to call the
playGame() subroutine over and over, as many times as the user wants
to play. We approach the problem of designing the playGame()
subroutine the same way we write a main() routine: Start with an
outline of the algorithm and apply stepwise refinement. Here is a short
pseudocode algorithm for a guessing game routine:


Pick a random number
while the game is not over:
    Get the user's guess
    Tell the user whether the guess is high, low, or correct.


The test for whether the game is over is complicated, since the game ends if
either the user makes a correct guess or the number of guesses is six. As in
many cases, the easiest thing to do is to use a "while (true)" loop
and use break to end the loop whenever we find a reason to do so.
Also, if we are going to end the game after six guesses, we'll have to keep
track of the number of guesses that the user has made. Filling out the
algorithm gives:


Let computersNumber be a random number between 1 and 100
Let guessCount = 0
while (true):
    Get the user's guess
    Count the guess by adding 1 to guess count
    if the user's guess equals computersNumber:
        Tell the user he won
        break out of the loop
    if the number of guesses is 6:
        Tell the user he lost
        break out of the loop
    if the user's guess is less than computersNumber:
        Tell the user the guess was low
    else if the user's guess is higher than computersNumber:
        Tell the user the guess was high


With variable declarations added and translated into Java, this becomes the
definition of the playGame() routine. A random integer between 1 and
100 can be computed as (int)(100 * Math.random()) + 1. I've cleaned up
the interaction with the user to make it flow better.


static void playGame() {
    int computersNumber; // A random number picked by the computer.
    int usersGuess;      // A number entered by user as a guess.
    int guessCount;      // Number of guesses the user has made.
    computersNumber = (int)(100 * Math.random()) + 1;
             // The value assigned to computersNumber is a randomly
             //    chosen integer between 1 and 100, inclusive.
    guessCount = 0;
    System.out.println();
    System.out.print("What is your first guess? ");
    while (true) {
       usersGuess = TextIO.getInt();  // Get the user's guess.
       guessCount++;
       if (usersGuess == computersNumber) {
          System.out.println("You got it in " + guessCount
                  + " guesses!  My number was " + computersNumber);
          break;  // The game is over; the user has won.
       }
       if (guessCount == 6) {
          System.out.println("You didn't get the number in 6 guesses.");
          System.out.println("You lose.  My number was " + computersNumber);
          break;  // The game is over; the user has lost.
       }
       // If we get to this point, the game continues.
       // Tell the user if the guess was too high or too low.
       if (usersGuess < computersNumber)
          System.out.print("That's too low.  Try again: ");
       else if (usersGuess > computersNumber)
          System.out.print("That's too high.  Try again: ");
    }
    System.out.println();
} // end of playGame()


Now, where exactly should you put this? It should be part of the same class
as the main() routine, but not inside the main routine. It is not
legal to have one subroutine physically nested inside another. The
main() routine will call playGame(); it will
not contain the definition of playGame.
You can put the definition of playGame() either before
or after the main() routine. Java is not very picky about having the
subroutine definitions in a class in any particular order.


It's pretty easy to write the main routine. You've done things like this
before. Here's what the complete program looks like (except that a serious
program needs more comments than I've included here).


import textio.TextIO;

public class GuessingGame {

   public static void main(String[] args) {
      System.out.println("Let's play a game.  I'll pick a number between");
      System.out.println("1 and 100, and you try to guess it.");
      boolean playAgain;
      do {
         playGame();  // call subroutine to play one game
         System.out.print("Would you like to play again? ");
         playAgain = TextIO.getlnBoolean();
      } while (playAgain);
      System.out.println("Thanks for playing.  Goodbye.");
   } // end of main()            
   
   static void playGame() {
       int computersNumber; // A random number picked by the computer.
       int usersGuess;      // A number entered by user as a guess.
       int guessCount;      // Number of guesses the user has made.
       computersNumber = (int)(100 * Math.random()) + 1;
                // The value assigned to computersNumber is a randomly
                //    chosen integer between 1 and 100, inclusive.
       guessCount = 0;
       System.out.println();
       System.out.print("What is your first guess? ");
       while (true) {
          usersGuess = TextIO.getInt();  // Get the user's guess.
          guessCount++;
          if (usersGuess == computersNumber) {
             System.out.println("You got it in " + guessCount
                     + " guesses!  My number was " + computersNumber);
             break;  // The game is over; the user has won.
          }
          if (guessCount == 6) {
             System.out.println("You didn't get the number in 6 guesses.");
             System.out.println("You lose.  My number was " + computersNumber);
             break;  // The game is over; the user has lost.
          }
          // If we get to this point, the game continues.
          // Tell the user if the guess was too high or too low.
          if (usersGuess < computersNumber)
             System.out.print("That's too low.  Try again: ");
          else if (usersGuess > computersNumber)
             System.out.print("That's too high.  Try again: ");
       }
       System.out.println();
   } // end of playGame()
               
} // end of class GuessingGame


Take some time to read the program carefully and figure out how it works.
And try to convince yourself that even in this relatively simple case, breaking
up the program into two methods makes the program easier to understand and
probably made it easier to write each piece.






4.2.4  Member Variables



A class can include other things besides subroutines. In particular, it can
also include variable declarations. Of course, you can declare variables
inside subroutines.  Those are called local variables. 
However, you can also have variables that are
not part of any subroutine. To distinguish such variables from local variables,
we call them member variables, since they are
members of a class.  Another term for them is global variable.


Just as with subroutines, member variables can be either static or
non-static. In this chapter, we'll stick to static variables. A static member
variable belongs to the class as a whole, and it exists as long as the class
exists. Memory is allocated for the variable when the class is first loaded by
the Java interpreter. Any assignment statement that assigns a value to the
variable changes the content of that memory, no matter where that assignment
statement is located in the program. Any time the variable is used in an
expression, the value is fetched from that same memory, no matter where the
expression is located in the program. This means that the value of a static
member variable can be set in one subroutine and used in another subroutine.
Static member variables are "shared" by all the static subroutines in the
class. A local variable in a subroutine, on the other hand, exists only while
that subroutine is being executed, and is completely inaccessible from outside
that one subroutine.


The declaration of a member variable looks just like the declaration of a
local variable except for two things: The member variable is declared outside
any subroutine (although it still has to be inside a class), and the
declaration can be marked with modifiers such as static,
public, and private. Since we are only working with static
member variables for now, every declaration of a member variable in this
chapter will include the modifier static.  They might also
be marked as public or private.  For example:


static String usersName;
public static int numberOfPlayers;
private static double velocity, time;


A static member variable that is not declared to be private can be
accessed from outside the class where it is defined, as well as inside. When it
is used in some other class, it must be referred to with a compound identifier
of the form class-name.variable-name. For example, the System class
contains the public static member variable named out, and you use this
variable in your own classes by referring to System.out.   Similarly,
Math.PI is a public static member variable in the Math class.  If
numberOfPlayers is a public static member variable in a class named
Poker, then code in the Poker class would refer to it
simply as numberOfPlayers, while code in another class would refer to
it as Poker.numberOfPlayers.


As an example, let's add a couple of static member variables to the
GuessingGame class that we wrote earlier in this section.
We add a variable named gamesPlayed to keep track of how
many games the user has played and another variable named gamesWon
to keep track of the number of games that the user has won.  The variables
are declared as static member variables:


static int gamesPlayed;
static int gamesWon;


In the playGame() routine, we always add 1 to gamesPlayed,
and we add 1 to  gamesWon if the user wins the game. 
At the end of the main() routine, we print out the values of both variables.
It would be impossible to 
do the same thing with local variables, since both subroutines need to access the variables,
and local variables exist in only one subroutine.  Furthermore, global variables keep
their values between one subroutine call and the next. Local variables do not; a local
variable gets a new value each time that the subroutine that contains it is called.


When you declare a local variable in a subroutine, you have to assign a
value to that variable before you can do anything with it. Member variables, on
the other hand are automatically initialized with a default value.  The default
values are the same as those that are used when initializing the elements of an array:
For numeric variables, the default value is zero; for boolean variables, the
default is false; for char variables, it's the
character that has Unicode code number zero; and for objects, such as
Strings, the default initial value is the special value
null.


Since they are of type int, the static member variables gamesPlayed
and gamesWon automatically get zero as their initial value. This
happens to be the correct initial value for a variable that is being used as a
counter. You can, of course, assign a value to a variable at the
beginning of the main() routine if you are not satisfied with the
default initial value, or if you want to make the initial value more explicit.


Here's the revised version of GuessingGame.java. 
The changes from the above version are shown in red italic:


import textio.TextIO;

public class GuessingGame2 {
 
    static int gamesPlayed;   // The number of games played.
    static int gamesWon;      // The number of games won.
 
    public static void main(String[] args) {
       gamesPlayed = 0;
       gamesWon = 0;  // This is actually redundant, since 0 is 
                      //                 the default initial value.
       System.out.println("Let's play a game.  I'll pick a number between");
       System.out.println("1 and 100, and you try to guess it.");
       boolean playAgain;
       do {
          playGame();  // call subroutine to play one game
          System.out.print("Would you like to play again? ");
          playAgain = TextIO.getlnBoolean();
       } while (playAgain);
       System.out.println();
       System.out.println("You played " + gamesPlayed + " games,");
       System.out.println("and you won " + gamesWon + " of those games.");
       System.out.println("Thanks for playing.  Goodbye.");
    } // end of main()            
    
    static void playGame() {
        int computersNumber; // A random number picked by the computer.
        int usersGuess;      // A number entered by user as a guess.
        int guessCount;      // Number of guesses the user has made.
        gamesPlayed++;  // Count this game.
        computersNumber = (int)(100 * Math.random()) + 1;
                 // The value assigned to computersNumber is a randomly
                 //    chosen integer between 1 and 100, inclusive.
        guessCount = 0;
        System.out.println();
        System.out.print("What is your first guess? ");
        while (true) {
           usersGuess = TextIO.getInt();  // Get the user's guess.
           guessCount++;
           if (usersGuess == computersNumber) {
              System.out.println("You got it in " + guessCount
                      + " guesses!  My number was " + computersNumber);
              gamesWon++;  // Count this win.
              break;       // The game is over; the user has won.
           }
           if (guessCount == 6) {
              System.out.println("You didn't get the number in 6 guesses.");
              System.out.println("You lose.  My number was " + computersNumber);
              break;  // The game is over; the user has lost.
           }
           // If we get to this point, the game continues.
           // Tell the user if the guess was too high or too low.
           if (usersGuess < computersNumber)
              System.out.print("That's too low.  Try again: ");
           else if (usersGuess > computersNumber)
              System.out.print("That's too high.  Try again: ");
        }
        System.out.println();
    } // end of playGame()
                
} // end of class GuessingGame2





(By the way, notice that in my example programs, I didn't mark the static subroutines
or variables as being public or private.  You might wonder what
it means to leave out both modifiers. Recall that global variables and subroutines 
with no access modifier
can be used anywhere in the same package as the class where they are defined, but not in
other packages. Classes that
don't declare a package are in the default package.  So, any class in the default package
would have access to gamesPlayed, gamesWon, and
playGame()—and that includes most of the classes in this book.  In fact,
it is considered to be good practice 
to make member variables and subroutines private, unless
there is a reason for doing otherwise.  (But then again, it's also considered good practice
to avoid using the default package.))

 
 




Section 4.3

Parameters






If a subroutine is a black box, then a parameter
is something that
provides a mechanism for passing information from the outside world into the
box. Parameters are part of the interface of a subroutine. They allow you to
customize the behavior of a subroutine to adapt it to a particular
situation.


As an analogy, consider a thermostat—a black box whose task it is to keep
your house at a certain temperature. The thermostat has a parameter, namely the
dial that is used to set the desired temperature. The thermostat always
performs the same task: maintaining a constant temperature. However, the exact
task that it performs—that is, which temperature it
maintains—is customized by the setting on its dial.

   



4.3.1  Using Parameters



As an example, let's go back to the "3N+1" problem that was discussed in
Subsection 3.2.2. (Recall that a 3N+1 sequence is
computed according to the rule, "if N is odd, multiply it by 3 and add 1; if N is
even, divide it by 2; continue until N is equal to 1." For example, starting from
N=3 we get the sequence: 3, 10, 5, 16, 8, 4, 2, 1.) Suppose that we want to
write a subroutine to print out such sequences. The subroutine will always
perform the same task: Print out a 3N+1 sequence. But the exact sequence it
prints out depends on the starting value of N. So, the starting value of N
would be a parameter to the subroutine. The subroutine can be written like
this:


/**
 * This subroutine prints a 3N+1 sequence to standard output, using
 * startingValue as the initial value of N.  It also prints the number 
 * of terms in the sequence. The value of the parameter, startingValue, 
 * must  be a positive integer.
 */
static void print3NSequence(int startingValue) {
      
   int N;      // One of the terms in the sequence.
   int count;  // The number of terms.
  
   N = startingValue;  // The first term is whatever value
                       //    is passed to the subroutine as 
                       //    a parameter.
   
   count = 1; // We have one term, the starting value, so far.
   
   System.out.println("The 3N+1 sequence starting from " + N);
   System.out.println();
   System.out.println(N);  // print initial term of sequence
 
   while (N > 1) {
       if (N % 2 == 1)     // is N odd?
          N = 3 * N + 1;
       else
          N = N / 2;
       count++;   // count this term
       System.out.println(N);  // print this term
   }
   
   System.out.println();
   System.out.println("There were " + count + " terms in the sequence.");

}  // end print3NSequence


The parameter list of this subroutine, "(int startingValue)",
specifies that the subroutine has one parameter, of type int.   Within
the body of the subroutine, the parameter name can be used in the same way as a
variable name.  But notice that there is nothing in the subroutine definition that
gives a value to the parameter!
The parameter gets its initial value from outside the subroutine.  When the
subroutine is called, a value must be provided for the parameter in the subroutine call 
statement.  This value
will be assigned to startingValue before the body of the
subroutine is executed.  For example, the subroutine could be called using the
subroutine call statement "print3NSequence(17);". When the computer
executes this statement, the computer first assigns the value 17 to
startingValue and then executes the statements in the subroutine. This
prints the 3N+1 sequence starting from 17. If K is a variable of type
int, then the subroutine can be called by saying "print3NSequence(K);".
When the computer executes this subroutine call statement, it takes the value of the variable
K, assigns that value to startingValue, and then executes the body
of the subroutine.


The class that contains print3NSequence can contain a
main() routine (or other subroutines) that call
print3NSequence. For example, here is a main() program that
prints out 3N+1 sequences for various starting values specified by the
user:


public static void main(String[] args) {
   System.out.println("This program will print out 3N+1 sequences");
   System.out.println("for starting values that you specify.");
   System.out.println();
   int K;  // Input from user; loop ends when K < 0.
   do {
      System.out.println("Enter a starting value.");
      System.out.print("To end the program, enter 0: ");
      K = TextIO.getInt();  // Get starting value from user.
      if (K > 0)   // Print sequence, but only if K is > 0.
         print3NSequence(K);
   } while (K > 0);   // Continue only if K > 0.
} // end main

   
Remember that before you can use this program, the definitions of
main and of print3NSequence must both be
wrapped inside a class definition.



   



4.3.2  Formal and Actual Parameters



Note that the term "parameter" is used to refer to two different, but
related, concepts. There are parameters that are used in the definitions of
subroutines, such as startingValue in the above example. And there are
parameters that are used in subroutine call statements, such as the K
in the statement "print3NSequence(K);". Parameters in a subroutine
definition are called formal parameters or
dummy parameters. The parameters that are passed
to a subroutine when it is called are called actual parameters
or arguments.
When a subroutine is called, the actual parameters in the
subroutine call statement are evaluated and the values are assigned to the
formal parameters in the subroutine's definition. Then the body of the
subroutine is executed.


A formal parameter must be a name, that is, a simple identifier.
A formal parameter is very much like a variable, and—like a variable—it
has a specified type such as int, boolean,
String, or double[]. 
An actual parameter is a value, and so it can
be specified by any expression, provided that the expression computes a value
of the correct type. The type of the actual parameter must be one that could
legally be assigned to the formal parameter with an assignment statement. For
example, if the formal parameter is of type double, then it would be
legal to pass an int as the actual parameter since ints can
legally be assigned to doubles.  When you call a subroutine, you must
provide one actual parameter for each formal parameter in the subroutine's
definition. Consider, for example, a subroutine


static void doTask(int N, double x, boolean test) {
    // statements to perform the task go here
}


This subroutine might be called with the statement


doTask(17, Math.sqrt(z+1), z >= 10);


When the computer executes this statement, it has essentially the same
effect as the block of statements:


{
  int N;       // Allocate memory locations for the formal parameters.
  double x;
  boolean test;
  N = 17;              // Assign 17 to the first formal parameter, N.
  x = Math.sqrt(z+1);  // Compute Math.sqrt(z+1), and assign it to
                       //    the second formal parameter, x.
  test = (z >= 10);    // Evaluate "z >= 10" and assign the resulting
                       //     true/false value to the third formal 
                       //     parameter, test.
   // statements to perform the task go here
}


(There are a few technical differences between this and
"doTask(17,Math.sqrt(z+1),z>=10);" —besides the amount of typing—because 
of questions about scope of variables and what happens when several
variables or parameters have the same name.)


Beginning programming students often find parameters to be surprisingly
confusing. Calling a subroutine that already exists is not a problem—the
idea of providing information to the subroutine in a parameter is clear enough.
Writing the subroutine definition is another matter. A common beginner's mistake is to
assign values to the formal parameters at the beginning of the subroutine, or
to ask the user to input their values. This represents a fundamental
misunderstanding. By the time the computer starts executing the statements in the subroutine, the
formal parameters have already been assigned initial values!  The computer automatically 
assigns values to the formal parameters before it starts executing the code inside the
subroutine. The values come from the actual parameters in the subroutine
call statement. Remember that a subroutine is not independent. It is called by
some other routine, and it is the subroutine call statement's responsibility to provide
appropriate values for the parameters.



   



4.3.3  Overloading



In order to call a subroutine legally, you need to know its name, you need
to know how many formal parameters it has, and you need to know the type of
each parameter. This information is called the subroutine's signature.
The signature of the subroutine doTask, used as an example above, can
be expressed as: doTask(int,double,boolean). Note that the signature does
not include the names of the parameters; in fact, if you just
want to use the subroutine, you don't even need to know what
the formal parameter names are, so the names are not part of the interface.


Java is somewhat unusual in that it allows two different subroutines in the
same class to have the same name, provided that their signatures are different.
When this happens, we say that
the name of the subroutine is overloaded because
it has several different meanings. The computer doesn't get the subroutines
mixed up. It can tell which one you want to call by the number and types of the
actual parameters that you provide in the subroutine call statement. You have
already seen overloading used with System.out. This object includes
many different methods named println, for example. These methods all
have different signatures, such as:



println(int)                   println(double)
println(char)                  println(boolean)
println()


The computer knows which of these subroutines you want to use based on
the type of the actual parameter that you provide.  System.out.println(17)
calls the subroutine with signature println(int), while
System.out.println('A') calls the subroutine with signature println(char).
Of course all these different subroutines are semantically related, which is
why it is acceptable programming style to use the same name for them all. But
as far as the computer is concerned, printing out an int is very
different from printing out a char, which is different from printing
out a boolean, and so forth—so that each of these operations
requires a different subroutine.


Note, by the way, that the signature does not include the
subroutine's return type. It is illegal to have two subroutines in the same
class that have the same signature but that have different return types. For
example, it would be a syntax error for a class to contain two subroutines defined
as:


int    getln() { ... }
double getln() { ... }


This is why in the TextIO class, the subroutines
for reading different types are not all named getln(). In a given
class, there can only be one routine that has the name getln with
no parameters. So, the input routines in TextIO are distinguished by
having different names, such as getlnInt() and
getlnDouble().

   

   
   



4.3.4  Subroutine Examples



Let's do a few examples of writing small subroutines to perform assigned
tasks. Of course, this is only one side of programming with subroutines. The
task performed by a subroutine is always a subtask in a larger program. The art
of designing those programs—of deciding how to break them up into subtasks—is
the other side of programming with subroutines. We'll return to the
question of program design in Section 4.7.


As a first example, let's write a subroutine to compute and print out all
the divisors of a given positive integer. The integer will be a parameter to
the subroutine. Remember that the syntax of any subroutine is:



modifiers  return-type  subroutine-name  ( parameter-list ) {
    statements
}


Writing a subroutine always means filling out this format. In this case,
the statement of the problem implies that there is one parameter, 
of type int, that represents the "given integer" whose
divisors are to be printed.  And it tells us
what the statements in the body of the subroutine should do. Since we are only
working with static subroutines for now, we'll need to use static as a
modifier. We could add an access modifier (public or
private), but in the absence of any instructions, I'll leave it out.
Since we are not told to return a value, the return type is void.
Since no names are specified, we'll have to make up names for the formal
parameter and for the subroutine itself. I'll use N for the parameter
and printDivisors for the subroutine name. The subroutine will look
like


static void printDivisors( int N ) {
    statements
}


and all we have left to do is to write the statements that make up the body
of the routine. This is not difficult. Just remember that you have to write the
body assuming that N already has a value! The algorithm is: "For each
possible divisor D in the range from 1 to N, if
D evenly divides N, then print D." Written in Java,
this becomes:


/**
 * Print all the divisors of N.
 * We assume that N is a positive integer.
 */
static void printDivisors( int N ) {
    int D;   // One of the possible divisors of N.
    System.out.println("The divisors of " + N + " are:");
    for ( D = 1; D <= N; D++ ) {
       if ( N % D == 0 )  // Does D evenly divide N?
          System.out.println(D);
    }
}


I've added a comment before the subroutine definition
indicating the contract of the subroutine—that is,
what it does and what assumptions it makes. The contract includes the
assumption that N is a positive integer.   It is up to the caller of the
subroutine to make sure that this assumption is satisfied.


As a second short example, consider the problem: Write a private subroutine named
printRow. It should have a parameter ch of type char
and a parameter N of type int. The subroutine should print
out a line of text containing N copies of the character
ch.


Here, we are told the name of the subroutine and the names of the two
parameters, and we are told that the subroutine is private,
so we don't have much choice about the first line of the subroutine
definition. The task in this case is pretty simple, so the body of the
subroutine is easy to write. The complete subroutine is given by


/**
 * Write one line of output containing N copies of the
 * character ch.  If N <= 0, an empty line is output.
 */
private static void printRow( char ch, int N ) {
    int i;  // Loop-control variable for counting off the copies.
    for ( i = 1; i <= N; i++ ) {
        System.out.print( ch );
    }
    System.out.println();
}


Note that in this case, the contract makes no assumption about N,
but it makes it clear what will happen in all cases, including the unexpected
case that N <= 0.


Finally, let's do an example that shows how one subroutine can build on
another. Let's write a subroutine that takes a String as a parameter.
For each character in the string, it should print a line of output containing 25
copies of that character. It should use the printRow() subroutine defined above to
produce the output.


Again, we get to choose a name for the subroutine and a name for the
parameter. I'll call the subroutine printRowsFromString and the
parameter str. The algorithm is pretty clear: For each position
i in the string str, call printRow(str.charAt(i),25)
to print one line of the output that contains 25 copies of character number i
from the string. So, we get:


/**
 * For each character in str, write a line of output
 * containing 25 copies of that character.
 */
private static void printRowsFromString( String str ) {
    int i;  // Loop-control variable for counting off the chars.
    for ( i = 0; i < str.length(); i++ ) {
        printRow( str.charAt(i), 25 );
    }
}


We could then use printRowsFromString in a main() routine such
as


public static void main(String[] args) {
    String inputLine;  // Line of text input by user.
    System.out.print("Enter a line of text: ");
    inputLine = TextIO.getln();
    System.out.println();
    printRowsFromString( inputLine );
}


Of course, the three routines, main(),
printRowsFromString(), and printRow(), would have to be
collected together inside the same class. The program is rather useless, but it
does demonstrate the use of subroutines. You'll find the program in the file
RowsOfChars.java, if you want to take a
look.









4.3.5  Array Parameters



It's possible for the type of a parameter to be an array type.  This means that
an entire array of values can be passed to the subroutine as a single parameter.
For example, we might want a subroutine to print all the values in an integer array
in a neat format, separated by commas and enclosed in a pair of square brackets.
To tell it which array to print, the subroutine would have a parameter of
type int[]:


static void printValuesInList( int[] list ) {
    System.out.print('[');
    int i;
    for ( i = 0; i < list.length; i++ ) {
        if ( i > 0 )
            System.out.print(','); // No comma in front of list[0]
        System.out.print(list[i]);
    }
    System.out.println(']');
}


To use this subroutine, you need an actual array.  Here is a legal, though not very
realistic, code segment that creates an array just to pass it as an argument to
the subroutine:


int[] numbers;
numbers = new int[3];
numbers[0] = 42;
numbers[1] = 17;
numbers[2] = 256;
printValuesInList( numbers );

  
The output produced by the last statement would be [42,17,256].









4.3.6  Command-line Arguments





The main routine of a program has a parameter of type
String[].  When the main routine is called, some actual array
of String must be passed to main() as the value 
of the parameter.  The system provides the actual parameter when it calls main(),
so the values come from outside the program.  Where do the strings in the array 
come from, and what do they mean?  The
strings in the array are command-line arguments from the
command that was used to run the program.
When using a command-line interface, the user types a
command to tell the system to execute a program. The user can include extra
input in this command, beyond the name of the program. This extra input becomes
the command-line arguments.   The system takes the command-line arguments,
puts them into an array of strings, and passes that array to main().


For example, if the name of the program is myProg, then the user can type
"java myProg" to execute the program. In this case, there are no
command-line arguments. But if the user types the command

   
java myProg one two three


then the command-line arguments are the strings "one", "two",
and "three". The system puts these strings into an array of Strings
and passes that array as a parameter to the main() routine. Here, for
example, is a short program that simply prints out any command line arguments
entered by the user:


public class CLDemo {
   
   public static void main(String[] args) {
      System.out.println("You entered " + args.length
                                  + " command-line arguments");
      if (args.length > 0) {
         System.out.println("They were:");
         int i;
         for ( i = 0; i < args.length; i++ )
            System.out.println("   " + args[i]);
      }
   } // end main()
   
} // end class CLDemo


Note that the parameter, args, can be an array of length
zero.  This just means that the user did not include any command-line arguments
when running the program. 


In practice, command-line arguments are often used to pass the names of 
files to a program.  For example, consider the following program for making
a copy of a text file.  It does this by copying one line at a time from
the original file to the copy, using TextIO.  The function 
TextIO.eof() is a boolean-valued function that
is true if the end of the input file has been reached.

  
input textio.TextIO;

/**
 *  Requires two command line arguments, which must be file names.  The
 *  first must be the name of an existing file.  The second is the name
 *  of a file to be created by the program.  The contents of the first file
 *  are copied into the second.  WARNING:  If the second file already 
 *  exists when the program is run, its previous contents will be lost!
 *  This program only works for plain text files.
 */
public class CopyTextFile {

    public static void main( String[] args ) {
        if (args.length < 2 ) {
            System.out.println("Two command-line arguments are required!");
            System.exit(1);
        }
        TextIO.readFile( args[0] );   // Open the original file for reading.
        TextIO.writeFile( args[1] );  // Open the copy file for writing.
        int lineCount;  // Number of lines copied
        lineCount = 0;
        while ( TextIO.eof() == false ) {
            // Read one line from the original file and write it to the copy.
            String line;
            line = TextIO.getln();
            TextIO.putln(line);
            lineCount++;
        }
        System.out.printf( "%d lines copied from %s to %s%n",
                                lineCount, args[0], args[1] );
    }

}


Since most programs are run in a GUI environment these days, command-line arguments
aren't as important as they used to be.  But at least they provide a nice example
of how array parameters can be used.

   


   



4.3.7  Throwing Exceptions


   
I have been talking about the "contract" of a subroutine.  The contract says
what the subroutine will do, provided that the caller of the subroutine
provides acceptable values for the subroutine's parameters.  The question
arises, though, what should the subroutine do when the caller violates
the contract by providing bad parameter values?

   
We've already seen that some subroutines respond to bad parameter
values by throwing exceptions.  (See Section 3.7.)
For example, the contract of the built-in subroutine
Double.parseDouble says that the parameter should be
a string representation of a number of type double;
if this is true, then the subroutine will convert the string into the
equivalent numeric value.  If the caller violates the contract by
passing an invalid string as the actual parameter, the subroutine responds by
throwing an exception of type NumberFormatException.

   
Many subroutines throw IllegalArgumentExceptions
in response to bad parameter values.  You might want to do the same
in your own subroutines.  This can be done with a throw statement.
An exception is an object, and in order to throw an exception, you must
create an exception object.  You won't officially learn how to do this until Chapter 5,
but for now, you can use the following syntax for a throw
statement that throws an IllegalArgumentException:


throw  new  IllegalArgumentException( error-message );

   
where error-message is a string that describes the error that
has been detected.   (The word "new" in this statement is what creates the object.)
To use this statement in a subroutine, you would check whether the values
of the parameters are legal.  If not, you would throw the exception. For
example, consider the print3NSequence subroutine from
the beginning of this section.  The parameter of print3NSequence
is supposed to be a positive integer.  We can modify the subroutine definition
to make it throw an exception when this condition is violated:


static void print3NSequence(int startingValue) {
   
   if (startingValue <= 0)  // The contract is violated!
      throw new IllegalArgumentException( "Starting value must be positive." );
   .
   .  // (The rest of the subroutine is the same as before.)
   .

   
If the start value is bad, the computer executes the throw statement.
This will immediately terminate the subroutine, without executing the rest of the
body of the subroutine.  Furthermore, the program as a whole will crash unless
the exception is "caught" and handled elsewhere in the program by a
try..catch statement, as discussed in Section 3.7.
For this to work, the subroutine call would have to be in the "try" part of
the statement.



      



4.3.8  Global and Local Variables


   
I'll finish this section on parameters by noting that we now have three
different sorts of variables that can be used inside a subroutine: local
variables declared in the subroutine, formal parameter names, and static member
variables that are declared outside the subroutine.


Local variables have no connection to the outside world; they are purely
part of the internal working of the subroutine.


Parameters are used to "drop"
values into the subroutine when it is called, but once the subroutine starts
executing, parameters act much like local variables. Changes made inside a
subroutine to a formal parameter have no effect on the rest of the program (at
least if the type of the parameter is one of the primitive types—things are
more complicated in the case of arrays and objects, as we'll see later).


Things are different when a subroutine uses a variable that is defined
outside the subroutine. That variable exists independently of the subroutine,
and it is accessible to other parts of the program as well. 
Such a variable is said to be global
to the subroutine, as opposed to the local variables defined inside the
subroutine. A global variable can be used in the entire class in which
it is defined and, if it is not private, in other classes as well.
Changes made to a global variable can have effects that extend
outside the subroutine where the changes are made. You've seen how this works
in the last example in the previous section, where the
values of the global variables, gamesPlayed
and gamesWon, are computed inside a
subroutine and are used in the main() routine.


It's not always bad to use global variables in subroutines, but you should
realize that the global variable then has to be considered part of the
subroutine's interface. The subroutine uses the global variable to communicate
with the rest of the program. This is a kind of sneaky, back-door communication
that is less visible than communication done through parameters, and it risks
violating the rule that the interface of a black box should be straightforward
and easy to understand. So before you use a global variable in a subroutine,
you should consider whether it's really necessary.


I don't advise you to take an absolute stand against using global variables
inside subroutines. There is at least one good reason to do it: If you think of
the class as a whole as being a kind of black box, it can be very reasonable to
let the subroutines inside that box be a little sneaky about communicating with
each other, if that will make the class as a whole look simpler from the
outside.

   






Section 4.4

Return Values






A subroutine that returns a value is called a
function. A given function can only return a value
of a specified type, called the return type of the
function. A function call generally occurs in a position where the computer is
expecting to find a value, such as the right side of an assignment statement,
as an actual parameter in a subroutine call, or in the middle of some larger
expression. A boolean-valued function can even be used as the test condition in
an if, while, for or do..while statement.


(It is also legal to use a function call as a stand-alone statement, just as
if it were a regular subroutine. In this case, the computer ignores the value
computed by the subroutine. Sometimes this makes sense. For example, the
function TextIO.getln(), with a return type of String, reads
and returns a line of input typed in by the user. Usually, the line that is
returned is assigned to a variable to be used later in the program, as in the
statement "name = TextIO.getln();". However, this function is also
useful as a subroutine call statement "TextIO.getln();", which still
reads all input up to and including the next carriage return.  Since the return value
is not assigned to a variable or used in an expression, it is simply discarded.
So, the effect of the subroutine call is to read and discard some input.
Sometimes, discarding unwanted input is exactly what you need to do.)





4.4.1  The return statement


   
You've already seen how functions such as Math.sqrt() and
TextIO.getInt() can be used. What you haven't seen is how to write
functions of your own. A function takes the same form as a regular subroutine,
except that you have to specify the value that is to be returned by the
subroutine. This is done with a return statement,
which has the following syntax:


return  expression ;


Such a return statement can only occur inside the definition of a
function, and the type of the expression must
match the return type that was specified for the function. (More exactly, it
must be an expression that could legally be assigned to a variable whose type is specified by
the return type of the function.) When the computer executes this return statement, it
evaluates the expression, terminates execution of the function, and uses the
value of the expression as the returned value of the function.


For example, consider the function definition


static double pythagoras(double x, double y) {
      // Computes the length of the hypotenuse of a right
      // triangle, where the sides of the triangle are x and y.
    return  Math.sqrt( x*x + y*y );
}


Suppose the computer executes the statement "totalLength = 17 +
pythagoras(12,5);". When it gets to the term pythagoras(12,5), it
assigns the actual parameters 12 and 5 to the formal
parameters x and y in the function. In the body of the
function, it evaluates Math.sqrt(12.0*12.0 + 5.0*5.0), which works out
to 13.0. This value is "returned" by the function, so the 13.0 essentially
replaces the function call in the assignment statement, which then has the same effect
as the statement "totalLength = 17+13.0
". 
The return value is added to 17, and the result, 30.0, is stored in the variable,
totalLength.

   
Note that a return statement does not have to be the last
statement in the function definition.  At any point in the function where you
know the value that you want to return, you can return it.  Returning a value
will end the function immediately, skipping any subsequent statements in the
function. However, a function must definitely return some value (or throw an exception),
no matter what path the execution of the function takes through the code.


You can use a return statement inside an ordinary subroutine,  one
with declared return type "void".  Since a void subroutine
does not return a value, the return statement does not include 
an expression; it simply takes the form "return;".  The effect
of this statement is to
terminate execution of the subroutine and return control back to the point in
the program from which the subroutine was called. This can be convenient if you
want to terminate execution somewhere in the middle of the subroutine, but
return statements are optional in non-function subroutines. In a
function, on the other hand, a return statement, with expression, is always
required.


Note that a return inside a loop will end the
loop as well as the subroutine that contains it.  Similarly, a return
in a switch statement breaks out of the switch statement as well as
the subroutine.  So, you will sometimes use return in contexts where
you are used to seeing a break.



   



4.4.2  Function Examples



Here is a very simple function that could be used in a program to compute
3N+1 sequences. (The 3N+1 sequence problem is one we've looked at several times
already, including in the previous section.)
Given one term in a 3N+1 sequence, this function computes the next
term of the sequence:

 
static int nextN(int currentN) {
   if (currentN % 2 == 1)     // test if current N is odd
      return 3*currentN + 1;  // if so, return this value
   else
      return currentN / 2;    // if not, return this instead
}


This function has two return statements.
Exactly one of the two return statements is executed to give the
value of the function.  Some people prefer to use a single return
statement at the very end of the function when possible. This allows the reader to find the
return statement easily. You might choose to write nextN()
like this, for example:


static int nextN(int currentN) {
   int answer;  // answer will be the value returned
   if (currentN % 2 == 1)    // test if current N is odd
      answer = 3*currentN+1; // if so, this is the answer
   else
      answer = currentN / 2; // if not, this is the answer
   return answer;   // (Don't forget to return the answer!)
}


Here is a subroutine that uses this nextN function. In this case,
the improvement from the version of the subroutine in Section 4.3 is not
great, but if nextN() were a long function that performed a complex
computation, then it would make a lot of sense to hide that complexity inside a
function:


static void print3NSequence(int startingValue) {
 
   int N;       // One of the terms in the sequence.
   int count;   // The number of terms found.
   
   N = startingValue;   // Start the sequence with startingValue.
   count = 1;
   
   System.out.println("The 3N+1 sequence starting from " + N);
   System.out.println();
   System.out.println(N);  // print initial term of sequence
 
   while (N > 1) {
       N = nextN( N );   // Compute next term, using the function nextN.
       count++;          // Count this term.
       System.out.println(N);  // Print this term.
   }
   
   System.out.println();
   System.out.println("There were " + count + " terms in the sequence.");

}


   



Here are a few more examples of functions. The first one computes a letter
grade corresponding to a given numerical grade, on a typical grading scale:


/**
 * Returns the letter grade corresponding to the numerical
 * grade that is passed to this function as a parameter.
 */
static char letterGrade(int numGrade) {
   if (numGrade >= 90)
      return 'A';   // 90 or above gets an A
   else if (numGrade >= 80)
      return 'B';   // 80 to 89 gets a B
   else if (numGrade >= 65)
      return 'C';   // 65 to 79 gets a C
   else if (numGrade >= 50)
      return 'D';   // 50 to 64 gets a D
   else
      return 'F';   // anything else gets an F
   
}  // end of function letterGrade


The type of the return value of letterGrade() is char.
Functions can return values of any type at all. Here's a function whose return
value is of type boolean. It demonstrates some interesting programming
points, so you should read the comments:


/**
 * This function returns true if N is a prime number.  A prime number
 * is an integer greater than 1 that is not divisible by any positive 
 * integer, except itself and 1.  If N has any divisor, D, in the range 
 * 1 < D < N, then it has a divisor in the range 2 to Math.sqrt(N), namely
 * either D itself or N/D.  So we only test possible divisors from 2 to 
 * Math.sqrt(N).
 */
static boolean isPrime(int N) {
      
   int divisor;  // A number we will test to see whether it evenly divides N.
   
   if (N <= 1)
      return false;  // No number <= 1 is a prime.
   
   int maxToTry;  // The largest divisor that we need to test.

   maxToTry = (int)(Math.sqrt(N) + 0.001);
        // We will try to divide N by numbers between 2 and maxToTry.
        // If N is not evenly divisible by any of these numbers, then 
        // N is prime.  (Note that since Math.sqrt(N) is defined to
        // return a value of type double, the value must be typecast 
        // to type int before it can be assigned to maxToTry.  I added
        // the 0.001 because computations with double values are not
        // exact, and I worry that, for example, Math.sqrt(49) might
        // be computed as 6.999... instead of as 7.0.) 
        
    for (divisor = 2; divisor <= maxToTry; divisor++) {
        if ( N % divisor == 0 )  // Test if divisor evenly divides N.
           return false;         // If so, we know N is not prime.
                                 // No need to continue testing!
    }
    
    // If we get to this point, N must be prime.  Otherwise,
    // the function would already have been terminated by
    // a return statement in the previous loop.
    
    return true;  // Yes, N is prime.
 
}  // end of function isPrime


Finally, here is a function with return type String. This function
has a String as parameter. The returned value is a reversed copy of
the parameter. For example, the reverse of "Hello World" is "dlroW olleH". The
algorithm for computing the reverse of a string, str, is to start with
an empty string and then to append each character from str, starting
from the last character of str and working backwards to the first:


static String reverse(String str) {
   String copy;  // The reversed copy.
   int i;        // One of the positions in str, 
                 //       from str.length() - 1 down to 0.
   copy = "";    // Start with an empty string.
   for ( i = str.length() - 1;  i >= 0;  i-- ) {
            // Append i-th char of str to copy.
      copy = copy + str.charAt(i);  
   }
   return copy;
}


A palindrome is a string that reads the same
backwards and forwards, such as "radar". The reverse() function could
be used to check whether a string, word, is a palindrome by testing
"if (word.equals(reverse(word)))".


By the way, a typical beginner's error in writing functions is to print out
the answer, instead of returning it. This represents a fundamental
misunderstanding. The task of a function is to compute a value and return it to
the point in the program where the function was called. That's where the value
is used. Maybe it will be printed out. Maybe it will be assigned to a variable.
Maybe it will be used in an expression. But it's not for the function to
decide.






4.4.3  3N+1 Revisited



I'll finish this section with a complete new version of the 3N+1 program.
This will give me a chance to show the function nextN(), which was
defined above, used in a complete program. I'll also take the opportunity to
improve the program by getting it to print the terms of the sequence in
columns, with five terms on each line. This will make the output more
presentable. The idea is this: Keep track of how many terms have been printed
on the current line; when that number gets up to 5, start a new line of output.
To make the terms line up into neat columns, I use formatted output.


import textio.TextIO;

/**
 * A program that computes and displays several 3N+1 sequences.  Starting
 * values for the sequences are input by the user.  Terms in the sequence 
 * are printed in columns, with five terms on each line of output.
 * After a sequence has been displayed, the number of terms in that 
 * sequence is reported to the user.
 */
public class ThreeN2 {
          
   
   public static void main(String[] args) {

      System.out.println("This program will print out 3N+1 sequences");
      System.out.println("for starting values that you specify.");
      System.out.println();
      
      int K;   // Starting point for sequence, specified by the user.
      do {
         System.out.println("Enter a starting value;");
         System.out.print("To end the program, enter 0: ");
         K = TextIO.getlnInt();  // get starting value from user
         if (K > 0)              // print sequence, but only if K is > 0
            print3NSequence(K);
      } while (K > 0);           // continue only if K > 0
 
   } // end main
 

   /**
    * print3NSequence prints a 3N+1 sequence to standard output, using
    * startingValue as the initial value of N.  It also prints the number 
    * of terms in the sequence. The value of the parameter, startingValue, 
    * must be a positive integer.
    */
   static void print3NSequence(int startingValue) {
  
      int N;       // One of the terms in the sequence.
      int count;   // The number of terms found.
      int onLine;  // The number of terms that have been output
                   //     so far on the current line.
      
      N = startingValue;   // Start the sequence with startingValue;
      count = 1;           // We have one term so far.
   
      System.out.println("The 3N+1 sequence starting from " + N);
      System.out.println();
      System.out.printf("%8d", N);  // Print initial term, using 8 characters.
      onLine = 1;        // There's now 1 term on current output line.
   
      while (N > 1) {
          N = nextN(N);  // compute next term
          count++;   // count this term
          if (onLine == 5) {  // If current output line is full
             System.out.println();  // ...then output a carriage return
             onLine = 0;      // ...and note that there are no terms 
                              //               on the new line.
          }
          System.out.printf("%8d", N);  // Print this term in an 8-char column.
          onLine++;   // Add 1 to the number of terms on this line.
      }
   
      System.out.println();  // end current line of output
      System.out.println();  // and then add a blank line
      System.out.println("There were " + count + " terms in the sequence.");
   
   }  // end of print3NSequence
   
   
   /**
    * nextN computes and returns the next term in a 3N+1 sequence,
    * given that the current term is currentN.
    */
   static int nextN(int currentN) {
       if (currentN % 2 == 1)
          return 3 * currentN + 1;
       else
          return currentN / 2;
   }  // end of nextN()
   
   
} // end of class ThreeN2



You should read this program carefully and try to understand how it works.









Section 4.5

Lambda Expressions






In a running program, a subroutine is just a bunch of
binary numbers (representing instructions) stored somewhere in the computer's memory.
Considered as a long string of zeros and ones,
a subroutine doesn't seem all that different from a data value such as, for example, 
as an integer, a string, or an array, which is also represented as a string of
zeros and ones in memory.  We are used to thinking of subroutines and data as
very different things, but inside the computer, a subroutine is just another
kind of data.  Some programming languages make it possible to work with a
subroutine as a kind of data value.  In Java 8, that ability was added to
Java in the form of something called lambda expressions.



Lambda expressions are becoming more and more common in Java programs.
They are especially useful for working with the stream API that will be
covered in Section 10.6 and with
the JavaFX GUI toolkit. It will definitely be useful to know about them before we 
cover GUI programming in Chapter 6.  However, 
we won't encounter them again until near the end
of Chapter 5, so you can skip this section for now if you want.





4.5.1  First-class Functions



Lambda is a letter in the Greek alphabet that was used by the mathematician
Alonzo Church in his study of computable functions.  His lambda notation makes
it possible to define a function without giving it a name.  For example, you
might think that the notation x
2 is a perfectly good way of
representing a function that squares a number, but in fact, it's an
expression that represents the result of squaring x, which leaves
open the question of what x represents.  We can define a function
with x as a dummy parameter:


static double square( double x ) {
    return x*x;
}


but to do that, we had to name the function square, and that name becomes
a permanent part of the program—which is overkill if we just want to use the
function once.  Alonzo Church introduced the notation lambda(x).x
2
to represent "the function of x that is given by x
2" (except using
the Greek letter instead of the word "lambda").  This notation is a kind of function literal
that represents a value of type "function" in the same way that 42 is an integer literal 
that represents a value of type int.


Having function literals is the starting point for thinking of a function as just
another kind of data value. Once we do that, we should be able to do the same things
with functions that we can do with other values, such as assign a function to a variable,
pass a function as a parameter to a subroutine, return a function as the value of
subroutine, or even make an array of functions.  A programming language that allows
you to do all those things with functions is said to have "first-class functions" or
"functions as first-class objects."


In fact, you can do all of those things with Java lambda expressions.  Java's notation
is different from the one used by Alonzo Church, and in spite of the name "lambda expression"
it does not even use the word lambda.  In Java, the lambda expression for a squaring function 
like the one above can be written


x  ->  x*x


The operator -> is what makes this a lambda expression.  The dummy parameter
for the function is on the left of the operator, and the expression that computes the value of
the function is on the right. You might see an expression like this one being passed as an
actual parameter to a subroutine, assigned to a variable, or returned by a function.


So are functions now first-class in Java?  I'm not quite sure.  There are some cool things that can be done in
other languages but can't be done in Java.  For example, in Java we can assign the above expression
to a variable named, say, sqr, but we can't then use sqr as if it actually
is a function.  For example, we can't say sqr(42).  The problem, really, is that
Java is a strongly typed language; to have a variable named sqr, we must declare that
variable and give it a type.  But what sort of type would be appropriate for a value that
is a function?  The answer in Java is something called a functional interface,
which we turn to next.


But first one more note:  Lambda expressions in Java can actually represent arbitrary
subroutines, not just functions.  Nevertheless, it is the term "function" that is usually
associated with them, rather than "subroutine" or "method."








4.5.2  Functional Interfaces



To know how a subroutine can be legally used, you need to know its
name, how many parameters it requires, their types, and the return type of the subroutine.
A functional interface specifies this information about one subroutine.  A functional
interface is similar to a class, and it can be defined in a .java file, just like a
class.  However, its content is just a specification for a single subroutine.
Here is an example:


public interface FunctionR2R {
    double valueAt( double x );
}


This code would be in a file named FunctionR2R.java.  It specifies a
function named valueAt with one parameter of type double
and a return type of double.  (The name of the parameter, x, is
not really part of the specification, and it's a little annoying that it has to be there.)
Here is another example:


public interface ArrayProcessor {
    void process( String[] array, int count );
}


Java comes with many standard functional interfaces.  One of the most important is
a very simple one named Runnable, which is already defined in
Java as


public interface Runnable {
    public void run();
}


I will use these three functional interfaces for examples in this section.


"Interfaces" in Java can be much more complicated than functional interfaces.  You will
learn more about them in Section 5.7.  But it is only functional interfaces that
are relevant to lambda expressions: a functional interface provides a template for a subroutine
that might be represented by a lambda expression.  The name of a functional interface is
a type, just as String and double are types.
That is, it can be used to declare variables and parameters and to specify the return type
of a function.  When a type is a functional interface, a value for that type can be given
as a lambda expression.







4.5.3  Lambda Expressions



A lambda expression represents an anonymous subroutine, that is, one without a name.
But it does have a formal parameter list and a definition.  The full syntax is:



( parameter-list )  ->  { statements }


As with a regular subroutine, the parameter-list can be
empty, or it can be a list of parameter declarations, separated by commas,
where each declaration consists of a type followed by a parameter name.
However, the syntax can often be simplified.  First of all, the parameter
types can be omitted, as long as they can be deduced from the context.
For example, if the lambda expression is known to be of type FunctionR2R,
then the parameter type must be double, so it is unnecessary to specify
the parameter type in the lambda expression. Next, if there is exactly
one parameter and if its type is not specified, then the parentheses around
the parameter list can be omitted.  On the right-hand side of the ->,
if the only thing between the braces, { and }, is a 
single subroutine call statement, then the braces can be omitted.  And if
the right-hand side has the form { return expression; },
then you can omit everything except the expression.


For example, suppose that we want a lambda expression to represent a function that
computes the square of a double value.  The type of such a function
can be the FunctionR2R interface given above.  If sqr
is a variable of type FunctionR2R, then the value of
the function can be a lambda expression, which can be written in any of the following
forms:


sqr = (double x) -> { return x*x; }; // The full lambda expression syntax!
sqr = (x) -> { return x*x; };
sqr = x -> { return x*x; };
sqr = x -> x*x;
sqr = (double fred) -> fred*fred;
sqr = (z) -> z*z;


The last two statements are there to emphasize that the parameters in a lambda expression
are dummy parameters; their names are irrelevant.  The six lambda expressions in these statements
all define exactly the same function.  Note that the parameter type double can be
omitted because the compiler knows that sqr is of type FunctionR2R,
and a FunctionR2R requires a parameter of type double.
A lambda expression can only be used in a context where the compiler can deduce its type,
and the parameter type has to be included only in a case where leaving it out would make
the type of the lambda expression ambiguous.


Now, in Java, the variable sqr as defined here is not quite a function.
It is a value of type FunctionR2R, which means that it contains
a function named valueAt, as specified in the definition of interface
FunctionR2R.  The full name of that function is sqr.valueAt,
and we must use that name to call the function.  For example:  sqr.valueAt(42)
or sqr.valueAt(x) + sqr.valueAt(y).


When a lambda expression has two parameters, the parentheses are not optional.
Here is an example of using the ArrayProcessor interface,
which also demonstrates a lambda expression with a multiline definition:


ArrayProcessor concat;
concat = (A,n) -> { // parentheses around (A,n) are required!
    String str;
    str = "";
    for (int i = 0; i < n; i++)
        str += A[i];
    System.out.println(str);
};  // The semicolon marks the end of the assignment statement;
    //      it is not part of the lambda expression.

String[] nums;
nums = new String[4];
nums[0] = "One";
nums[1] = "Two";
nums[2] = "Three";
nums[3] = "Four";
for (int i = 1; i < nums.length; i++) {
   concat.process( nums, i );
}


This will print out


One
OneTwo
OneTwoThree
OneTwoThreeFour


Things get more interesting when a lambda expression is used as an actual parameter, which
is the most common use in practice.  For example,
suppose that the following function is defined:


/** 
 *  For a function f, compute f(start) + f(start+1) + ... + f(end).
 *  The value of end should be >= the value of start.
 */
static double sum( FunctionR2R f, int start, int end ) {
    double total = 0;
    for (int n = start; n <= end; n++) {
        total = total + f.valueAt( n );
    }
    return total;
}


Note that since f is a value of type FunctionR2R,
the value of f at n is actually written as f.valueAt(n).
When the function sum is called, the first parameter can be given as
a lambda expression that matches the type FunctionR2R.  For example:


System.out.print("The sum of n squared for n from 1 to 100 is ");
System.out.println( sum( x -> x*x, 1, 100 ) );
System.out.print("The sum of 2 raised to the power n, for n from 1 to 10 is ");
System.out.println( sum( num -> Math.pow(2,num), 1, 10 ) );


As another example, suppose that we have a subroutine that performs a
given task several times.  The task can be specified as a value of type
Runnable:


static void doSeveralTimes( Runnable task, int repCount ) {
    for (int i = 0; i < repCount; i++) {
        task.run();  // Perform the task!
    }
}


We could then say "Hello World" ten times by calling


doSeveralTimes( () -> System.out.println("Hello World"), 10 );


Note that for a lambda expression of type Runnable,
the parameter list is given as an empty pair of parentheses.  Here is an
example in which the syntax is getting rather complicated:


doSeveralTimes( () -> { 
        // count from 1 up to some random number between 5 and 25
    int count = 5 + (int)(21*Math.random()); 
    for (int i = 1; i <= count; i++) { 
        System.out.print(i + " ");
    }
    System.out.println();
}, 100);


This is a single subroutine call statement in which the first parameter
is a lambda expression that extends over multiple lines.  The second
parameter is 100, and the semicolon on the last line ends the subroutine
call statement.


We have seen examples of assigning a lambda expression to a variable and
of using one as an actual parameter.  Here is an example in which a lambda expression
is the return value of a function:


static FunctionR2R makePowerFunction( int n ) {
   return x -> Math.pow(x,n);
}


Then makePowerFunction(2) returns a FunctionR2R that
computes the square of its parameter, while makePowerFunction(10)
returns a FunctionR2R that computes the 10-th power of its parameter.
This example also illustrates the fact that a lambda expression can use other variables
in addition to its parameter, such as n in this case (although there are some
restrictions on when that can be done).







4.5.4  Method References



Suppose that we want a lambda expression to represent the square root function as
a value of type FunctionR2R.  We could write it as
x -> Math.sqrt(x).  However, this lambda expression is a
simple wrapper for a Math.sqrt function that already exists.  Instead of
writing out the lambda expression, that function can be written as a
method reference, which takes the form Math::sqrt.
(Recall that in Java, "method" is another word for "subroutine.")
This method reference is just a shorthand for the lambda expression, and it
can be used wherever that lambda expression could be used, such as in the
sum function defined above:


System.out.print("The sum of the square root of n for n from 1 to 100 is ");
System.out.println( sum( Math::sqrt, 1, 100 ) );


It would be nice if we could simply use the name Math.sqrt here
instead of introducing a new notation with ::, 
but the notation Math.sqrt was already defined to mean a variable
named sqrt in the Math class.


More generally, a lambda expression that simply calls an existing
static method can be written as a method reference of the form



classname :: method-name



Furthermore, this notation extends to methods that are in
objects rather than classes.  For example, if str is a
String, then str contains the
method str.length().  The method reference str::length
could be used as a lambda expression of type SupplyInt,
where SupplyInt is the functional interface



public interface SupplyInt {
    int get( );
}









Section 4.6

APIs, Packages, Modules, and Javadoc






As computers and their user interfaces have become
easier to use, they have also become more complex for programmers to deal with.
You can write programs for a simple console-style user interface using just a
few subroutines that write output to the console and read the user's typed
replies. A modern graphical user interface, with windows, buttons, scroll bars,
menus, text-input boxes, and so on, might make things easier for the user, but
it forces the programmer to cope with a hugely expanded array of possibilities.
The programmer sees this increased complexity in the form of great numbers of
subroutines that are provided for managing the user interface, as well as for
other purposes.

   



4.6.1  Toolboxes



Someone who wanted to program for the original Macintosh computers—and to produce
programs that look and behave the way users expected them to—had to deal with
the "Macintosh Toolbox," a collection of well over a thousand different
subroutines. There were routines for opening and closing windows, for drawing
geometric figures and text to windows, for adding buttons to windows, and for
responding to mouse clicks on the window. There were other routines for creating
menus and for reacting to user selections from menus. Aside from the user
interface, there were routines for opening files and reading data from them, for
communicating over a network, for sending output to a printer, for handling
communication between programs, and in general for doing all the standard
things that a computer has to do.  Microsoft Windows provides its own
set of subroutines for programmers to use, and they are quite a bit different
from the subroutines used on the Mac.  Linux has several different GUI toolboxes
for the programmer to choose from.


The analogy of a "toolbox" is a good one to keep in mind. Every programming
project involves a mixture of innovation and reuse of existing tools. A
programmer is given a set of tools to work with, starting with the set of basic
tools that are built into the language: things like variables, assignment
statements, if statements, and loops. To these, the programmer can add existing
toolboxes full of routines that have already been written for performing
certain tasks. These tools, if they are well-designed, can be used as true
black boxes: They can be called to perform their assigned tasks without
worrying about the particular steps they go through to accomplish those tasks.
The innovative part of programming is to take all these tools and apply them to
some particular project or problem (word-processing, keeping track of bank
accounts, processing image data from a space probe, Web browsing, computer
games, ...). This is called applications programming.


A software toolbox is a kind of black box, and it presents a certain
interface to the programmer. This interface is a specification of what routines
are in the toolbox, what parameters they use, and what tasks they perform. This
information constitutes the API, or Application Programming Interface, 
associated with the toolbox.  The API is the abstraction through which you access
the functionality of the software in the toolbox.  The Macintosh API is
a specification of all the routines available in the Macintosh Toolbox. A
company that makes some hardware device—say a card for connecting a computer
to a network—might publish an API for that device consisting of a list of
routines that programmers can call in order to communicate with and control the
device. Scientists who write a set of routines for doing some kind of complex
computation—such as solving "differential equations," say—would provide
an API to allow others to use those routines without understanding the details
of the computations they perform.





The Java programming language is supplemented by a large, standard API.
You've seen part of this API already, in the form of mathematical subroutines
such as Math.sqrt(), the String data type and its associated
routines, and the System.out.print() routines. The standard Java API
includes routines for working with graphical user interfaces, for network
communication, for reading and writing files, and more. It's tempting to think
of these routines as being part of the Java language, but they are
technically subroutines that have been written and made available for use in
Java programs.


Java is platform-independent. That is, the same program can run on platforms
as diverse as MacOS, Windows, Linux, and others. The same Java API must work
on all these platforms. But notice that it is the interface
that is platform-independent; the implementation of some parts of the API varies from
one platform to another. A Java system on a particular computer includes
implementations of all the standard API routines. A Java program includes only
calls to those routines. When the Java interpreter executes a
program and encounters a call to one of the standard routines, it will pull up
and execute the implementation of that routine which is appropriate for the
particular platform on which it is running. This is a very powerful idea. 
It is the power of abstraction.  It
means that you only need to learn one API to program for a wide variety of
platforms.



   



4.6.2  Java's Standard Packages



Like all subroutines in Java, the routines in the standard API are grouped
into classes. To provide larger-scale organization, classes in Java can be
grouped into packages, which were introduced briefly in
Subsection 2.6.5.  You can have even higher
levels of grouping, since packages can also contain other packages. In fact,
the entire standard Java API is implemented in several packages. One of these,
which is named "java", contains several non-GUI packages as well as the
original AWT graphical user interface classes. Another package,
"javax", contains the classes used by the Swing graphical user interface, as well as many other classes.
And "javafx," which is not a standard part of Java,
contains the  JavaFX API that is used for GUI programming in this textbook.


A package can contain both classes and other packages. A package that is
contained in another package is sometimes called a "subpackage." The
java and javafx packages both contain subpackages. 
One of the subpackages of java, for example, is named "util".
Since util is contained within java, its full name is actually
java.util.  This package contains a variety of utility classes, including
the Scanner class that was discussed in Subsection 2.4.6. 
The java package includes several other subpackages, such as
java.io, which provides facilities for input/output, and
java.net, which deals with network communication. The
most basic package is called java.lang. This package contains
fundamental classes such as String, Math,
Integer, and Double.



It might be helpful to look at a graphical representation of the levels of
nesting in the java package, its subpackages, the classes in those
subpackages, and the subroutines in those classes. This is not a complete
picture, since it shows only a very few of the many items in each element:




[image: (Diagram of subroutine/class/package nesting)]


   

Similarly, the package javafx contains a package javafx.scene,
which in turn contains javafx.scene.control.
This package contains classes that represent GUI components
such as buttons and input boxes.  Another subpackage, javafx.scene.paint,
contains class Color and other classes that define ways to
fill and stroke a shape.




The standard Java API includes thousands of classes in hundreds of packages.  Many of
the classes are rather obscure or
very specialized, but you might want to browse through the documentation to see
what is available. As I write this, the
documentation for the complete basic API for Java 8 can be found at


https://docs.oracle.com/javase/8/docs/api/



and for JavaFX 8 at


https://docs.oracle.com/javase/8/javafx/api/toc.htm




See the subsection about "modules," below, for a discussion of changes
that were made the language after Java 8 and for links to the documentation for Java 17.
However, for the purposes of this textbook, you will probably find that the
Java 8 documentation is easier to use, and the information that it provides is still relevant.


Even an expert programmer won't be familiar with the entire Java API,
or even a majority of it.  In this book, you'll only encounter
several dozen classes, and those will be sufficient for writing a 
wide variety of programs.



   



4.6.3  Using Classes from Packages



Let's say that you want to use the class 
javafx.scene.paint.Color in a
program that you are writing.  This is the full name of class Color
in package javafx.scene.paint.
Like any class, javafx.scene.paint.Color is
a type, which means that you can use it to declare variables and parameters and
to specify the return type of a function. One way to do this is to use the
full name of the class as the name of the type. For example, suppose that you
want to declare a variable named rectColor of type Color.
You could say:


javafx.scene.paint.Color rectColor;


This is just an ordinary variable declaration of the form
"type-name variable-name;".
Of course, using the full name of every class can get tiresome, and you will hardly
ever see full names like this used in a program.
Java makes it possible to avoid using the full name of a class by importing
the class. If you put


import javafx.scene.paint.Color;


at the beginning of a Java source code file, then, in the rest of the file,
you can abbreviate the full name javafx.scene.paint.Color to just the simple name of
the class, which is Color.  Note that the import line comes at the start of 
a file (after the package statement, if there is one) 
and is not inside any class.  Although it is sometimes referred to
as a statement, it is more properly called an import directive
since it is not a statement in the usual sense.  The import
directive "import javafx.scene.paint.Color" would allow you to say


Color  rectColor;


to declare the variable.  Note that the only effect of the
import directive is to allow you to use simple class names instead of
full "package.class" names. You aren't really importing anything substantial;
if you leave out the import directive, you can still access the class—you 
just have to use its full name.  There is a shortcut for importing all
the classes from a given package. For example, you can import all the classes from
java.util by saying


import java.util.*;


The "*" is a wildcard that matches every class in the package.
(However, it does not match subpackages; for example, you cannot import the entire
contents of all the subpackages of the java package by saying
import java.*.)

   
Some programmers think that using a wildcard in an import statement
is bad style, since it can make a large number of class names available that you are
not going to use and might not even know about.  They think it is better to explicitly
import each individual class that you want to use.  In my own programming, I often
use wildcards to import all the classes from the most relevant packages, and use
individual imports when I am using just one or two classes from a given package.


   
A program that works with networking might include the line
"import java.net.*;", while one that reads or writes files might
use "import java.io.*;".  But when you start importing lots
of packages in this way, you have to be careful about one thing: It's possible
for two classes that are in different packages to have the same name. For
example, both the java.awt package and the java.util package
contain a class named List. If you import both java.awt.* and
java.util.*, the simple name List will be ambiguous. If you
try to declare a variable of type List, you will get a compiler error
message about an ambiguous class name.  You can still use both classes in your program: Use the full
name of the class, either java.awt.List or java.util.List.
Another solution, of course, is to use import to import the individual classes you
need, instead of importing entire packages.


Because the package java.lang is so fundamental, all the classes in
java.lang are automatically imported into every
program. It's as if every program began with the statement "import java.lang.*;". 
This is why we have been able to use the class name
String instead of java.lang.String, and Math.sqrt()
instead of java.lang.Math.sqrt(). It would still, however, be
perfectly legal to use the longer forms of the names.


Programmers can create new packages. Suppose that you want some classes that
you are writing to be in a package named utilities. Then the source
code files that defines those classes must begin with the line


package utilities;


This would come even before any import directive in that file.
Furthermore, the source code file
would be placed in a folder with the same name as the package, "utilities" in this example.
And a class that is in a subpackage must be in a subfolder.  For example, a class in
a package named utilities.net would be in folder named "net" inside a
folder named "utilities".  A class that is
in a package automatically has access to other classes in the same package; that is,
a class doesn't have to import classes from the package in which it is defined.

   
In projects that define large numbers of classes, it makes sense to organize
those classes into packages. It also makes sense for programmers to
create new packages as toolboxes that provide functionality and APIs for
dealing with areas not covered in the standard Java API. (And in fact such
"toolmaking" programmers often have more prestige than the applications
programmers who use their tools.)


However, with just a couple of exceptions such as class TextIO
in package textio, the classes written for this book are not in packages. For the purposes of this
book, you need to know about packages mainly so that you will be able to import TextIO
and classes from the standard
packages. The standard packages are always available to the programs that you write.
You might wonder where the standard classes are actually located.  Again, that can
depend to some extent on the version of Java that you are using, but they will be
part of the installed JDK.


Although we won't be creating packages explicitly, every
class is actually part of a package. If a class is not specifically placed in a
package, then it is put in something called the default package, 
which has no name.  Almost all the examples that you see in this book
are in the default package.


   





4.6.4  About Modules



Starting with Java 9, a major change was made to the large-scale structure
of Java with the introduction of modules.  A module is a collection
of packages, so it represents yet another level of containment:  Modules contain
packages which contain classes which contain variables and methods.  A package
does not have to be in a module to be used, but all of the standard classes in
Java and in JavaFX have been divided into a set of modules.


Modules were introduced for several reasons.  A major reason is to provide
better access control.  Before modules, a class that is declared public
can be used anywhere, from any class in any package, as can its public variables 
and methods.  For a class that is defined in a module, on the other hand, "public" only automatically means
public within the module where it is defined.  However, a module can explicitly
export a package.  Exporting a package from a module makes the
public classes in the package accessible from anywhere, including from other
modules and from classes that are not part of any module. (It is even possible
to export a package just to certain specified modules, providing an even
finer level of access control.)  The upshot is that it is now possible to have
entire packages that are essentially private: They provide services to other
packages in the same module, but are invisible from outside that module.  So
a module is another kind of black box, and a non-exported package is part of
its hidden implementation.  Of course, modularity on this scale is really only
important for very large-scale applications.


Another motivation for modules is the sheer size of the standard JRE (Java Runtime
Environment), which includes all of the standard classes.  A given application will
use only a small part of the standard runtime.  Modularization makes it possible
to construct smaller, custom JREs that contain only the modules that are required
by an application.  The JDK includes a jlink command for making custom 
runtimes, which can include modules that define an application as well as the
standard modules that are required to run that application.  That runtime
can then be distributed as a standalone application that can be executed even
by people who have not installed a JDK on their computer.  But just as for
the JDK itself, different versions of the custom runtime will be needed for Windows,
for MacOS, and for Linux.  Furthermore, when security updates are made
to the JDK, they are not automatically applied to custom runtimes, so the
application developer takes on the responsibility of updating custom
runtimes.  Once again, this is really only useful for fairly large applications.


In a JDK for Java 9 or later, compiled class files from the standard modules 
are stored together in a file named modules inside a directory named 
lib in the main JDK directory.  This is a so-called "jimage file,"
and there is a command-line tool named jimage for working with such files.
If you use the jlink tool to create a custom runtime, part of what it does
is to create a custom modules file containing just the modules that are
needed by the runtime.  In the JDK 17 on my Linux computer, modules
is a 127 megabyte file containing 26401 classes in 835 packages in 70 modules.
The JDK directory also has a subdirectory named jmods that contains the
modules in another form.  However, it is not required for compiling and running
programs and, as far as I can tell, is meant mostly for use by jlink.


Modules in the JDK include, for example, java.base (which contains the basic modules
such as java.lang and java.util) and java.desktop
(which include packages for the Swing GUI toolkit).  JavaFX packages include 
javafx.base, javafx.control, javafx.graphics, and a few that are less
generally useful. The API documentation for modular versions of Java is divided into
modules, then into packages, and finally into classes.  This makes the documentation harder to browse
than in older versions of Java.  However, the documentation web site does have an effective
search feature.  As I write this, the documentation for Java 17 and for
JavaFX 17 is available at:



https://docs.oracle.com/en/java/javase/17/docs/api/index.html





https://openjfx.io/javadoc/17/




A class can be defined outside of any module, and it is possible for that class
to use packages from modules, provided that those packages are exported by the
modules where they are defined.  In particular, a programmer can use classes from 
the JDK without ever thinking about modules or knowing that they exist.  This
applies to all the command-line programs in this book.  However, when using
Java 9 or later, things are different for GUI programs that use JavaFX,
which has been removed from the JDK and is distributed as a separate set of
modules.  As we saw in Section 2.6, when you compile or run
a JavaFX program, you need to specify a module path that includes the JavaFX
modules, and you need to provide an --add-modules option.
(In Section 2.6, the value for
--add-modules was given as ALL-MODULE-PATH, which
lets the program access any modules that are found on the module path.  
An alternative is to specify a list of names of just those modules that
are actually used by the program.)
 

Aside from using modules with JavaFX and
the basic background information in this section, this textbook does not 
cover modules.





   



4.6.5  Javadoc


   
To use an API effectively, you need good documentation for it.  The documentation for
most Java APIs is prepared using a system called Javadoc.  For example,
this system is used to prepare the documentation for Java's standard packages.  And almost
everyone who creates a toolbox in Java publishes Javadoc documentation for it.

   
Javadoc documentation is prepared from special comments that are placed in the Java
source code file.  Recall that one type of Java comment begins with /* and ends with */.
A Javadoc comment takes the same form, but it begins with /** rather than simply /*.
You have already seen comments of this form in many of the examples in this book.

      
Note that a Javadoc comment must be placed just before the subroutine that
it is commenting on.  This rule is always followed.  You can have Javadoc
comments for subroutines, for member variables, and for classes.  The Javadoc
comment always immediately precedes the thing it is commenting on.


Like any comment, a Javadoc comment is ignored by the computer when the file is compiled.
But there is a tool called javadoc that reads Java source code files, extracts
any Javadoc comments that it finds, and creates a set of Web pages containing the comments
in a nicely formatted, interlinked form.  By default, javadoc will only collect
information about public classes, subroutines, and member variables, but
it allows the option of creating documentation for non-public things as well.  If
javadoc doesn't find any Javadoc comment for something, it will construct
one, but the comment will contain only basic information such as the name and type
of a member variable or the name, return type, and parameter list of a subroutine.
This is syntactic information.  To add information about semantics and pragmatics,
you have to write a Javadoc comment.

   
As an example, you can look at the documentation Web page for TextIO.
The documentation page was created by applying the javadoc tool
to the source code file, TextIO.java.  If you have downloaded the on-line
version of this book, the documentation can be found in the TextIO_Javadoc
directory, or you can find a link to it in the on-line version of this section.


In a Javadoc comment, the *'s at the start of each line are optional.
The javadoc tool will remove them.  In addition to normal text, the comment
can contain certain special codes.  For one thing, the comment can contain
HTML mark-up commands.  HTML is the language that is used to
create web pages, and Javadoc comments are meant to be shown on web pages.  The
javadoc tool will copy any HTML commands in the comments to the web
pages that it creates.  The book will not teach you HTML, but as 
an example, you can add <p> to indicate the start of
a new paragraph.  (Generally, in the absence of HTML commands, blank lines and
extra spaces in the comment are ignored.  Furthermore, the characters & and
< have special meaning in HTML and should not be used in Javadoc comments except
with those meanings; they can be written as &amp; and &lt;.)

   
In addition to HTML commands, Javadoc comments can include doc tags,
which are processed as commands by the javadoc tool.  A doc tag has a
name that begins with the character @.  I will only discuss four
tags:  @author, @param, @return, and @throws.
The @author tag can be used only for a class, and should be followed by the
name of the author.  The other three
tags are used in Javadoc comments for a subroutine to provide information about its
parameters, its return value, and the exceptions that it might throw. These tags
must be placed at the end of the comment, after any description of the subroutine
itself.  The syntax for using them is:



@param  parameter-name   description-of-parameter
   
@return  description-of-return-value
   
@throws  exception-class-name   description-of-exception


   
The descriptions can extend over several lines.  The description ends at
the next doc tag or at the end of the comment.  You can include a @param tag for
every parameter of the subroutine and a @throws for as many types of exception
as you want to document.  You should have a @return tag only for a
non-void subroutine.  These tags do not have to be given in any particular order.


Here is an example that doesn't do anything
exciting but that does use all three types of doc tag:

   
/**
 * This subroutine computes the area of a rectangle, given its width
 * and its height.  The length and the width should be positive numbers.
 * @param width the length of one side of the rectangle
 * @param height the length the second side of the rectangle
 * @return the area of the rectangle
 * @throws IllegalArgumentException if either the width or the height
 *    is a negative number.
 */
public static double areaOfRectangle( double length, double width ) {
    if ( width < 0  ||  height < 0 )
       throw new IllegalArgumentException("Sides must have positive length.");
    double area;
    area = width * height;
    return area; 
}

   
I use Javadoc comments for many of my examples.  I encourage you to use
them in your own code, even if you don't plan to generate Web page documentation
of your work, since it's a standard format that other Java programmers will be
familiar with.


If you do want to create Web-page documentation, you need to run the
javadoc tool.  This tool is available as a command in the Java Development
Kit that was discussed in Section 2.6.  You can use the javadoc tool
in a command line interface similarly to the way that the javac and
java commands are used.  Javadoc can also be applied in the
integrated development environments that were also discussed in 
Section 2.6.  I won't go into any of the details here; consult the
documentation for your programming environment.

   


   



4.6.6  Static Import



Before ending this section, I will mention an extension of the import directive.
We have seen that import makes it possible to refer to a class
such as java.util.Scanner using its simple name, Scanner.
But you still have to use compound names to refer to static member variables such
as System.out and to static methods such as Math.sqrt.

   
There is another form of the import directive that can
be used to import static members of a class in the same way that
the ordinary import directive imports classes from a package.
That form of the directive is called a static import,
and it has syntax

   
import static package-name.class-name.static-member-name;

   
to import one static member name from a class, or

   
import static package-name.class-name.*;

   
to import all the public static members from a class.  For example, if you preface
a class definition with

   
import static java.lang.System.out;

   
then you can use the simple name out instead of the compound name System.out.
This means you can say out.println instead of System.out.println.  If you
are going to work extensively with the Math class, you might preface
your class definition with

   
import static java.lang.Math.*;

   
This would allow you to say sqrt instead of Math.sqrt, log
instead of Math.log, PI instead of Math.PI, and so on.  And you
could import the getlnInt function from TextIO using


import static textio.TextIO.getlnInt;


Note that the static import directive requires a package-name, even for classes in
the standard package java.lang.  One consequence of this is that you can't do a 
static import from a class in the default package.




   






Section 4.7

More on Program Design






Understanding how programs work is one thing.
Designing a program to perform some particular task is another thing
altogether. In Section 3.2, I discussed how pseudocode and
stepwise refinement can be used to methodically develop an algorithm. We can
now see how subroutines can fit into the process.

      
Stepwise refinement is inherently a top-down process, but the process does
have a "bottom," that is, a point at which you stop refining the pseudocode
algorithm and translate what you have directly into proper program code.
In the absence of subroutines, the process would not bottom out until
you get down to the level of assignment statements and very primitive
input/output operations. But if you have subroutines lying around to perform
certain useful tasks, you can stop refining as soon as you've managed to
express your algorithm in terms of those tasks.


This allows you to add a bottom-up element to the top-down approach of
stepwise refinement. Given a problem, you might start by writing some
subroutines that perform tasks relevant to the problem domain. The subroutines
become a toolbox of ready-made tools that you can integrate into your algorithm
as you develop it. (Alternatively, you might be able to buy or find a software
toolbox written by someone else, containing subroutines that you can use in
your project as black boxes.)


Subroutines can also be helpful even in a strict top-down approach. As you
refine your algorithm, you are free at any point to take any sub-task in the
algorithm and make it into a subroutine. Developing that subroutine then
becomes a separate problem, which you can work on separately. Your main
algorithm will merely call the subroutine. This, of course, is just a way of
breaking your problem down into separate, smaller problems. It is still a
top-down approach because the top-down analysis of the problem tells you what
subroutines to write. In the bottom-up approach, you start by writing or
obtaining subroutines that are relevant to the problem domain, and you build
your solution to the problem on top of that foundation of subroutines.





4.7.1  Preconditions and Postconditions



When working with subroutines as building blocks, it is important to be
clear about how a subroutine interacts with the rest of the program. This
interaction is specified by the contract of the
subroutine, as discussed in Section 4.1. A convenient
way to express the contract of a subroutine is in terms of 
preconditions and postconditions.


A precondition of a subroutine is something that must be true when the
subroutine is called, if the subroutine is to work correctly. For example, for
the built-in function Math.sqrt(x), a precondition is that the
parameter, x, is greater than or equal to zero, since it is not
possible to take the square root of a negative number. In terms of a contract,
a precondition represents an obligation of the caller of the subroutine.
If you call a subroutine without meeting its precondition, then there is no
reason to expect it to work properly. The program might crash or give incorrect
results, but you can only blame yourself, not the subroutine, because you
haven't lived up to your side of the deal.


A postcondition of a subroutine represents the other side of the contract.
It represents an obligation of the subroutine.
It is something that will be true after the subroutine has run (assuming that
its preconditions were met—and that there are no bugs in the subroutine).
The postcondition of the function Math.sqrt() is that the square of
the value that is returned by this function is equal to the parameter that is
provided when the subroutine is called. Of course, this will only be true if
the precondition—that the parameter is greater than or equal to zero—is
met. A postcondition of the built-in subroutine System.out.print(x) is
that the value of the parameter has been displayed on the screen.


Preconditions most often give restrictions on the acceptable values of
parameters, as in the example of Math.sqrt(x). However, they can also
refer to global variables that are used in the subroutine.  Or, if it only makes
sense to call the subroutine at certain times, the precondition might refer to 
the state that the program must be in when the subroutine is called.


The postcondition of a subroutine, on the other hand, 
specifies the task that it performs. For a function, the
postcondition should specify the value that the function returns.


Subroutines are sometimes described by comments that explicitly specify their
preconditions and postconditions. When you are given a pre-written subroutine,
a statement of its preconditions and postconditions tells you how to use it and
what it does. When you are assigned to write a subroutine, the preconditions
and postconditions give you an exact specification of what the subroutine is
expected to do. I will use this approach in the example that constitutes the
rest of this section. The comments are given in the form of
Javadoc comments, but I will explicitly
label the preconditions and postconditions.  (Many computer scientists think that new doc
tags @precondition and @postcondition should
be added to the Javadoc system for explicit labeling of preconditions
and postconditions, but that has not yet been done.)







4.7.2  A Design Example



Let's work through an example of program design using subroutines. In this
example, we will use pre-written subroutines as building blocks and we will also design
new subroutines that we need to complete the project.  The API that I will use here
is defined in two classes that I have written: Mosaic.java, which in turn depends on
MosaicCanvas.java.  To compile and run a program that uses the
API, the classes Mosaic and MosaicCanvas
must be available.  That is, the files Mosaic.java and
MosaicCanvas.java, or the corresponding compiled class files,
must be in the same folder as the class that defines the program.  (You can download
them from this textbooks's web site.)


So, suppose that I have access to an already-written class called Mosaic.
This class allows a program to work with a window that displays little colored
rectangles arranged in rows and columns. The window can be opened, closed, and
otherwise manipulated with static member subroutines defined in the
Mosaic class.  In fact, the class defines a toolbox or API
that can be used for working with such windows.  Here are some of the
available routines in the API, with Javadoc-style comments. (Remember that
a Javadoc comment comes before the thing that it is commenting on.)

   
/**
 * Opens a "mosaic" window on the screen.  This subroutine should be called
 * before any of the other Mosaic subroutines are used.  The program will end
 * when the user closes the window.
 *
 * Precondition:   The parameters rows, cols, h, and w are positive integers.
 * Postcondition:  A window is open on the screen that can display rows and
 *                   columns of colored rectangles.  Each rectangle is w pixels
 *                   wide and h pixels high.  The number of rows is given by
 *                   the first parameter and the number of columns by the
 *                   second.  Initially, all rectangles are black.
 *
 * Note:  The rows are numbered from 0 to rows - 1, and the columns are 
 * numbered from 0 to cols - 1.
 */
public static void open(int rows, int cols, int w, int h)
   
   
/**
 * Sets the color of one of the rectangles in the window.
 *
 * Precondition:   row and col are in the valid range of row and column numbers,
 *                   and r, g, and b are in the range 0 to 255, inclusive.
 * Postcondition:  The color of the rectangle in row number row and column
 *                   number col has been set to the color specified by r, g,
 *                   and b.  r gives the amount of red in the color with 0 
 *                   representing no red and 255 representing the maximum 
 *                   possible amount of red.  The larger the value of r, the 
 *                   more red in the color.  g and b work similarly for the 
 *                   green and blue color components.
 */
public static void setColor(int row, int col, int r, int g, int b)

   
/**
 * Gets the red component of the color of one of the rectangles.
 *
 * Precondition:   row and col are in the valid range of row and column numbers.
 * Postcondition:  The red component of the color of the specified rectangle is
 *                   returned as an integer in the range 0 to 255 inclusive.
 */
public static int getRed(int row, int col)

   
/**
 * Like getRed, but returns the green component of the color.
 */
public static int getGreen(int row, int col)

   
/**
 * Like getRed, but returns the blue component of the color.
 */
public static int getBlue(int row, int col)


/**
 * Inserts a delay in the program (to regulate the speed at which the colors
 * are changed, for example).
 *
 * Precondition:   milliseconds is a positive integer.
 * Postcondition:  The program has paused for at least the specified number
 *                   of milliseconds, where one second is equal to 1000
 *                   milliseconds.
 */
public static void delay(int milliseconds)


   
Remember that these subroutines are static members of the Mosaic
class, so when they are called from outside Mosaic, the name of the class
must be included as part of the name of the routine.  For example,
we'll have to use the name Mosaic.open rather than simply
open.


You'll notice that the comments on the subroutine don't specify what
happens when the preconditions are not met.  Although a subroutine
is not really obligated by its contract to do anything particular in that
case, it would be good to know what happens.  For example, if the
precondition, "row and col are in the valid range of row and column numbers,"
on the setColor() or getRed() routine is violated,
an IllegalArgumentException will be thrown.
Knowing that fact would allow you to write programs that catch and handle
the exception, and it would be good to document it with a @throws
doc tag in the Javadoc comment.
Other questions remain about the behavior of the subroutines.
For example, what happens if you call Mosaic.open() and there
is already a mosaic window open on the screen?  (In fact, the second call will
simply be ignored.)  It's difficult to fully document
the behavior of a piece of software—sometimes, you just have to 
experiment or look at the full source code.





My idea for a program is to use the Mosaic class as the basis for a neat
animation. I want to fill the window with randomly colored squares, and then
randomly change the colors in a loop that continues as long as the window is
open. "Randomly change the colors" could mean a lot of different things, but
after thinking for a while, I decide it would be interesting to have a
"disturbance" that wanders randomly around the window, changing the color of
each square that it encounters. Here's a picture showing what the contents of the window
might look like at one point in time:



[image: a 20-by-16 grid of randomly colored squares]



With basic routines for manipulating the window as a foundation, I can turn
to the specific problem at hand. A basic outline for my program is


Open a Mosaic window
Fill window with random colors
Move around, changing squares at random


Filling the window with random colors seems like a nice coherent task that I
can work on separately, so let's decide to write a separate subroutine to do
it. The third step can be expanded a bit more, into the steps: Start in the
middle of the window, then keep moving to new squares and changing the color
of those squares. This should continue as long as the mosaic window is still
open. Thus we can refine the algorithm to:


Open a Mosaic window
Fill window with random colors
Set the current position to the middle square in the window
As long as the mosaic window is open:
   Randomly change color of the square at the current position
   Move current position up, down, left, or right, at random


I need to represent the current position in some way. That can be done with
two int variables named currentRow and
currentColumn that hold the row number and the column number of 
the square where the disturbance is currently located.  I'll use 16 rows and 20 columns of squares in my
mosaic, so setting the current position to be in the center means setting
currentRow to 8 and currentColumn to 10. I already have a
subroutine, Mosaic.open(), to open the window. To keep the main
routine simple, I decide that I will write two more subroutines of my own to
carry out the two tasks in the while loop. The algorithm can then be written in
Java as:


Mosaic.open(16,20,25,25)
fillWithRandomColors();
currentRow = 8;       // Middle row, halfway down the window.
currentColumn = 10;   // Middle column.
while ( true ) { // Program ends when user closes the window.
    changeToRandomColor(currentRow, currentColumn);
    randomMove();      
}


With the proper wrapper, this is essentially the main() routine of
my program. It turns out I decided to make one small modification after running the
completed program: To prevent the
animation from running too fast, I added the line "Mosaic.delay(10);"
to the while loop.


The main() routine is taken care of, but to complete the program, I
still have to write the subroutines fillWithRandomColors(),
changeToRandomColor(int,int), and randomMove(). Writing each
of these subroutines is a separate, small task. The
fillWithRandomColors() routine is defined by the postcondition that
"each of the rectangles in the mosaic has been changed to a random color."
Pseudocode for an algorithm to accomplish this task can be given as:


For each row:
   For each column:
      set the square in that row and column to a random color


"For each row" and "for each column" can be implemented as for loops. We've
already planned to write a subroutine changeToRandomColor that can be
used to set the color. (The possibility of reusing subroutines in several
places is one of the big payoffs of using them!) So,
fillWithRandomColors() can be written in proper Java as:


static void fillWithRandomColors() {
   int row, column;
   for ( row = 0; row < 16; row++ )
      for ( column = 0; column < 20; column++ )
         changeToRandomColor(row,column);
}


Turning to the changeToRandomColor subroutine, we already have a
method in the Mosaic class, Mosaic.setColor(), 
that can be used to change the
color of a square. If we want a random color, we just have to choose random
values for r, g, and b. According to the
precondition of the Mosaic.setColor() subroutine, these random values
must be integers in the range from 0 to 255. A formula for randomly selecting
such an integer is "(int)(256*Math.random())". So the random color
subroutine becomes:


static void changeToRandomColor(int rowNum, int colNum) {
     int red = (int)(256*Math.random());
     int green = (int)(256*Math.random());  
     int blue = (int)(256*Math.random());
     Mosaic.setColor(rowNum,colNum,red,green,blue);  
}


Finally, consider the randomMove subroutine, which is supposed to
randomly move the disturbance up, down, left, or right. To make a random choice
among four directions, we can choose a random integer in the range 0 to 3. If
the integer is 0, move in one direction; if it is 1, move in another direction;
and so on. The position of the disturbance is given by the variables
currentRow and currentColumn. To "move up" means to subtract
1 from currentRow. This leaves open the question of what to do if
currentRow becomes -1, which would put the disturbance above the
window (which would violate a precondition of several of the Mosaic
subroutines).
Rather than let this happen, I decide to move the disturbance to the
opposite edge of the grid by setting currentRow to 15. (Remember that
the 16 rows are numbered from 0 to 15.)  An alternative to jumping to the opposite
edge would be to simply do nothing in this case.  Moving the disturbance down, left, or
right is handled similarly. If we use a switch statement to decide
which direction to move, the code for randomMove becomes:


int directionNum;
directionNum = (int)(4*Math.random());
switch (directionNum) {
   case 0 -> {  // move up 
      currentRow--;
      if (currentRow < 0)   // CurrentRow is outside the mosaic;
         currentRow = 15;   // move it to the opposite edge.
   }
   case 1 -> {  // move right
      currentColumn++;
      if (currentColumn >= 20)
         currentColumn = 0;
   }
   case 2 -> {  // move down
      currentRow++;
      if (currentRow >= 16)
         currentRow = 0;
   }
   case 3 -> {  // move left
      currentColumn--;
      if (currentColumn < 0)
         currentColumn = 19;
   }
}

   

   



4.7.3  The Program



Putting this all together, we get the following complete program.  Note that I've added Javadoc-style
comments for the class itself and for each of the subroutines. The
variables currentRow and currentColumn are defined as static
members of the class, rather than local variables, because each of them is used
in several different subroutines.  You can find a copy of the source code in
RandomMosaicWalk.java.  Remember that this program actually 
depends on two other files, Mosaic.java and MosaicCanvas.java.


/**
 * This program opens a window full of randomly colored squares.  A "disturbance"
 * moves randomly around in the window, randomly changing the color of each
 * square that it visits.  The program runs until the user closes the window.
 */
public class RandomMosaicWalk {

    static int currentRow;    // Row currently containing the disturbance.
    static int currentColumn; // Column currently containing disturbance.

    /**
     * The main program creates the window, fills it with random colors,
     * and then moves the disturbance in a random walk around the window
     * as long as the window is open.
     */
    public static void main(String[] args) {
        Mosaic.open(16,20,25,25);
        fillWithRandomColors();
        currentRow = 8;   // start at center of window
        currentColumn = 10;
        while ( true ) {
            changeToRandomColor(currentRow, currentColumn);
            randomMove();
            Mosaic.delay(10);  // Remove this line to speed things up!
        }
    }  // end main

    /**
     * Fills the window with randomly colored squares.
     * Precondition:   The mosaic window is open.
     * Postcondition:  Each square has been set to a random color. 
     */
    static void fillWithRandomColors() {
        int row, column;
        for ( row=0; row < 16; row++ ) {
            for ( column=0; column < 20; column++ ) {
                changeToRandomColor(row, column);  
            }
        }
    }  // end fillWithRandomColors

    /**
     * Changes one square to a new randomly selected color.
     * Precondition:   The specified rowNum and colNum are in the valid range
     *                 of row and column numbers.
     * Postcondition:  The square in the specified row and column has
     *                 been set to a random color.
     * @param rowNum the row number of the square, counting rows down
     *      from 0 at the top
     * @param colNum the column number of the square, counting columns over
     *      from 0 at the left
     */
    static void changeToRandomColor(int rowNum, int colNum) {
        int red = (int)(256*Math.random());    // Choose random levels in range
        int green = (int)(256*Math.random());  //     0 to 255 for red, green, 
        int blue = (int)(256*Math.random());   //     and blue color components.
        Mosaic.setColor(rowNum,colNum,red,green,blue);  
    }  // end changeToRandomColor

    /**
     * Move the disturbance.
     * Precondition:   The global variables currentRow and currentColumn
     *                 are within the legal range of row and column numbers.
     * Postcondition:  currentRow or currentColumn is changed to one of the
     *                 neighboring positions in the grid -- up, down, left, or
     *                 right from the current position.  If this moves the
     *                 position outside of the grid, then it is moved to the
     *                 opposite edge of the grid.
     */
    static void randomMove() {
        int directionNum; // Randomly set to 0, 1, 2, or 3 to choose direction.
        directionNum = (int)(4*Math.random());
        switch (directionNum) {
            case 0 -> {  // move up 
               currentRow--;
               if (currentRow < 0)   // CurrentRow is outside the mosaic;
                  currentRow = 15;   // move it to the opposite edge.
            }
            case 1 -> {  // move right
               currentColumn++;
               if (currentColumn >= 20)
                  currentColumn = 0;
            }
            case 2 -> {  // move down
               currentRow++;
               if (currentRow >= 16)
                  currentRow = 0;
            }
            case 3 -> {  // move left
               currentColumn--;
               if (currentColumn < 0)
                  currentColumn = 19;
            }
        }
    }  // end randomMove

} // end class RandomMosaicWalk








Section 4.8

The Truth About Declarations






Names are fundamental to programming, as I said a
few chapters ago. There are a lot of details involved in declaring and using
names. I have been avoiding some of those details. In this section, I'll reveal
most of the truth (although still not the full truth) about declaring and using
variables in Java. The material in the subsections "Initialization
in Declarations" and "Named Constants" is
particularly important, since I will be using it regularly from now on.





4.8.1  Initialization in Declarations



When a variable declaration is executed, memory is allocated for the
variable. This memory must be initialized to contain some definite value before
the variable can be used in an expression. In the case of a local variable, the
declaration is often followed closely by an assignment statement that does the
initialization. For example,


int count;    // Declare a variable named count.
count = 0;    // Give count its initial value.


However, the truth about declaration statements is that it is legal to
include the initialization of the variable in the declaration statement. The
two statements above can therefore be abbreviated as


int count = 0;  // Declare count and give it an initial value.


The computer still executes this statement in two steps: Declare the
variable count, then assign the value 0 to the newly created variable.
The initial value does not have to be a constant.  It can be any expression. It
is legal to initialize several variables in one declaration statement. For
example,


char firstInitial = 'D', secondInitial = 'E';
                
int x, y = 1;   // OK, but only y has been initialized!
  
int N = 3, M = N+2;  // OK, N is initialized 
                     //        before its value is used.


This feature is especially common in for loops, since it makes it
possible to declare a loop control variable at the same point in the loop where
it is initialized.  Since the loop control variable generally has nothing to do
with the rest of the program outside the loop, it's reasonable to have its
declaration in the part of the program where it's actually used. For
example:


for ( int i = 0;  i < 10;  i++ ) {
   System.out.println(i);
}


You should remember that this is simply an abbreviation for the
following, where I've added an extra pair of braces to show that i is
considered to be local to the for statement and no longer exists after
the for loop ends:


{
   int i;
   for ( i = 0;  i < 10;  i++ ) {
      System.out.println(i);
   }
}

   

A member variable can also be initialized at the point where it is declared, just as
for a local variable.  For example:


public class Bank {
   private static double interestRate = 0.05;
   private static int maxWithdrawal = 200;
     .
     .  // More variables and subroutines.
     .
}


A static member variable is created as soon as the class is loaded by the
Java interpreter, and the initialization is also done at that time. In the case
of member variables, this is not simply an abbreviation for a declaration
followed by an assignment statement. Declaration statements are the only type
of statement that can occur outside of a subroutine. Assignment statements
cannot, so the following is illegal:


public class Bank {
   private static double interestRate;
   interestRate = 0.05;  // ILLEGAL:
   .                     //    Can't be outside a subroutine!:
   .
   .


Because of this, declarations of member variables often include initial
values.  In fact, as mentioned in Subsection 4.2.4, if no initial value is
provided for a member variable, then a default initial value is used. For
example, when declaring an integer member variable, count,
"static int count;" is equivalent to "static int count = 0;".


Even array variables can be initialized.  An array contains several elements, not
just a single value.  To initialize an array variable, you can provide a list of
values, separated by commas, and enclosed between a pair of braces.  For example:


int[] smallPrimes = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };


In this statement, an array of int of length 10 is created
and filled with the values in the list.  The length of the array is determined
by the number of items in the list.


Note that this syntax for initializing arrays cannot be used in assignment
statements.  It can only be used in a declaration statement at the time when the
array variable is declared.


It is also possible to initialize an array variable with an array created using
the new operator (which can also be used in assignment 
statements).  For example:


String[] nameList = new String[100];


but in that case, of course, all the array elements will have their default value.








4.8.2  Declaring Variables with var



In Java 11 and later, there is a new way of declaring variables, using the word
"var" instead of specifying an explicit type for the variable.
The new syntax for declarations can only be used for local variables,
that is for variables that are declared inside subroutines
(see Subsection 4.2.4).  Furthermore a variable
that is declared using var must be given an initial
value.  A variable that is declared with var
has a defined type, just like any other variable.  The Java compiler
uses the type of the initial value to define the type for the variable.
For example, the declaration statement


var interestRate = 0.05;


can be used to define a local variable named interestRate with initial value
0.05.  The variable is of type double, since 0.05 is
a value of type double.   And a local variable named 
nameList of type String[] can be declared as


var nameList = new String[100];


In particular, var can be used to declare the loop control
variable in a for loop.  For example,


for ( var i = 0;  i < 10;  i++ ) {
   System.out.println(i);
}


All this might not seem particularly useful, but it becomes more useful for
the more complicated "parameterized types" that will be covered in 
Section 7.3 and Chapter 10.








4.8.3  Named Constants



Sometimes, the value of a variable is not supposed to change after it is
initialized. For example, in the above example where interestRate is
initialized to the value 0.05, it's quite possible that 0.05 is meant to be the
value throughout the entire program. In that case, the programmer is probably
defining the variable, interestRate, to give a meaningful name to the
otherwise meaningless number, 0.05. It's easier to understand what's going on
when a program says "principal += principal*interestRate;" rather than
"principal += principal*0.05;".


In Java, the modifier "final" can be applied to a variable
declaration to ensure that the value stored in the variable cannot be changed after
the variable has been initialized. For example, if the member variable
interestRate is declared with


public final static double interestRate = 0.05;


then it would be impossible for the value of interestRate to change anywhere
else in the program. Any assignment statement that tries to assign a value to
interestRate will be rejected by the computer as a syntax error when
the program is compiled.  (A "final" modifier on a public interest rate makes a lot
of sense—a bank might want to publish its interest rate, but it certainly 
wouldn't want to let random people make changes to it!)


It is legal to apply the final modifier to local variables and to formal parameters
(and even to classes and subroutines), but it is probably most useful for member variables. I will often
refer to a static member variable that is declared to be final as a
named constant, since its value remains constant
for the whole time that the program is running. The readability of a program
can be greatly enhanced by using named constants to give meaningful names to
important quantities in the program. A recommended style rule for named
constants is to give them names that consist entirely of upper case letters,
with underscore characters to separate words if necessary. For example, the
preferred style for the interest rate constant would be


public final static double INTEREST_RATE = 0.05;


This is the style that is generally used in Java's standard classes, which
define many named constants. For example, we have already seen that the 
Math class contains a variable Math.PI.  This variable
is declared in the Math class as a "public final static" variable
of type double.  Similarly, the Color class
contains named constants such as Color.RED and Color.YELLOW
which are public final static variables of type Color.

   
Enumerated type constants (see Subsection 2.3.3) are also examples of named
constants.  The enumerated type definition

   
enum Alignment { LEFT, RIGHT, CENTER }

   
defines the constants Alignment.LEFT, Alignment.RIGHT,
and Alignment.CENTER.  Technically, Alignment is
a class, and the three constants are public final static members of that class.  Defining the
enumerated type is similar to defining three constants of type, say, int:


   
public static final int ALIGNMENT_LEFT = 0;
public static final int ALIGNMENT_RIGHT = 1;
public static final int ALIGNMENT_CENTER = 2;

   
In fact, this is how things had to be done before the introduction of enumerated
types, and it is what is still done in many cases.
Using the integer constants, you could define a variable  of type
int and assign it the values ALIGNMENT_LEFT,
ALIGNMENT_RIGHT, or ALIGNMENT_CENTER to represent different
types of alignment.  The only problem with this is that the computer has no way of
knowing that you intend the value of the variable to represent an alignment, and it
will not raise any objection if the value that is assigned to the variable is not
one of the three valid alignment values.
With the enumerated type, on the other hand, the only values
that can be assigned to a variable of type Alignment are
the constant values that are listed in the definition of the enumerated type.  
Any attempt to assign an invalid value to the variable is a syntax error which
the computer will detect when the program is compiled.  This extra
safety is one of the major advantages of enumerated types.
 
   



Curiously enough, one of the main reasons to use named constants is that
it's easy to change the value of a named constant. Of course, the value can't
change while the program is running. But between runs of the program, it's easy
to change the value in the source code and recompile the program. Consider the
interest rate example. It's quite possible that the value of the interest rate
is used many times throughout the program. Suppose that the bank changes the
interest rate and the program has to be modified. If the literal number 0.05
were used throughout the program, the programmer would have to track down each
place where the interest rate is used in the program and change the rate to the
new value. (This is made even harder by the fact that the number 0.05 might
occur in the program with other meanings besides the interest rate, as well as
by the fact that someone might have, say, used 0.025 to represent half the interest
rate.) On the other hand, if the named constant INTEREST_RATE is
declared and used consistently throughout the program, then only the single
line where the constant is initialized needs to be changed.


As an extended example, I will give a new version of the
RandomMosaicWalk program from the previous
section. This version uses named constants to represent the number of rows
in the mosaic, the number of columns, and the size of each little square. The
three constants are declared as final static member variables
with the lines:


final static int ROWS = 20;        // Number of rows in mosaic.
final static int COLUMNS = 30;     // Number of columns in mosaic.
final static int SQUARE_SIZE = 15; // Size of each square in mosaic.


The rest of the program is carefully modified to use the named constants.
For example, in the new version of the program, the Mosaic window is opened
with the statement


Mosaic.open(ROWS, COLUMNS, SQUARE_SIZE, SQUARE_SIZE);


Sometimes, it's not easy to find all the places where a named constant
needs to be used. If you don't use the named constant consistently, you've
more or less defeated the purpose.  It's always a good idea to run a program using several
different values for any named constant, to test that it works properly in all
cases.


Here is the complete new program, RandomMosaicWalk2, with all
modifications from the previous version shown in red italic.
Note in particular how the constants ROWS and COLUMNS are 
used in randomMove() when moving the disturbance from one
edge of the mosaic to the opposite edge.  I've left out most of the comments to save space.



public class RandomMosaicWalk2 {

    final static int ROWS = 20;        // Number of rows in mosaic.
    final static int COLUMNS = 30;     // Number of columns in mosaic.
    final static int SQUARE_SIZE = 15; // Size of each square in mosaic.

    static int currentRow;    // Row currently containing the disturbance.
    static int currentColumn; // Column currently containing the disturbance.
 
    public static void main(String[] args) {
        Mosaic.open( ROWS, COLUMNS, SQUARE_SIZE, SQUARE_SIZE );
        fillWithRandomColors();
        currentRow = ROWS / 2;   // start at center of window
        currentColumn = COLUMNS / 2;
        while ( true ) {
            changeToRandomColor(currentRow, currentColumn);
            randomMove();
            Mosaic.delay(5);
        }
    }  // end main

    static void fillWithRandomColors() {
         for (int row=0; row < ROWS; row++) {
            for (int column=0; column < COLUMNS; column++) {
                changeToRandomColor(row, column);  
            }
         }
    }  // end fillWithRandomColors
 
    static void changeToRandomColor(int rowNum, int colNum) {
         int red = (int)(256*Math.random());    // Choose random levels in range
         int green = (int)(256*Math.random());  //     0 to 255 for red, green, 
         int blue = (int)(256*Math.random());   //     and blue color components.
         Mosaic.setColor(rowNum,colNum,red,green,blue);  
     }  // end changeToRandomColor
 
     static void randomMove() {
         int directionNum; // Randomly set to 0, 1, 2, or 3 to choose direction.
         directionNum = (int)(4*Math.random());
         switch (directionNum) {
            case 0 -> {  // move up 
               currentRow--;
               if (currentRow < 0)
                  currentRow = ROWS - 1;
            }
            case 1 -> {  // move right
               currentColumn++;
               if (currentColumn >= COLUMNS)
                  currentColumn = 0;
            }
            case 2 -> {  // move down
               currentRow++;
               if (currentRow >= ROWS)
                  currentRow = 0;
            }
            case 3 -> {  // move left  
               currentColumn--;
               if (currentColumn < 0)
                  currentColumn = COLUMNS - 1;
            }
         }
     }  // end randomMove
 
} // end class RandomMosaicWalk2



   



4.8.4  Naming and Scope Rules



When a variable declaration is executed, memory is allocated for that
variable. The variable name can be used in at least some part of the program
source code to refer to that memory or to the data that is stored in the
memory. The portion of the program source code where the variable is valid
is called the scope of the variable. Similarly, we
can refer to the scope of subroutine names and formal parameter names.


For static member subroutines, scope is straightforward. The scope of a
static subroutine is the entire source code of the class in which it is
defined. That is, it is possible to call the subroutine from any point in the
class, including at a point in the source code before the point where the definition
of the subroutine appears. It is even possible to call a subroutine from within itself. This is an
example of something called "recursion," a fairly advanced topic that we will
return to in Section 9.1.  If the subroutine is not private,
it can also be accessed from outside the class where it is defined, using its full name.


For a variable that is declared as a static member variable in a class, the
situation is similar, but with one complication. It is legal to have a local
variable or a formal parameter that has the same name as a member variable. In
that case, within the scope of the local variable or parameter, the member
variable is hidden. Consider, for example, a class
named Game that has the form:


public class Game {

    static int count;  // member variable
 
    static void playGame() {
        int count;  // local variable
          .
          .   // Some statements to define playGame()
          .
    }
    
    .
    .   // More variables and subroutines.
    .
 
}  // end Game


In the statements that make up the body of the playGame()
subroutine, the name "count" refers to the local variable. In the rest
of the Game class, "count" refers to the member variable
(unless hidden by other local variables or parameters named count).
However, the member variable named
count can also be referred to by the full name Game.count.
Usually, the full name is only used outside the class where count is
defined. However, there is no rule against using it inside the class. The full
name, Game.count, can be used inside the playGame()
subroutine to refer to the member variable instead of the local variable. 
So, the full scope rule 
is that the scope of a static member variable includes the entire
class in which it is defined, but where the simple name of the member variable
is hidden by a local variable or formal parameter name, the member variable
must be referred to by its full name of the form className.variableName. 
(Scope rules for non-static members
are similar to those for static members, except that, as we shall see,
non-static members cannot be used in static subroutines.)


The scope of a formal parameter of a subroutine is the block that makes up
the body of the subroutine. The scope of a local variable extends from the
declaration statement that defines the variable to the end of the block in
which the declaration occurs. As noted above, it is possible to declare a loop
control variable of a for loop in the for statement, as in
"for (int i=0; i < 10; i++)". The scope of such a declaration is
considered as a special case: It is valid only within the for
statement and does not extend to the remainder of the block that contains the
for statement.


It is not legal to redefine the name of a formal parameter or local variable
within its scope, even in a nested block. For example, this is not allowed:


void  badSub(int y) {
    int x;
    while (y > 0) {
       int x;  // ERROR:  x is already defined.
         .
         .
         .
    }
 }


In many languages, this would be legal; the declaration of x in the
while loop would hide the original declaration.  It is not legal in
Java; however, once the block in which a variable is declared ends, its name
does become available for reuse in Java. For example:


void goodSub(int y) {
   while (y > 10) {
      int x;
        .
        .
        .
      // The scope of x ends here.
   }
   while (y > 0) {
      int x;  // OK: Previous declaration of x has expired.
       .
       .
       .
   }
}


You might wonder whether local variable names can hide subroutine names.
This can't happen, for a reason that might be surprising. There is no rule that
variables and subroutines have to have different names. The computer can always
tell whether a name refers to a variable or to a subroutine, because a
subroutine name is always followed by a left parenthesis. It's perfectly legal
to have a variable called count and a subroutine called count
in the same class. (This is one reason why I often write subroutine names with
parentheses, as when I talk about the main() routine. It's a good idea
to think of the parentheses as part of the name.) Even more is true: It's legal
to reuse class names to name variables and subroutines. The syntax rules of
Java guarantee that the computer can always tell when a name is being used as a
class name. A class name is a type, and so it can be used to declare variables and formal parameters
and to specify the return type of a function. This means that you could legally
have a class called Insanity in which you declare a function


static  Insanity  Insanity( Insanity Insanity ) { ... }


The first Insanity is the return type of the function. The second
is the function name, the third is the type of the formal parameter, and the
fourth is the name of the formal parameter. However, please remember that not everything
that is possible is a good idea!

   








Programming Exercises for Chapter 4



Exercise 4.1:

To "capitalize" a string
means to change the first letter of each word in the string to upper case (if
it is not already upper case). For example, a capitalized version of "Now is
the time to act!" is "Now Is The Time To Act!". Write a subroutine named
printCapitalized that will print a capitalized version of a string to
standard output. The string to be printed should be a parameter to the
subroutine. Test your subroutine with a main() routine that gets a
line of input from the user and applies the subroutine to it.

Note that a letter is the first letter of a word if it is not immediately
preceded in the string by another letter. Recall 
from Exercise 3.4 that there is a standard
boolean-valued function Character.isLetter(char) that can be
used to test whether its parameter is a letter. There is another standard
char-valued function, Character.toUpperCase(char), that
returns a capitalized version of the single character passed to it as a
parameter. That is, if the parameter is a letter, it returns the upper-case
version. If the parameter is not a letter, it just returns a copy of the
parameter.


See the Solution




Exercise 4.2:

The hexadecimal digits are
the ordinary, base-10 digits '0' through '9' plus the letters 'A' through 'F'.
In the hexadecimal system, these digits represent the values 0 through 15,
respectively. Write a function named hexValue that uses a
switch statement to find the hexadecimal value of a given character.
The character is a parameter to the function, and its hexadecimal value is the
return value of the function. You should count lower case letters 'a' through
'f' as having the same value as the corresponding upper case letters. If the
parameter is not one of the legal hexadecimal digits, return -1 as the value of
the function.


A hexadecimal integer is a sequence of hexadecimal digits, such as 34A7,
ff8, 174204, or FADE. If str is a string containing a hexadecimal
integer, then the corresponding base-10 integer can be computed as follows:


value = 0;
for ( i = 0; i < str.length();  i++ )
   value = value*16 + hexValue( str.charAt(i) );


Of course, this is not valid if str contains any characters that
are not hexadecimal digits. Write a program that reads a string from the user.
If all the characters in the string are hexadecimal digits, print out the
corresponding base-10 value. If not, print out an error message.


See the Solution




Exercise 4.3:

Write a function that
simulates rolling a pair of dice until the total on the dice comes up to be a
given number. The number that you are rolling for is a parameter to the
function. The number of times you have to roll the dice is the return value of
the function. The parameter should be one of the possible totals:
2, 3, ..., 12.  The function should throw an IllegalArgumentException
if this is not the case.  Use your function in a program that computes and prints the
number of rolls it takes to get snake eyes. (Snake eyes means that the total
showing on the dice is 2.)


See the Solution




Exercise 4.4:

This exercise builds on Exercise 4.3.
Every time you roll the dice repeatedly, trying to get a given
total, the number of rolls it takes can be different. The question naturally
arises, what's the average number of rolls to get a given total? Write a function that performs the
experiment of rolling to get a given total 10000 times. The desired total is a
parameter to the subroutine. The average number of rolls is the return value.
Each individual experiment should be done by calling the function you wrote for
Exercise 4.3. Now, write a main program that will call your function once for
each of the possible totals (2, 3, ..., 12). It should make a table of the
results, something like:


Total On Dice     Average Number of Rolls
-------------     -----------------------
       2               35.8382
       3               18.0607
       .                .
       .                .


See the Solution




Exercise 4.5:

This exercise asks you to write a few lambda expressions
and a function that returns a lambda expression as its value.  Suppose that
a function interface ArrayProcessor is defined as

public interface ArrayProcessor {
    double apply( double[] array );
}

Write a class that defines four public static final variables
of type ArrayProcessor that process an array in the
following ways: find the maximum value in the array, find the minimum
value in an array, find the sum of the values in the array, and find the
average of the values in the array.  In each case, the value of the variable
should be given by a lambda expression.  The class should also define a
function

public static ArrayProcessor counter( double value ) { ...

This function should return an ArrayProcessor that
counts the number of times that value occurs in an array.  The return
value should be given as a lambda expression.

The class should have a main() routine that tests your work.
The program that you write for this exercise will need access to the
file ArrayProcessor.java, which defines the functional
interface.


See the Solution




Exercise 4.6:

The sample program
RandomMosaicWalk.java from
Section 4.7 shows a "disturbance" that wanders around a
grid of colored squares. When the disturbance visits a square, the color of
that square is changed.  Here's an idea for a variation on that program.
In the new version, all the squares start
out with the default color, black. Every time the disturbance visits a square,
a small amount is added to the green component of the color of that square.
The result will be a visually interesting effect, as the path followed by the
disturbance gradually turns a brighter and brighter green.

Write a subroutine that will add 25 to the green component of one of the squares in the
mosaic.  (But don't let the green component go over 255, since that's the largest
legal value for a color component.)
The row and column numbers of the square should be given as parameters
to the subroutine. Recall that you can discover the current green component of
the square in row r and column c with the function call
Mosaic.getGreen(r,c). Use your subroutine as a substitute for the
changeToRandomColor() subroutine in the program RandomMosaicWalk2.java.
(This is the improved version of the program from Section 4.8 that uses named constants for
the number of rows, number of columns, and square size.) Set the number of rows
and the number of columns to 80. Set the square size to 5.

By default, the rectangles in the mosaic have a "3D" appearance and a gray border that makes
them look nicer in the random walk program.  But for this program, you want to turn off that
effect.  To do so, call Mosaic.setUse3DEffect(false) in the main program.

Don't forget that you will need Mosaic.java and MosaicCanvas.java
to compile and run your program, since they define non-standard classes that are required by the program.



See the Solution




Exercise 4.7:

For this exercise, you will do something even more interesting
with the Mosaic class that was discussed in Section 4.7.
(Again, don't forget that you will need Mosaic.java and MosaicCanvas.java
to compile and run your program.)


The program that you write for this exercise should start by filling a mosaic with
random colors.  Then repeat the following until the user closes the mosaic window:
Select one of the rectangles in the mosaic at random.  Then select one of the
neighboring rectangles—above it, below it, to the left of it, or to the right of it.
Copy the color of the originally selected rectangle to the selected neighbor, so that
the two rectangles now have the same color.

 
As this process is repeated over and over, it becomes more and more likely that neighboring
 squares will have the same color.  The result is to build up larger color patches.  On the other
 hand, once the last square of a given color disappears, there is no way for that color to
 ever reappear. (Extinction is forever!)  If you let the program run long enough, eventually
 the entire mosaic will be one uniform color.


See the Solution




Exercise 4.8:

Write a program that administers a basic addition quiz to the user.
There should be ten questions.  Each question is a simple addition problem such as
17 + 42, where the numbers in the problem are chosen at random
(and are not too big).  The program should ask the user all ten questions and get
the user's answers.  After asking all the questions, the user should print each question
again, with the user's answer.  If the user got the answer right, the program should
say so; if not, the program should give the correct answer.  At the end, tell the user
their score on the quiz, where each correct answer counts for ten points.

The program should use three subroutines, one to create the quiz, one to administer
the quiz, and one to grade the quiz.  It can use three arrays, with three global variables of type
int[], to refer to the arrays.  The first array holds the first number from every
question, the second holds the second number from every questions, and the third holds
the user's answers.


See the Solution






Quiz on Chapter 4


Question 1:


A "black box" has an
interface and an implementation. Explain what is meant by the terms
interface and implementation.


Question 2:


A subroutine is said to have
a contract. What is meant by the contract of a subroutine? When you want
to use a subroutine, why is it important to understand its contract? The
contract has both "syntactic" and "semantic" aspects. What is the syntactic
aspect? What is the semantic aspect?


Question 3:


Briefly explain how
subroutines can be useful in the top-down design of programs.


Question 4:


Discuss the concept of
parameters. What are parameters for? What is the difference between
formal parameters and actual parameters?


Question 5:


Give two different reasons
for using named constants (declared with the final modifier).


Question 6:


What is an API? Give an example.


Question 7:


What might the following expression mean in a program?

(a,b) -> a*a + b*b + 1


Question 8:


Suppose that SupplyInt is a functional interface that
defines the method public int get().   Write a lambda expression of
type SupplyInt that gets a random integer in the range
1 to 6 inclusive.  Write another lambda expression of type
SupplyInt that gets an int by asking the user
to enter an integer and then returning the user's response. 


Question 9:


Write a subroutine named
"stars" that will output a line of stars to standard output. (A star is the
character "*".) The number of stars should be given as a parameter to the
subroutine. Use a for loop. For example, the command "stars(20)" would
output

********************


Question 10:


Write a main()
routine that uses the subroutine that you wrote for Question 7 to output 10
lines of stars with 1 star in the first line, 2 stars in the second line, and
so on, as shown below.

*
**
***
****
*****
******
*******
********
*********
**********


Question 11:


Write a function named
countChars that has a String and a char as
parameters. The function should count the number of times the character occurs
in the string, and it should return the result as the value of the
function.


Question 12:


Write a subroutine with
three parameters of type int. The subroutine should determine which of
its parameters is smallest. The value of the smallest parameter should be
returned as the value of the subroutine.


Question 13:


Write a function that finds the average of the first N elements of
an array of type double.  The array and N are parameters to the
subroutine.



Question 14:


Explain the purpose of the following function, and explain how it works:

static int[] stripZeros( int[] list ) {
    int count = 0;
    for (int i = 0; i < list.length; i++) {
        if ( list[i] != 0 )
            count++;
    }
    int[] newList;
    newList = new int[count];
    int j = 0;
    for (int i = 0; i < list.length; i++) {
        if ( list[i] != 0 ) {
            newList[j] = list[i];
            j++;
        }
    }
    return newList;
}


See the Answers






Chapter 8

Correctness, Robustness, Efficiency



   


In previous chapters, we have covered programming
fundamentals. The chapters that follow this one will cover more advanced aspects of
programming.  The ideas that are presented will generally be more complex and
the programs that use them a little more complicated.  This relatively short chapter is
a kind of turning point in which we look at the problem of getting such complex
programs right.

   
Computer programs that fail are much too common.
Programs are fragile. A tiny error can cause a program to misbehave or crash.
Most of us are familiar with this from our own experience with computers. And
we've all heard stories about software glitches that cause spacecraft to crash,
web sites to go offline, telephone service to fail, and, in a few cases, people to die.


Programs don't have to be as bad as they are. It might well be impossible to
guarantee that programs are problem-free, but careful programming and
well-designed programming tools can help keep the problems to a minimum. This
chapter will look at issues of correctness and robustness of programs.
Section 8.2 discusses how you can think about and
analyze programs to make the programs that you write more likely to 
be correct—possibly even provably correct.



Section 8.3 looks more closely at exceptions and the try..catch
statement, and Section 8.4 introduces assertions, another of the 
tools that Java provides as an aid in writing correct programs.


In Section 8.5, we look at another issue that is important for programs
in the real world: efficiency.  Even a completely correct program is not 
very useful if it takes an unreasonable amount of time to run.  The last
section of this chapter introduces techniques for analyzing the run time
efficiency of algorithms.


Some of the topics in this chapter are the topics of advanced courses in
computer science, and only a brief overview can be given here.  But what you do 
learn here will be useful in the rest of the book.
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Section 8.1

Introduction to Correctness and Robustness






A program is correct
if it accomplishes the task that it was designed to perform. 
It is robust if it can handle illegal inputs and other unexpected
situations in a reasonable way. For example, consider a program that is
designed to read some numbers from the user and then print the same numbers in
sorted order. The program is correct if it works for any set of input numbers.
It is robust if it can also deal with non-numeric input by, for example,
printing an error message and ignoring the bad input. A non-robust program
might crash or give nonsensical output in the same circumstance.


Every program should be correct. (A sorting program that doesn't sort
correctly is pretty useless.) It's not the case that every program needs to be
completely robust. It depends on who will use it and how it will be used. For
example, a small utility program that you write for your own use doesn't have
to be particularly robust.


The question of correctness is actually more subtle than it might appear. A
programmer works from a specification of what the program is supposed to do.
The programmer's work is correct if the program meets its specification. But
does that mean that the program itself is correct? What if the specification is
incorrect or incomplete? A correct program should be a correct implementation
of a complete and correct specification. The question is whether the
specification correctly expresses the intention and desires of the people for
whom the program is being written. This is a question that lies largely outside
the domain of computer science.





8.1.1  Horror Stories



Most computer users have personal experience with programs that don't work
or that crash. In many cases, such problems are just annoyances, but even on a
personal computer there can be more serious consequences, such as lost work or
lost money. When computers are given more important tasks, the consequences of
failure can be proportionately more serious.


About twenty-three years ago, the failure of two multi-million dollar space missions to
Mars was prominent in the news. Both failures were probably due to software
problems, but in both cases the problem was not with an incorrect program as
such. In September 1999, the Mars Climate Orbiter burned up in the Martian
atmosphere because data that was expressed in English units of measurement
(such as feet and pounds) was entered into a computer program that was designed
to use metric units (such as centimeters and grams). A few months later, the
Mars Polar Lander probably crashed because its software turned off its landing
engines too soon. The program was supposed to detect the bump when the
spacecraft landed and turn off the engines then. It has been determined that
deployment of the landing gear might have jarred the spacecraft enough to
activate the program, causing it to turn off the engines when the spacecraft
was still high above the ground. The unpowered spacecraft would then have fallen to the
Martian surface. A more robust system would have checked the altitude before
turning off the engines!


There are many equally dramatic stories of problems caused by incorrect or
poorly written software. Let's look at a few incidents recounted in the book
Computer Ethics by Tom Forester and Perry Morrison. (This book
covers various ethical issues in computing. It, or something like it, is
essential reading for any student of computer science.)



	In 1985 and 1986, one person was killed and several were injured by excess
radiation, while undergoing radiation treatments by a mis-programmed
computerized radiation machine. In another case, over a ten-year period ending
in 1992, almost 1,000 cancer patients received radiation dosages that were 30%
less than prescribed because of a programming error.

	In 1985, a computer at the Bank of New York started destroying records of
on-going security transactions because of an error in a program. It took less
than 24 hours to fix the program, but by that time, the bank was out $5,000,000
in overnight interest payments on funds that it had to borrow to cover the
problem.

	The programming of the inertial guidance system of the F-16 fighter plane
would have turned the plane upside-down when it crossed the equator, if the
problem had not been discovered in simulation. The Mariner 18 space probe was
lost because of an error in one line of a program. The Gemini V space capsule
missed its scheduled landing target by a hundred miles, because a programmer
forgot to take into account the rotation of the Earth.

	In 1990, AT&T's long-distance telephone service was disrupted throughout
the United States when a newly loaded computer program proved to contain a
bug.




Of course, there have been more recent problems.  For example, 
computer software error contributed to the 
Northeast Blackout
of 2003, one of the largest power outages in history. 
In 2006, the Airbus A380 was delayed
by software incompatibility problems, at a cost of perhaps billions of dollars.
In 2007, a software problem grounded thousands of planes at the Los Angeles International Airport.
On May 6, 2010,
a flaw in an automatic trading program apparently resulted in
 a 1000-point drop
in the Dow Jones Industrial Average.


These are just a few examples. Software problems are all too common. As
programmers, we need to understand why that is true and what can be done about
it.



   



8.1.2  Java to the Rescue



Part of the problem, according to the inventors of Java, can be traced to
programming languages themselves. Java was designed to provide some protection
against certain types of errors. How can a language feature help prevent
errors? Let's look at a few examples.


Some programming languages do not require variables to be declared. In
such languages, when a variable name is used in a program, the variable is
created automatically. You might consider this more convenient than having to
declare every variable explicitly, but there is an unfortunate consequence: An
inadvertent spelling error might introduce an extra variable that you had no
intention of creating. This type of error was responsible, according to one
famous story, for yet another lost spacecraft. In the FORTRAN
programming language, the command "DO 20 I = 1,5" is the first
statement of a counting loop. Now, spaces are insignificant in FORTRAN, so this
is equivalent to "DO20I=1,5". On the other hand, the command
"DO20I=1.5", with a period instead of a comma, is an assignment
statement that assigns the value 1.5 to the variable DO20I.
Supposedly, the inadvertent substitution of a period for a comma in a statement
of this type caused a rocket to blow up on take-off. Because FORTRAN
doesn't require variables to be declared, the compiler would be happy to accept
the statement "DO20I=1.5." It would just create a new variable named
DO20I. If FORTRAN required variables to be declared, the
compiler would have complained that the variable DO20I was
undeclared.


While most programming languages today do require variables to be declared,
there are other features in common programming languages that can cause
problems. Java has eliminated some of these features. Some people complain that
this makes Java less efficient and less powerful. While there is some justice
in this criticism, the increase in security and robustness is probably worth
the cost in most circumstances. The best defense against some types of errors
is to design a programming language in which the errors are impossible. In
other cases, where the error can't be completely eliminated, the language can
be designed so that when the error does occur, it will automatically be
detected. This will at least prevent the error from causing further harm, and
it will alert the programmer that there is a bug that needs fixing. Let's look
at a few cases where the designers of Java have taken these approaches.


An array is created with a certain number of locations, numbered from zero
up to some specified maximum index. It is an error to try to use an array
location that is outside of the specified range. In Java, any attempt to do so
is detected automatically by the system. In some other languages, such as C and
C++, it's up to the programmer to make sure that the index is within the legal
range. Suppose that an array, A, has three locations, A[0],
A[1], and A[2]. Then A[3], A[4], and so on
refer to memory locations beyond the end of the array. In Java, an attempt to
store data in A[3] will be detected. The program will be terminated
(unless the error is "caught", as discussed in Section 3.7). 
In C or C++, the computer will just go ahead and store the data in
memory that is not part of the array. Since there is no telling what that
memory location is being used for, the result will be unpredictable. The
consequences could be much more serious than a terminated program. (See, for
example, the discussion of buffer overflow errors later in this section.)


Pointers are a notorious source of programming errors. In Java, a variable
of object type holds either a pointer to an object or the special value
null. Any attempt to use a null value as if it were a pointer
to an actual object will be detected by the system. In some other languages,
again, it's up to the programmer to avoid such null pointer errors. In my first
Macintosh computer, a long time ago, a null pointer was actually implemented as if it
were a pointer to memory location zero. A program could use a null pointer to
change values stored in memory near location zero. Unfortunately, the Macintosh
stored important system data in those locations. Changing that data could cause
the whole system to crash, a consequence more severe than a single failed
program.


Another type of pointer error occurs when a pointer value is pointing to an
object of the wrong type or to a segment of memory that does not even hold a
valid object at all. These types of errors are impossible in Java, which does
not allow programmers to manipulate pointers directly. In other languages, it
is possible to set a pointer to point, essentially, to any location in memory.
If this is done incorrectly, then using the pointer can have unpredictable
results.


Another type of error that cannot occur in Java is a memory leak. In Java,
once there are no longer any pointers that refer to an object, that object is
"garbage collected" so that the memory that it occupied can be reused. In other
languages, it is the programmer's responsibility to return unused memory to the
system. If the programmer fails to do this, unused memory can build up, leaving
less memory for programs and data. There is a story that many common programs
for older Windows computers had so many memory leaks that the computer would run out
of memory after a few days of use and would have to be restarted.


Many programs have been found to suffer from buffer overflow errors. 
Buffer overflow errors often make the news because they
are responsible for many network security problems. When one computer receives
data from another computer over a network, that data is stored in a buffer. The
buffer is just a segment of memory that has been allocated by a program to hold
data that it expects to receive. A buffer overflow occurs when more data is
received than will fit in the buffer. The question is, what happens then? If
the error is detected by the program or by the networking software, then the
only thing that has happened is a failed network data transmission. The real
problem occurs when the software does not properly detect buffer overflows. In
that case, the software continues to store data in memory even after the buffer
is filled, and the extra data goes into some part of memory that was not
allocated by the program as part of the buffer. That memory might be in use for
some other purpose. It might contain important data. It might even contain part
of the program itself. This is where the real security issues come in. Suppose
that a buffer overflow causes part of a program to be replaced with extra data
received over a network. When the computer goes to execute the part of the
program that was replaced, it's actually executing data that was received from
another computer. That data could be anything. It could be a program that
crashes the computer or takes it over. A malicious programmer who finds a
convenient buffer overflow error in networking software can try to exploit that
error to trick other computers into executing his programs.


For software written completely in Java, buffer overflow errors are
impossible. The language simply does not provide any way to store data into
memory that has not been properly allocated. To do that, you would need a
pointer that points to unallocated memory or you would have to refer to an
array location that lies outside the range allocated for the array. As
explained above, neither of these is possible in Java. (However, there could
conceivably still be errors in Java's standard classes, since some of the
methods in these classes are actually written in the C programming language
rather than in Java.  In fact, Java's internal security errors have at
times been a problem for the language.)


It's clear that language design can help prevent errors or detect them when
they occur. Doing so involves restricting what a programmer is allowed to do.
Or it requires tests, such as checking whether a pointer is null, that
take some extra processing time. Some programmers feel that the sacrifice of
power and efficiency is too high a price to pay for the extra security. In some
applications, this is true. However, there are many situations where safety and
security are primary considerations. Java is designed for such situations.



   



8.1.3  Problems Remain in Java



There is one area where the designers of Java chose not to detect errors
automatically: numerical computations. In Java, a value of type int is
represented as a 32-bit binary number. With 32 bits, it's possible to represent
a little over four billion different values. The values of type int
range from -2147483648 to 2147483647. What happens when the result of a
computation lies outside this range? For example, what is
2147483647 + 1? And what is 2000000000 * 2? The
mathematically correct result in each case cannot be represented as a value of
type int. These are examples of integer overflow. 
In most cases, integer overflow should be considered an error.
However, Java does not automatically detect such errors. For example, it will
compute the value of 2147483647 + 1 to be the negative number,
-2147483648. (What happens is that any extra bits beyond the 32-nd bit in the
correct answer are discarded. Values greater than 2147483647 will "wrap around"
to negative values. Mathematically speaking, the result is always "correct
modulo 232.")


For example, consider the 3N+1 program, which was discussed in
Subsection 3.2.2. Starting from a positive integer
N, the program computes a certain sequence of integers:


while ( N != 1 ) {
   if ( N % 2 == 0 )  // If N is even...
      N = N / 2;
   else
      N = 3 * N + 1;
   System.out.println(N);
}


But there is a problem here: If N is too large, then the value of
3*N+1 will not be mathematically correct because of integer overflow.
The problem arises whenever 3*N+1 > 2147483647, that is when N
> 2147483646/3. For a completely correct program, we should check for
this possibility before computing 3*N+1:


while ( N != 1 ) {
   if ( N % 2 == 0 )  // If N is even...
      N = N / 2;
   else {
      if (N > 2147483646/3) {
         System.out.println("Sorry, but the value of N has become");
         System.out.println("too large for your computer!");
         break;
      }
      N = 3 * N + 1;
   }
   System.out.println(N);
}


(Be sure you understand why we can't just test "if (3*N+1 > 2147483647)".)
The problem here is not that the original algorithm for computing
3N+1 sequences was wrong. The problem is that it just can't be
correctly implemented using 32-bit integers. Many programs ignore this type of
problem. But integer overflow errors have been responsible for their share of
serious computer failures, and a completely robust program should take the
possibility of integer overflow into account. (The infamous "Y2K" bug at the start of
the year 2000 was, in fact, just this sort of error.)


For numbers of type double, there are even more problems. There are
still overflow errors, which occur when the result of a computation is outside
the range of values that can be represented as a value of type double.
This range extends up to about 1.7 times 10 to the power 308. Numbers beyond
this range do not "wrap around" to negative values. Instead, they are
represented by special values that have no real numerical equivalent. The special values
Double.POSITIVE_INFINITY and Double.NEGATIVE_INFINITY
represent numbers outside the range of legal values. For example, 20 * 1e308 is
computed to be Double.POSITIVE_INFINITY. Another special value of type
double, Double.NaN, represents an illegal or undefined
result. ("NaN" stands for "Not a Number".) For example, the result of dividing zero
by zero or taking the square root of a negative number is Double.NaN.
You can test whether a number x is this special not-a-number value by
calling the boolean-valued function Double.isNaN(x).


For real numbers, there is the added complication that most real numbers can
only be represented approximately on a computer. A real number can have an
infinite number of digits after the decimal point. A value of type
double is only accurate to about 15 digits. The real number 1/3, for
example, is the repeating decimal 0.333333333333..., and there is no way to
represent it exactly using a finite number of digits. Computations with real
numbers generally involve a loss of accuracy. In fact, if care is not
exercised, the result of a large number of such computations might be
completely wrong! There is a whole field of computer science, known as
numerical analysis, which is devoted to studying
algorithms that manipulate real numbers.



So you see that not all possible errors are avoided or detected automatically in Java. 
Furthermore, even when an error is detected automatically, the system's default response is
to report the error and terminate the program. This is hardly robust behavior!
So, a Java programmer still needs to learn techniques for avoiding and dealing with
errors. These are the main topics of the next three sections.



      




Section 8.2

Writing Correct Programs






Correct programs don't just happen. It takes
planning and attention to detail to avoid errors in programs. There are some
techniques that programmers can use to increase the likelihood that their
programs are correct.





8.2.1  Provably Correct Programs


   
In some cases, it is possible to prove that a program is
correct. That is, it is possible to demonstrate mathematically that the
sequence of computations represented by the program will always produce the
correct result. Rigorous proof is difficult enough that in practice it can only
be applied to fairly small programs. Furthermore, it depends on the fact that
the "correct result" has been specified correctly and completely. As I've
already pointed out, a program that correctly meets its specification is not
useful if its specification was wrong. Nevertheless, even in everyday
programming, we can apply some of the ideas and techniques that are used in
proving that programs are correct.


The fundamental ideas are process and
state. A state consists of all the information
relevant to the execution of a program at a given moment during its execution.
The state includes, for example, the values of all the
variables in the program, the output that has been produced, any input that is
waiting to be read, and a record of the position in the program where the
computer is working. A process is the sequence of states that the computer goes
through as it executes the program. From this point of view, the meaning of a
statement in a program can be expressed in terms of the effect that the
execution of that statement has on the computer's state. As a simple example,
the meaning of the assignment statement "x = 7;" is that
after this statement is executed, the value of the variable x will be
7. We can be absolutely sure of this fact, so it is something upon which we can
build part of a mathematical proof.


In fact, it is often possible to look at a program and deduce that some fact
must be true at a given point during the execution of a program. For example,
consider the do loop:


do {
   System.out.print("Enter a positive integer: ");
   N = TextIO.getlnInt();
} while (N <= 0);


After this loop ends, we can be absolutely sure that the value of the
variable N is greater than zero. The loop cannot end until this
condition is satisfied. This fact is part of the meaning of the while
loop. More generally, if a while loop uses the test "while
(condition)", and if there are no break
statements in the loop, then after the loop ends, we can be
sure that the 
condition
 is false. We can then
use this fact to draw further deductions about what happens as the execution of
the program continues. (With a loop, by the way, we also have to worry about
the question of whether the loop will ever end. This is something that has to
be verified separately.)








8.2.2  Preconditions and Postconditions



A fact that can be proven to be true after a given program segment has been
executed is called a postcondition of that program
segment. Postconditions are known facts upon which we can build further
deductions about the behavior of the program. A postcondition of a program as a
whole is simply a fact that can be proven to be true after the program has
finished executing. A program can be proven to be correct by showing that the
postconditions of the program meet the program's specification.


Consider the following program segment, where all the variables are of type
double:


disc = B*B - 4*A*C;
x = (-B + Math.sqrt(disc)) / (2*A);


The quadratic formula (from high-school mathematics) assures us that the
value assigned to x is a solution of the equation A*x2 +
B*x + C = 0, provided that the value of disc is greater than or equal
to zero and the value of A is not zero. If we can
guarantee that B*B-4*A*C >= 0 and that A != 0, then the
fact that x is a solution of the equation becomes a postcondition of
the program segment. We say that the condition, B*B-4*A*C >= 0 is a
precondition of the program segment. The condition
that A != 0 is another precondition. A precondition is defined to be a
condition that must be true at a given point in the execution of a program in
order for the program to continue correctly. A precondition is something that
you want to be true. It's something that you have to check or force to be true,
if you want your program to be correct.


We've encountered preconditions and postconditions once before, in Subsection 4.7.1.
That section introduced preconditions and
postconditions as a way of specifying the contract of a subroutine. As the
terms are being used here, a precondition of a subroutine is just a
precondition of the code that makes up the definition of the subroutine, and
the postcondition of a subroutine is a postcondition of the same code. In this
section, we have generalized these terms to make them more useful in talking
about program correctness in general.


Let's see how this works by considering a longer program segment:


do {
   System.out.println("Enter A, B, and C.");
   System.out.println("A must be non-zero and B*B-4*A*C must be >= 0.");
   System.out.print("A = ");
   A = TextIO.getlnDouble();
   System.out.print("B = ");
   B = TextIO.getlnDouble();
   System.out.print("C = ");
   C = TextIO.getlnDouble();
   if (A == 0 || B*B - 4*A*C < 0)
      System.out.println("Your input is illegal.  Try again.");
} while (A == 0 || B*B - 4*A*C < 0);

disc = B*B - 4*A*C;
x = (-B + Math.sqrt(disc)) / (2*A);


After the loop ends, we can be sure that B*B-4*A*C >= 0 and that
A != 0. The preconditions for the last two lines are fulfilled, so the
postcondition that x is a solution of the equation A*x2 +
B*x + C = 0 is also valid. This program segment correctly and provably computes
a solution to the equation. (Actually, because of problems with representing real
numbers on computers, this is not 100% true. The algorithm is correct,
but the program is not a perfect implementation of the algorithm. See
the discussion in Subsection 8.1.3.)


Here is another variation, in which the precondition is checked by an
if statement. In the first part of the if statement, where a
solution is computed and printed, we know that the preconditions are fulfilled.
In the other parts, we know that one of the preconditions fails to hold. In any
case, the program is correct.


System.out.println("Enter your values for A, B, and C.");
System.out.print("A = ");
A = TextIO.getlnDouble();
System.out.print("B = ");
B = TextIO.getlnDouble();
System.out.print("C = ");
C = TextIO.getlnDouble();

if (A != 0 && B*B - 4*A*C >= 0) {
   disc = B*B - 4*A*C;
   x = (-B + Math.sqrt(disc)) / (2*A);
   System.out.println("A solution of A*X*X + B*X + C = 0 is " + x);
}
else if (A == 0) {
   System.out.println("The value of A cannot be zero.");
}
else {
   System.out.println("Since B*B - 4*A*C is less than zero, the");
   System.out.println("equation A*X*X + B*X + C = 0 has no solution.");
}


Whenever you write a program, it's a good idea to watch out for
preconditions and think about how your program handles them. Often, a
precondition can offer a clue about how to write the program.


For example, every array reference, such as A[i], has a
precondition: The index must be within the range of legal indices for the
array. For A[i], the precondition is that 0 <= i 
< A.length. The computer will check this condition when it evaluates
A[i], and if the condition is not satisfied, the program will be
terminated. In order to avoid this, you need to make sure that the index has a
legal value. (There is actually another precondition, namely that A is
not null, but let's leave that aside for the moment.) Consider the
following code, which searches for the number x in the array
A and sets the value of i to be the index of
the array element that contains x:


i = 0;
while (A[i] != x) {
   i++;
}


As this program segment stands, it has a precondition, namely that
x is actually in the array. If this precondition is satisfied, then
the loop will end when A[i] == x. That is, the value of i
when the loop ends will be the position of x in the array. However, if
x is not in the array, then the value of i will just keep
increasing until it is equal to A.length. At that time, the reference
to A[i] is illegal and the program will be terminated. To avoid this,
we can add a test to make sure that the precondition for referring to
A[i] is satisfied:


i = 0;
while (i < A.length && A[i] != x) {
   i++;
}


Now, the loop will definitely end. After it ends, i will satisfy
either i == A.length or A[i] == x. 
An if statement
can be used after the loop to test which of these conditions caused the loop to
end:


i = 0;
while (i < A.length && A[i] != x) {
   i++;
}

if (i == A.length)
   System.out.println("x is not in the array");
else
   System.out.println("x is in position " + i);








8.2.3  Invariants



Let's look at how loops work in more detail.  Consider a
subroutine for finding the sum of the elements in an array of int:


static int arraySum( int[] A ) {
    int total = 0;
    int i = 0;
    while ( i < A.length ) {
        total = total + A[i];
        i = i + 1;
    }
    return total;
}


(Note, by the way, that the requirements that A is not 
null is a precondition of the subroutine.  If it is violated, the code in 
the subroutine will throw a NullPointerException.)


How can we be sure that this subroutine works?  We need to prove
that when the return statement is executed, the value
of total is the sum of all the elements in A.  One way
to think about this problem is in terms of loop invariants.


A loop invariant is, roughly, a statement that remains true as the
loop is executed.  More precisely, we can show that a statement is an 
invariant for a loop if the following holds: As long as the statement
is true before the code inside the loop is executed, then it will
also be true after the code inside the loop has been executed.  That is,
a loop invariant is both a precondition and a postcondition of
the body of the loop.


A loop invariant for the loop in the above subroutine is,
"total is equal to the sum of the first i
elements of A."  Suppose this is
true at the beginning of the while loop.  That is, before the statement
"total = total + A[i]" is executed, total
is the sum of the first i elements of the
array (namely A[0] through A[i-1]).
After A[i] is added to total,
total is now the sum of the first i+1
elements of the array.  At this point, the loop invariant
is not true.  However, as soon as the next statement,
"i = i + 1" is executed, replacing
i with i+1, the loop
invariant becomes true again.  We have checked that if the
loop invariant is true at the start of the body of the loop, then is
also true at the end.


Note that a loop invariant is not necessarily true at every
point during the execution of a loop.  Executing one of the statements
in the loop can make it false temporarily, as long as later statements
in the loop make it true again.


So, have we proved that the subroutine arraySum() is
correct?  Not quite.  There are still a few things to check.  First of
all, we need to make sure that the loop invariant is true before the
very first time the loop is executed. At that point, i
is zero, and total is also equal to zero,  which is the
correct sum of zero elements.  So the loop invariant is true
before the loop. Once we know that, we know that it remains true after each
execution of the loop (because it's an invariant), and in particular,
we know that it will still be true after the loop ends.


But for that to do us any good, we need to check that the
loop actually does end!  In each execution of the loop,
the value of i goes up by one.  That means that
eventually it has to reach A.length.  At that
point, the condition in the while loop
is false, and the loop ends.


After the loop ends, we know that i equals
A.length, and we know that the loop invariant
is true.  At that point, since i is A.length, the loop invariant says,
"total is the sum of the first A.length"
elements of A."  But that includes all of the
elements of A.  So, the loop invariant gives us
exactly what we wanted to show:  When total is
returned by the subroutine, it is equal to the sum of all the 
elements of the array!


This might seem to you to be a lot of work to prove something
that's obvious.  But if you try to explain why it's
obvious that arraySum() works, you'll probably
find yourself using the logic behind loop invariants, even if
you don't use the term.


Let's look more quickly at a similar example.  Consider a
subroutine that finds the maximum value in an array of int,
where we assume that the array has length at least one:


static int maxInArray( int[] A ) {
    int max = A[0];
    int i = 1;
    while ( i < A.length ) {
        if ( A[i] > max )
            max = A[i];
        i = i + 1;
    }
    return max;
}


In this case, we have a loop invariant that says,
"max is the largest value among the first
i elements of A."
This statement is true before the loop starts, when
i is 1 and max is A[0].
Suppose it is true at the start of the loop,
before the if statement.
After the if statement, max
is greater than or equal to A[i], because
that is a postcondition of the if statement,
and it is greater than or equal to A[0]
through A[i-1], because of the truth
of the loop invariant.  Put those two facts together,
and you get that max is the largest value
among the first i+1 elements of A.
When i is replaced by i+1 in the
next statement, the loop invariant becomes true again.
After the loop ends, i is A.length,
and the loop invariant tells us exactly
what we need to know:  max is the largest
value in the whole array.


Loop invariants are not just useful for proving that
programs are correct.  Thinking in terms of loop invariants
can be useful when you are trying to develop an algorithm.
As an example, let's look at the insertion sort algorithm
that was discussed in Subsection 7.5.3.
Suppose that we want to sort an array A.
That is, at the end of the algorithm, we want it to be
true that


A[0] <= A[1] <= ... <= A[A.length-1]


The question is, what step-by-step procedure can we use to make this statement true?
Well, can we come up with a loop invariant that, at the end, will become
the statement that we want to be true?  If we want all of the elements
to be sorted at the end, how about a loop invariant that says that
some of the elements are sorted—say, that the first i
elements are sorted.  This leads to an outline for the algorithm:


i = 0;
while (i < A.length ) {
   // Loop invariant:  A[0] <= A[1] <= ... <= A[i-1]
      .
      .  // Code that adds A[i] to the sorted portion of the array
      .
   i = i + 1;
}
// At this point, i = A.length, and A[0] <= A[1] <= ... <= A[A.length-1]


The loop invariant is true before the while loop,
and when the loop ends, the loop invariant becomes precisely the statement
that we want to be true at the end of the algorithm.
We know what we have to do to complete the
algorithm:  Develop code for the inside of the loop that will preserve
the truth of the loop invariant.  If we can do that, the loop invariant
will assure us that the algorithm that we have developed is correct.
The algorithm for adding A[i] to the sorted portion of
the array will require its own loop, with its own loop invariant. I'll
leave you to think about that.





There is another kind of invariant that is useful for thinking
about programs: class invariants.
A class invariant is, roughly, a statement that is always true
about the state of a class, or about objects created from that class.
For example, suppose we have a PairOfDice class
in which the values shown on the dice are stored in instance
variables die1 and die2.
(See Section 5.2 for a variety of such classes.)
We might like to have a class invariant that says, "the values of
die1 and die2 are in the range 1 through 6."
(This would be a statement about any object created from the
PairOfDice class, not about the class as such.)
After all, this is a statement that should always be true about
any pair of dice.



But in order to be a class invariant, the statement has to be
guaranteed true at all times.  If die1 and die2
are public instance variables, then no such guarantee is
possible, since there is no way to control what values a program that uses
the class might assign to them.
So, we are led to make die1 and die2
private.  Then we just have to make sure that all of the
code in the class definition respects the class invariant.
That is, first of all, when a PairOfDice object
is constructed, the variables die1 and die2
must be initialized to be in the range 1 to 6.  Furthermore, every
method in the class must preserve the truth of the class invariant.
In this case, that means that any method that assigns a value to
die1 or die2 must ensure that the
value is in the range 1 to 6.  For example, a setter method
would have to check that a legal value is being assigned.


In general, we can say that a class invariant is a postcondition
of every constructor and is both a precondition and a postcondition
of every method in the class.  When you are writing a class, a
class invariant is something that you want to be true at
all times.  When you write a method, you need to make sure that
the code in that method respects the invariant:  Assuming that
the class invariant is true when the method in called, you need to
ensure that it will still be true after the code in the method is
executed.  This kind of thinking can be a very useful tool
for class design.


As another example, consider a dynamic array class, 
like the one in Subsection 7.2.4.  That class uses
an ordinary array to store values and a counter to keep track
of how many items have been added to the dyanmic array:


private int[] items = new int[8];
private int itemCount = 0;


Class invariants include the facts that "itemCount is the number of items,"
that "0 <= itemCount < items.length," and that "the items are in
the array elements items[0] through items[itemCount-1]."
Keeping these invariants in mind can be helpful when writing the class.  When writing a method
for adding an item, the first invariant reminds you to increment itemCount
in order to ensure that the invariant remains true.  The second invariant tells you
where the new item has to be stored.  And the third invariant tells you that if
incrementing itemCount makes it equal to items.length,
then you will need to do something to avoid violating the invariant.  (Since itemCount
has to be incremented, the invariant means that you will have to make the array bigger.)


In future chapters, I will occasionally point out how it can be useful to
think in terms of preconditions, postconditions, and invariants.


I should note that reasoning about invariants becomes much more complicated in parallel
programs, when several threads that are running at the same time and are accessing the
same data.  This will be an issue when we encounter threads in Chapter 12.




   



8.2.4  Robust Handling of Input



One place where correctness and robustness are important—and especially
difficult—is in the processing of input data, whether that data is typed in
by the user, read from a file, or received over a network. Files and networking
will be covered in Chapter 11, which will
make essential use of material that will be covered in the next section 
of this chapter. For now, let's look at an example of processing user input.


Examples in this textbook use my TextIO class for reading input
from the user. This class has built-in error handling. For example, the
function TextIO.getDouble() is guaranteed to return a legal value of
type double. If the user types an illegal value, then
TextIO will ask the user to re-enter their response; your
program never sees the illegal value.  However, this approach can be
clumsy and unsatisfactory, especially when the user is entering complex data.
In the following example, I'll do my own error-checking.


Sometimes, it's useful to be able to look ahead at what's coming up in the
input without actually reading it. For example, a program might need to know
whether the next item in the input is a number or a word. For this purpose, the
TextIO class includes the function TextIO.peek(). This
function returns a char which is the next character in the user's
input, but it does not actually read that character. If the next thing in the
input is an end-of-line, then TextIO.peek() returns the new-line
character, '\n'.


Often, what we really need to know is the next non-blank
character in the user's input. Before we can test this, we need to skip past
any spaces (and tabs). Here is a function that does this. It uses
TextIO.peek() to look ahead, and it reads characters until the next
character in the input is either an end-of-line or some non-blank character.
(The function TextIO.getAnyChar() reads and returns the next character
in the user's input, even if that character is a space. By contrast, the more
common TextIO.getChar() would skip any blanks and then read and return
the next non-blank character. We can't use TextIO.getChar() here since
the object is to skip the blanks without reading the next
non-blank character.)


/**
 * Reads past any blanks and tabs in the input.
 * Postcondition:  The next character in the input is an
 *                 end-of-line or a non-blank character.
 */
static void skipBlanks() {
   char ch;
   ch = TextIO.peek();
   while (ch == ' ' || ch == '\t') {
         // Next character is a space or tab; read it
         // and look at the character that follows it.
      ch = TextIO.getAnyChar();
      ch = TextIO.peek();
   }
} // end skipBlanks()

   
(In fact, this operation is so common that it is built into 
TextIO.  The method TextIO.skipBlanks()
does essentially the same thing as the skipBlanks() method
presented here.)


An example in Subsection 3.5.3 allowed the user to
enter length measurements such as "3 miles" or "1ft". It would then convert
the measurement into inches, feet, yards, and miles. But people commonly use
combined measurements such as "3 feet 7 inches". Let's improve the program so
that it allows inputs of this form.


More specifically, the user will input lines containing one or more
measurements such as "1 foot" or "3 miles 20 yards 2 feet". The legal units of
measure are inch, foot, yard, and mile. The program will also recognize plurals
(inches, feet, yards, miles) and abbreviations (in, ft, yd, mi). Let's write a
subroutine that will read one line of input of this form and compute the
equivalent number of inches. The main program uses the number of inches to
compute the equivalent number of feet, yards, and miles. If there is any error
in the input, the subroutine will print an error message and return the value
-1. The subroutine assumes that the input line is not empty. The main program
tests for this before calling the subroutine and uses an empty line as a signal
for ending the program.


Ignoring the possibility of illegal inputs, a pseudocode algorithm for the
subroutine is


inches = 0    // This will be the total number of inches
while there is more input on the line:
    read the numerical measurement
    read the units of measure
    add the measurement to inches
return inches


We can test whether there is more input on the line by checking whether the
next non-blank character is the end-of-line character. But this test has a
precondition: We have to make sure that the next character in the input is
in fact either an end-of-line or is a non-blank.  To ensure that, we
need to skip over any blank characters. So, the algorithm becomes


inches = 0
skipBlanks()
while TextIO.peek() is not '\n':
    read the numerical measurement
    read the unit of measure
    add the measurement to inches
    skipBlanks()
return inches


Note the call to skipBlanks() at the end of the while
loop. The call to skipBlanks() ensures that the precondition 
for the test is again true.  More generally, if the test in a while
loop has a precondition, then you have to make sure that this precondition
holds at the end of the while loop, before the computer jumps
back to re-evaluate the test, as well as before the start of the loop.


What about error checking? Before reading the numerical measurement, we have
to make sure that there is really a number there to read. Before reading the
unit of measure, we have to test that there is something there to read. (The
number might have been the last thing on the line. An input such as "3",
without a unit of measure, is not acceptable.) Also, we have to check that the unit of
measure is one of the valid units: inches, feet, yards, or miles. Here is an
algorithm that includes error-checking:


inches = 0
skipBlanks()

while TextIO.peek() is not '\n':

    if the next character is not a digit:
       report an error and return -1
       
    Let measurement = TextIO.getDouble();

    skipBlanks()    // Precondition for the next test!!
    if the next character is end-of-line:
       report an error and return -1                   
    Let units = TextIO.getWord()
    
    if the units are inches:
        add measurement to inches
    else if the units are feet:
        add 12*measurement to inches
    else if the units are yards:
        add 36*measurement to inches
    else if the units are miles:
        add 12*5280*measurement to inches
    else
        report an error and return -1
 
    skipBlanks()

return inches


As you can see, error-testing adds significantly to the complexity of the
algorithm. Yet this is still a fairly simple example, and it doesn't even
handle all the possible errors. For example, if the user enters a numerical
measurement such as 1e400 that is outside the legal range of values of type
double, then the program will fall back on the default error-handling
in TextIO. 
Something even more interesting happens if the measurement is "1e308 miles".
The number 1e308 is legal, but the corresponding number of inches is outside
the legal range of values for type double. As mentioned in the 
previous section, 
the computer will get the value Double.POSITIVE_INFINITY
when it does the computation. You might want to run the program and try this out.


Here is the subroutine written out in Java:


/**
 * Reads the user's input measurement from one line of input.
 * Precondition:   The input line is not empty.
 * Postcondition:  If the user's input is legal, the measurement
 *                 is converted to inches and returned.  If the
 *                 input is not legal, the value -1 is returned.
 *                 The end-of-line is NOT read by this routine.
 */
static double readMeasurement() {

   double inches;  // Total number of inches in user's measurement.
   
   double measurement;  // One measurement, 
                        //   such as the 12 in "12 miles"
   String units;        // The units specified for the measurement,
                        //   such as "miles"
   
   char ch;  // Used to peek at next character in the user's input.

   inches = 0;  // No inches have yet been read.

   skipBlanks();
   ch = TextIO.peek();
   
   /* As long as there is more input on the line, read a measurement and
      add the equivalent number of inches to the variable, inches.  If an
      error is detected during the loop, end the subroutine immediately
      by returning -1. */

   while (ch != '\n') {
   
       /* Get the next measurement and the units.  Before reading
          anything, make sure that a legal value is there to read. */
   
       if ( ! Character.isDigit(ch) ) {
           System.out.println(
                 "Error:  Expected to find a number, but found " + ch);
           return -1;
       }
       measurement = TextIO.getDouble();
       
       skipBlanks();
       if (TextIO.peek() == '\n') {
           System.out.println(
                 "Error:  Missing unit of measure at end of line.");
           return -1;
       }
       units = TextIO.getWord();
       units = units.toLowerCase();
       
       /* Convert the measurement to inches and add it to the total. */
       
       if (units.equals("inch") 
               || units.equals("inches") || units.equals("in")) {
           inches += measurement;
       }
       else if (units.equals("foot") 
                  || units.equals("feet") || units.equals("ft")) {
           inches += measurement * 12;
       }
       else if (units.equals("yard") 
                  || units.equals("yards") || units.equals("yd")) {
           inches += measurement * 36;
       }
       else if (units.equals("mile") 
                  || units.equals("miles") || units.equals("mi")) {
           inches += measurement * 12 * 5280;
       }
       else {
           System.out.println("Error: \"" + units 
                             + "\" is not a legal unit of measure.");
           return -1;
       }
     
       /* Look ahead to see whether the next thing on the line is 
          the end-of-line. */
      
       skipBlanks();
       ch = TextIO.peek();
       
   }  // end while
   
   return inches;
   
} // end readMeasurement()



The source code for the complete program can be found in the file 
LengthConverter2.java.

   






Section 8.3

Exceptions and try..catch



   


Getting a program to work under ideal circumstances
is usually a lot easier than making the program robust. 
A robust program can survive unusual or "exceptional"
circumstances without crashing. One approach to writing robust programs is to
anticipate the problems that might arise and to include tests in the program
for each possible problem. For example, a program will crash if it tries to use
an array element A[i], when i is not within the declared
range of indices for the array A. A robust program must anticipate the
possibility of a bad index and guard against it.  One way to do this is to
write the program in a way that ensures (as a postcondition of the code that
precedes the array reference) that the index is in the legal range.
Another way is to test whether the index value is legal before using it in the array.
This could be done with an if statement:


if (i < 0 || i >= A.length) {
   ...  // Do something to handle the out-of-range index, i
}
else {
   ...  // Process the array element, A[i]
}


There are some problems with this approach. It is difficult and sometimes
impossible to anticipate all the possible things that might go wrong. It's not
always clear what to do when an error is detected. Furthermore, trying to
anticipate all the possible problems can turn what would otherwise be a
straightforward algorithm into a messy tangle of if statements.

   



8.3.1  Exceptions and Exception Classes



We have already seen in Section 3.7
that Java provides a neater, more structured alternative
technique for dealing with errors that can occur while a program is running. The
technique is referred to as exception handling.  The
word "exception" is meant to be more general than "error." It includes any
circumstance that arises as the program is executed which is meant to be
treated as an exception to the normal flow of control of the program. An
exception might be an error, or it might just be a special case that you would
rather not have clutter up your elegant algorithm.


When an exception occurs during the execution of a program, we say that the
exception is thrown. When this happens, the normal
flow of the program is thrown off-track, and the program is in danger of
crashing. However, the crash can be avoided if the exception is 
caught and handled in some way.  An exception can be thrown in
one part of a program and caught in a different part. An exception that is not
caught will generally cause the program to crash. (More exactly, the thread
that throws the exception will crash. In a multithreaded program, it is
possible for other threads to continue even after one crashes.  We will
cover threads in Chapter 12. In particular, GUI
programs are multithreaded, and parts of the program might continue to
function even while other parts are non-functional because of exceptions.)


By the way, since Java programs are executed by a Java interpreter, having a
program crash simply means that it terminates abnormally and prematurely. It
doesn't mean that the Java interpreter will crash. In effect, the interpreter
catches any exceptions that are not caught by the program. The interpreter
responds by terminating the program. In many other programming languages, a
crashed program will sometimes crash the entire system and freeze the computer
until it is restarted. With Java, such system crashes should be impossible—which 
means that when they happen, you have the satisfaction of blaming the
system rather than your own program.


Exceptions were introduced in Section 3.7, along with the
try..catch statement, which is used to catch and handle exceptions.
However, that section did not cover the complete syntax of try..catch
or the full complexity of exceptions.  In this section, we cover these topics in
full detail.

   


   
When an exception occurs, the thing that is actually "thrown" is an object.
This object can carry information (in its instance variables) from the point
where the exception occurs to the point where it is caught and handled. This
information always includes the subroutine call stack, 
which is a list of the subroutines that were being executed when
the exception was thrown. (Since one subroutine can call another, several
subroutines can be active at the same time.) Typically, an exception object
also includes an error message describing what happened to cause the exception,
and it can contain other data as well.   All exception objects must belong to
a subclass of the standard class java.lang.Throwable. 
In general, each different type of exception is represented by
its own subclass of Throwable, and these subclasses
are arranged in a fairly complex class hierarchy that shows the relationship
among various types of exception.
Throwable has two direct
subclasses, Error and Exception. 
These two subclasses in turn
have many other predefined subclasses. In addition, a programmer can create new
exception classes to represent new types of exception.


Most of the subclasses of the class Error represent serious errors
within the Java virtual machine that should ordinarily cause program
termination because there is no reasonable way to handle them. In general, you should not
try to catch and handle such errors.  An example is a
ClassFormatError, which occurs when the Java virtual machine finds
some kind of illegal data in a file that is supposed to contain a compiled Java
class. If that class was being loaded as part of the program, then there is
really no way for the program to proceed.


On the other hand, subclasses of the class Exception represent
exceptions that are meant to be caught. In many cases, these are exceptions
that might naturally be called "errors," but they are errors in the program or
in input data that a programmer can anticipate and possibly respond to in some
reasonable way. (However, you should avoid the temptation of saying, "Well,
I'll just put a thing here to catch all the errors that might occur, so my
program won't crash." If you don't have a reasonable way to respond to the
error, it's best just to let the program crash, because trying to go on
will probably only lead to worse things down the road—in the worst case, a
program that gives an incorrect answer without giving you any indication that
the answer might be wrong!)


The class Exception has its own subclass,
RuntimeException. This class groups together many common exceptions,
including all those that have been covered in previous sections.  For example,
IllegalArgumentException and NullPointerException
are subclasses of RuntimeException.
A RuntimeException generally
indicates a bug in the program, which the programmer should fix.
RuntimeExceptions and Errors share the property that a
program can simply ignore the possibility that they might occur. ("Ignoring"
here means that you are content to let your program crash if the exception
occurs.) For example, a program does this every time it uses an array reference
like A[i] without making arrangements to catch a possible
ArrayIndexOutOfBoundsException. For all other exception classes
besides Error, RuntimeException, and their subclasses,
exception-handling is "mandatory" in a sense that I'll discuss below.


The following diagram is a class hierarchy showing the class
Throwable and just a few of its subclasses. Classes that require
mandatory exception-handling are shown in red:



[image: Partial class hierarchy for Throwable objects]


   
The class Throwable includes several instance methods that can
be used with any exception object.  If e is of type Throwable
(or one of its subclasses), then e.getMessage() is a function that returns a
String that describes the exception.  The function e.toString(),
which is used by the system whenever it needs a string representation of the object,
returns a String that contains the name of the class to which the
exception belongs as well as the same string that would be returned by e.getMessage().
And the method e.printStackTrace() writes a stack trace to standard output that tells
which subroutines were active when the exception occurred.
A stack trace can be very useful when you
are trying to determine the cause of the problem.  Information in the stack trace can
tell you exactly where in the program the exception occurred.
(Note that if an exception is not
caught by the program, then the default response to the exception  prints the stack trace to standard output.)



   



8.3.2  The try Statement


   
To catch exceptions in a Java program, you need a try statement.
We have been using such statements since Section 3.7, but the
full syntax of the try statement is more complicated than what
was presented there.  The try statements that we have used so
far had a syntax similar to the following example:


try {
    double determinant = M[0][0]*M[1][1] - M[0][1]*M[1][0];
    System.out.println("The determinant of M is " + determinant);
}
catch ( ArrayIndexOutOfBoundsException e ) {
   System.out.println("M is the wrong size to have a determinant.");
   e.printStackTrace();
}


Here, the computer tries to execute the block of statements following the word
"try". If no exception occurs during the execution of this block, then
the "catch" part of the statement is simply ignored. However, if an
exception of type
ArrayIndexOutOfBoundsException occurs, then the computer jumps
immediately to the catch clause of the try statement.
This block of statements is said to be an exception handler for
ArrayIndexOutOfBoundsException. By handling the exception in this way,
you prevent it from crashing the program.  Before the body of the catch clause
is executed, the object that represents the exception is assigned to the variable e,
which is used in this example to print a stack trace.

   
However, the full syntax of the try statement has many options.
It will take a while to go through them.  For one thing, a try..catch
statement can have more than one
catch clause.  This makes it possible to catch several different types
of exception with one try statement.  In the above example, in addition
to the possible ArrayIndexOutOfBoundsException, there is a
possible NullPointerException which will occur if the value
of M is null.  We can handle both possible exceptions by
adding a second catch clause to the try statement:


try {
    double determinant = M[0][0]*M[1][1] - M[0][1]*M[1][0];
    System.out.println("The determinant of M is " + determinant);
}
catch ( ArrayIndexOutOfBoundsException e ) {
   System.out.println("M is the wrong size to have a determinant.");
}
catch ( NullPointerException e ) {
   System.out.print("Programming error!  M doesn't exist." + );
}

   
Here, the computer tries to execute the statements in the try clause.
If no error occurs, both of the catch clauses are skipped.  If an
ArrayIndexOutOfBoundsException occurs, the computer executes
the body of the first catch clause and skips the second one.  If a
NullPointerException occurs, it jumps to the second
catch clause and executes that.


Note that both ArrayIndexOutOfBoundsException and
NullPointerException are subclasses of RuntimeException. It's
possible to catch all RuntimeExceptions with a single catch
clause. For example:


try {
    double determinant = M[0][0]*M[1][1] - M[0][1]*M[1][0];
    System.out.println("The determinant of M is " + determinant);
}
catch ( RuntimeException err ) {
   System.out.println("Sorry, an error has occurred.");
   System.out.println("The error was: " + err);
}


The catch clause in this try statement will catch
any exception belonging to class RuntimeException or to
any of its subclasses.  This shows why exception classes are organized into a
class hierarchy. It allows you the option of casting your net narrowly to catch
only a specific type of exception. Or you can cast your net widely to catch a
wide class of exceptions.  Because of subclassing, when there are multiple catch clauses
in a try statement, it is possible that a given exception might
match several of those catch clauses.  For example, an exception of
type NullPointerException would match catch
clauses for NullPointerException, RuntimeException,
Exception, or Throwable.  In this
case, only the first catch clause that matches the exception
is executed.


Of course, catching RuntimeException would catch many more
types of exception than the two that we are interested in.  It is possible to
combine several specific exception types in a single catch clause.
For example,


try {
    double determinant = M[0][0]*M[1][1] - M[0][1]*M[1][0];
    System.out.println("The determinant of M is " + determinant);
}
catch ( NullPointerException | ArrayIndexOutOfBoundsException err ) {
   System.out.println("Sorry, an error has occurred.");
   System.out.println("The error was: " + err);
}


Here, the two exception types are combined with a "|", the vertical line
character that is also used in the boolean or operator.  This example
will catch errors of type NullPointerException
or ArrayIndexOutOfBoundsException, and no other types.


The example I've been using here is not realistic, because you are not very
likely to use exception-handling to guard against null pointers and bad array
indices. This is a case where careful programming is better than exception
handling: Just be sure that your program assigns a reasonable,
non-null value to the array M. You would certainly resent it
if the designers of Java forced you to set up a try..catch
statement every time you wanted to use an array! This is why handling of
potential RuntimeExceptions is not mandatory. There are just too many
things that might go wrong! (This also shows that exception-handling does not
solve the problem of program robustness. It just gives you a tool that will in
many cases let you approach the problem in a more organized way.)

   


   
I have still not completely specified the syntax of the try statement.
The next variation is the possibility of a finally clause
at the end of a try statement.  With this addition, the syntax of the try
statement can be described as:


try {
   statements
}
optional-catch-clauses
optional-finally-clause



Note that the catch clauses are also listed as optional.
The try statement can include zero or more catch clauses and,
optionally, a finally clause.  The try statement must include
one or the other.  That is, a try statement can have
either a finally clause, or one or more catch clauses, or both.  The
syntax for a catch clause is


catch ( exception-class-names variable-name ) {
   statements
}


where exception-class-names can be a single exception class or several classes separated
by "|".
The syntax for a finally clause is


finally {
   statements
}


The semantics of the finally clause is that the block of statements
in the finally clause is guaranteed to be executed as the last step in
the execution of the try statement, whether or not any exception occurs and
whether or not any exception that does occur is caught and handled. The
finally clause is meant for doing essential cleanup that under no
circumstances should be omitted.  One example of this type of cleanup is
closing a network connection.  Although you don't yet know enough about networking
to look at the actual programming in this case, we can consider some pseudocode:

   
try {
   open a network connection
   communicate over the connection
}
catch ( IOException e ) {
   report the error
}
finally {
   if the connection was successfully opened
      close the connection
}

   
The finally clause
ensures that the network connection will definitely be closed, whether or
not an error occurs during the communication.  The pseudocode in this
example follows a general pattern that can be used to robustly obtain a resource, 
use the resource, and then release the resource.





The pattern of obtaining a resource, then using the resource, and then releasing
the resource is very common.  Note that the resource can only be released if no error occurred
while obtaining it.  And, if it was successfully obtained, then it should be
closed whether or not an error occurs while using it.  This pattern is so common
that it leads to one last option in the try statement syntax.
With this option, you only need code to obtain the resource, and you don't need
to worry about releasing it.  That will happen automatically at the end of the
try statement.


In order for this to work, the resource must be represented by an object that
implements an interface named AutoCloseable, which defines
a single method named close(), with no parameters.  Standard Java
classes that represent things like files and network connections already implement
AutoClosable.  So does the Scanner
class, which was introduced in Subsection 2.4.6.  In that section, 
I showed how to use a Scanner to read from System.in.  Although
I didn't do it in that section, it's considered good form to close a Scanner
after using it.  Here is an example that uses the  pattern in a 
try statement to make sure that the Scanner is closed automatically:


try( Scanner in = new Scanner(System.in) ) {
    // Use the Scanner to read from standard input
}
catch (Exception e) {
    // ... some error occurred while using the Scanner
}


The statement that allocates the Scanner goes in parentheses after
the word "try".  The statement must have the form of a variable declaration
that includes an initialization of the variable.  The variable is
local to the try statement.  (You can actually declare several
variables in the parentheses, separated by semicolons.)  In this 
example, we can be sure that in.close() will definitely be
called by the system at the end of the try statement, as long
as the Scanner was successfully initialized.


This is all getting quite complicated, and I won't continue the discussion
here.  The sample program TryStatementDemo.java demonstrates
a try statement with all its options, and it includes a lot of comments
to help you understand what can happen when you run the program.





   



8.3.3  Throwing Exceptions



There are times when it makes sense for a program to deliberately throw an
exception. This is the case when the program discovers some sort of exceptional
or error condition, but there is no reasonable way to handle the error at the
point where the problem is discovered. The program can throw an exception in
the hope that some other part of the program will catch and handle the
exception.  This can be done with a throw statement.
You have already seen an example of this in Subsection 4.3.8.
In this section, we cover the throw statement more fully.
The syntax of the throw statement is:


throw  exception-object ;


The exception-object must be an object
belonging to one of the subclasses of Throwable. Usually, it will in
fact belong to one of the subclasses of Exception. In most cases, it
will be a newly constructed object created with the new operator. For
example:


throw new ArithmeticException("Division by zero");


The parameter in the constructor becomes the error message in the exception
object; if e refers to the object, the error message can be retrieved
by calling e.getMessage().
(You might find this example a bit odd, because you might expect the
system itself to throw an ArithmeticException when an attempt is made
to divide by zero. So why should a programmer bother to throw the exception?
Recall that if the numbers that are being divided are of
type int, then division by zero will indeed throw an
ArithmeticException. However, no arithmetic operations with
floating-point numbers will ever produce an exception. Instead, the special
value Double.NaN is used to represent the result of an illegal
operation.  In some situations, you might prefer to throw an 
ArithmeticException when a real number is divided by zero.)


An exception can be thrown either by the system or by a throw
statement. The exception is processed in exactly the same way in either case.
Suppose that the exception is thrown inside a try statement. If that
try statement has a catch clause that handles that type of
exception, then the computer jumps to the catch clause and executes
it. The exception has been handled. After handling
the exception, the computer executes the finally clause of the
try statement, if there is one. It then continues normally with the
rest of the program, which follows the try statement. If the exception
is not immediately caught and handled, the processing of the exception will
continue.


When an exception is thrown during the execution of a subroutine and the
exception is not handled in the same subroutine, then that subroutine is
terminated (after the execution of any pending finally clauses). Then
the routine that called that subroutine gets a chance to handle the exception.
That is, if the subroutine was called inside a try statement that has
an appropriate catch clause, then that catch clause will be
executed and the program will continue on normally from there. Again, if the second
routine does not handle the exception, then it also is terminated and the
routine that called it (if any) gets the next shot at the exception. The
exception will crash the program only if it passes up through the entire chain
of subroutine calls without being handled.  This is called "unwinding the call stack."


A subroutine that might generate an exception can announce this fact by
adding a clause "throws exception-class-name" 
to the header of the routine. For example:


/**
 * Returns the larger of the two roots of the quadratic equation
 * A*x*x + B*x + C = 0, provided it has any roots.  If A == 0 or
 * if the discriminant, B*B - 4*A*C, is negative, then an exception
 * of type IllegalArgumentException is thrown.
 */
static public double root( double A, double B, double C ) 
                              throws IllegalArgumentException {
    if (A == 0) {
      throw new IllegalArgumentException("A can't be zero.");
    }
    else {
       double disc = B*B - 4*A*C;
       if (disc < 0)
          throw new IllegalArgumentException("Discriminant < zero.");
       return  (-B + Math.sqrt(disc)) / (2*A);
    }
}


As discussed in the previous section, 
the computation
in this subroutine has the preconditions that A != 0 and B*B-4*A*C
>= 0. The subroutine throws an exception of type
IllegalArgumentException when either of these preconditions is
violated. When an illegal condition is found in a subroutine, throwing an
exception is often a reasonable response.  If the program that called the
subroutine knows some good way to handle the error, it can catch the exception.
If not, the program will crash—and the programmer will know that the program
needs to be fixed.

   
A throws clause in a subroutine heading can declare several different
types of exception, separated by commas.  For example:

   
void processArray(int[] A) throws NullPointerException, 
                                         ArrayIndexOutOfBoundsException { ...







8.3.4  Mandatory Exception Handling



In the preceding example, declaring that the subroutine root() can
throw an IllegalArgumentException is just a courtesy to potential
readers of this routine. This is because handling of
IllegalArgumentExceptions is not "mandatory." A routine can throw an
IllegalArgumentException without announcing the possibility. And a
program that calls that routine is free either to catch or to ignore the
exception, just as a programmer can choose either to catch or to ignore an
exception of type NullPointerException.


For those exception classes that require mandatory handling, the situation
is different. If a subroutine can throw such an exception, that fact
must be announced in a throws clause in the routine definition.
Failing to do so is a syntax error that will be reported by the compiler.
Exceptions that require mandatory handling are called checked exceptions.
The compiler will check that such exceptions are handled by the program.


Suppose that some statement in the body of a subroutine can generate a
checked exception, one that requires mandatory handling. The statement could be a
throw statement, which throws the exception directly, or it could be a
call to a subroutine that can throw the exception. In either case, the
exception must be handled. This can be done in one of two ways: The first way
is to place the statement in a try statement that has a catch
clause that handles the exception; in this case, the exception is handled within the
subroutine, so that no caller of the subroutine can ever see the exception.
The second way is to declare that the subroutine can throw the exception. This is done by
adding a "throws" clause to the subroutine heading, which alerts any callers
to the possibility that the exception might be generated when the subroutine is executed.
The caller will, in turn, be forced either to handle the exception in a try
statement or to declare the exception in a throws clause in its own
header.


Exception-handling is mandatory for any exception class that is not a
subclass of either Error or RuntimeException. 
These checked exceptions generally represent conditions that are outside the
control of the programmer. For example, they might represent bad input or an
illegal action taken by the user.  There is no way to avoid such errors,
so a robust program has to be prepared to handle them.  The design of Java makes it 
impossible for programmers to ignore the possibility of such errors.


Among the checked exceptions are several that can
occur when using Java's input/output routines. This means that you can't even
use these routines unless you understand something about exception-handling.
Chapter 11 deals with input/output and uses checked exceptions
extensively.

   

   



8.3.5  Programming with Exceptions


   
Exceptions can be used to help write robust
programs. They provide an organized and structured approach to robustness.
Without exceptions, a program can become cluttered with if statements
that test for various possible error conditions. With exceptions, it becomes
possible to write a clean implementation of an algorithm that will handle all
the normal cases. The exceptional cases can be handled elsewhere, in a
catch clause of a try statement.


When a program encounters an exceptional condition and has no way of
handling it immediately, the program can throw an exception. In some cases, it
makes sense to throw an exception belonging to one of Java's predefined
classes, such as IllegalArgumentException or IOException.
However, if there is no standard class that adequately represents the
exceptional condition, the programmer can define a new exception class. The new
class must extend the standard class Throwable or one of its
subclasses. In general, if the programmer does not want to require
mandatory exception handling,
the new class will extend RuntimeException (or
one of its subclasses).  To create a new checked exception class, which does require
mandatory handling, the programmer can extend one of the other subclasses of
Exception or can extend Exception itself.


Here, for example, is a class that extends Exception, and therefore
requires mandatory exception handling when it is used:


public class ParseError extends Exception {
   public ParseError(String message) {
         // Create a ParseError object containing
         // the given message as its error message.
      super(message);
   }
}


The class contains only a constructor that makes it possible to create a
ParseError object containing a given error message. (The statement
"super(message)" calls a constructor in the superclass,
Exception. See Subsection 5.6.3.) Of course the
class inherits the getMessage() and printStackTrace()
routines from its superclass. If e refers to an object of type
ParseError, then the function call e.getMessage() will
retrieve the error message that was specified in the constructor. But the main
point of the ParseError class is simply to exist. When an object of
type ParseError is thrown, it indicates that a certain type of error
has occurred. (Parsing, by the way, refers to
figuring out the syntax of a string. A ParseError would indicate,
presumably, that some string that is being processed by the program does not have the
expected form.)


A throw statement can be used in a program to throw an error of
type ParseError. The constructor for the ParseError object
must specify an error message. For example:


throw new ParseError("Encountered an illegal negative number.");


or


throw new ParseError("The word '" + word 
                               + "' is not a valid file name.");


Since ParseError is defined as a subclass of Exception,
it is a checked exception.
If the throw statement does not occur in a try statement
that catches the error, then the subroutine that contains the throw
must declare that it can throw a ParseError by
adding the clause "throws ParseError" to the subroutine heading. For
example,


void getUserData() throws ParseError {
   . . .
}


This would not be required if ParseError were defined as a subclass
of RuntimeException instead of Exception, since in that case
ParseErrors would not be checked exceptions.


A routine that wants to handle ParseErrors can use a try
statement with a catch clause that catches ParseErrors. For
example:


try {
   getUserData();
   processUserData();
}
catch (ParseError pe) {
   . . .  // Handle the error
}


Note that since ParseError is a subclass of Exception, a
catch clause of the form "catch (Exception e)" would also
catch ParseErrors, along with any other object of type
Exception.


Sometimes, it's useful to store extra data in an exception object. For
example,


class ShipDestroyed extends RuntimeException {
   Ship ship;  // Which ship was destroyed.
   int where_x, where_y;  // Location where ship was destroyed.
   ShipDestroyed(String message, Ship s, int x, int y) {
         // Constructor creates a ShipDestroyed object
         // carrying an error message plus the information
         // that the ship s was destroyed at location (x,y)
         // on the screen. 
       super(message);
       ship = s;
       where_x = x;
       where_y = y;
   }
}


Here, a ShipDestroyed object contains an error message and some
information about a ship that was destroyed. This could be used, for example,
in a statement:


if ( userShip.isHit() )
   throw new ShipDestroyed("You've been hit!", userShip, xPos, yPos);


Note that the condition represented by a ShipDestroyed object might
not even be considered an error. It could be just an expected interruption to
the normal flow of a game. Exceptions can sometimes be used to handle such
interruptions neatly.





The ability to throw exceptions is particularly useful in writing
general-purpose methods and classes that are meant to be used in more than
one program. In this case, the person writing the method or class often has
no reasonable way of handling the error, since that person has no way of
knowing exactly how the method or class will be used. In such
circumstances, a novice programmer is often tempted to print an error message
and forge ahead, but this is almost never satisfactory since it can lead to
unpredictable results down the line. Printing an error message and terminating
the program is almost as bad, since it gives the program no chance to handle
the error.


The program that calls the method or uses the class needs to know that
the error has occurred. In languages that do not support exceptions, the only
alternative is to return some special value or to set the value of some global
variable to indicate that an error has occurred. For example, the
readMeasurement() function in Subsection 8.2.2 returns
the value -1 if the user's input is illegal. However, this only does any good
if the main program bothers to test the return value.  It is very easy to be lazy about
checking for special return values every time a subroutine is called.
And in this case, using
-1 as a signal that an error has occurred makes it impossible to allow
negative measurements.  Exceptions are a cleaner way for a subroutine to react
when it encounters an error.


It is easy to modify the readMeasurement() function to use
exceptions instead of a special return value to signal an error. My modified
subroutine throws a ParseError when the user's input is illegal, where
ParseError is the subclass of Exception that was defined
above. (Arguably, it might be reasonable to avoid
defining a new class by using the standard exception class
IllegalArgumentException instead.) The changes from the original
version are shown in red italic:



/**
 * Reads the user's input measurement from one line of input.
 * Precondition:   The input line is not empty.
 * Postcondition:  If the user's input is legal, the measurement
 *                 is converted to inches and returned.
 * @throws ParseError if the user's input is not legal.
 */
static double readMeasurement() throws ParseError {

   double inches;  // Total number of inches in user's measurement.
   
   double measurement;  // One measurement, 
                        //   such as the 12 in "12 miles."
   String units;        // The units specified for the measurement,
                        //   such as "miles."
   
   char ch;  // Used to peek at next character in the user's input.

   inches = 0;  // No inches have yet been read.

   skipBlanks();
   ch = TextIO.peek();
   
   /* As long as there is more input on the line, read a measurement and
      add the equivalent number of inches to the variable, inches.  If an
      error is detected during the loop, end the subroutine immediately
      by throwing a ParseError. */

   while (ch != '\n') {
   
       /* Get the next measurement and the units.  Before reading
          anything, make sure that a legal value is there to read. */
   
       if ( ! Character.isDigit(ch) ) {
           throw new ParseError("Expected to find a number, but found " + ch);
       }
       measurement = TextIO.getDouble();
       
       skipBlanks();
       if (TextIO.peek() == '\n') {
          throw new ParseError("Missing unit of measure at end of line.");
       }
       units = TextIO.getWord();
       units = units.toLowerCase();
       
       /* Convert the measurement to inches and add it to the total. */
       
       if (units.equals("inch") 
               || units.equals("inches") || units.equals("in")) {
           inches += measurement;
       }
       else if (units.equals("foot") 
                  || units.equals("feet") || units.equals("ft")) {
           inches += measurement * 12;
       }
       else if (units.equals("yard") 
                  || units.equals("yards") || units.equals("yd")) {
           inches += measurement * 36;
       }
       else if (units.equals("mile") 
                  || units.equals("miles") || units.equals("mi")) {
           inches += measurement * 12 * 5280;
       }
       else {
           throw new ParseError("\"" + units 
                                + "\" is not a legal unit of measure.");
       }
     
       /* Look ahead to see whether the next thing on the line is 
          the end-of-line. */
      
       skipBlanks();
       ch = TextIO.peek();
       
   }  // end while
   
   return inches;
   
} // end readMeasurement()


In the main program, this subroutine is called in a try statement
of the form


try {
   inches = readMeasurement();
}
catch (ParseError e) {
   . . .  // Handle the error.
}


The complete program can be found in the file LengthConverter3.java.
From the user's
point of view, this program has exactly the same behavior as the program
LengthConverter2
from the previous section. 
Internally, however, the programs are significantly
different, since LengthConverter3 uses exception handling.








Section 8.4

Assertions and Annotations






In this short section, we look briefly 
at two features of Java that are not covered or used elsewhere in this
textbook, assertions and annotations.  They are included here for 
completeness, but they are mostly meant for more advanced programming.
(Annotations, in particular, don't really belong in this chapter, 
but I could not find a better place to put my short introduction
to the topic.)

 



8.4.1  Assertions



Recall that a precondition is a condition that must be true at a certain
point in a program, for the execution of the program to continue correctly from
that point.  In the case where there is a chance that the precondition might not
be satisfied—for example, if it depends on input from the user—then
it's a good idea to insert an if statement to test it.
But then the question arises, What should be done if the precondition does not
hold? One option is to throw an exception. This will terminate the program,
unless the exception is caught and handled elsewhere in the program.

   
In many cases, of course, instead of using an if statement to 
test whether a precondition holds, a programmer tries to write the program
in a way that will guarantee that the precondition holds.  In that case,
the test should not be necessary, and the if statement can be
avoided.  The problem is that programmers are not perfect.  In spite of the programmer's
intention, the program might contain a bug that screws up the precondition.
So maybe it's a good idea to check the precondition after all—at least during the
debugging phase of program development.


Similarly, a postcondition is a condition that is true at a certain point in the program 
as a consequence of the code that has been executed before that point.  Assuming
that the code is correctly written, a postcondition is guaranteed to be true,
but here again testing whether a desired postcondition is actually true
is a way of checking for a bug that might have screwed up the postcondition.
This is something that might be desirable during debugging.


And the same thing applies to loop invariants and class invariants.  These
are things that should be true at certain points in a program.  If they
are not true at those points, it means that the program contains a bug.

   
The programming languages C and C++ have always had a facility for adding
what are called assertions to a program. These
assertions take the form "assert(
condition
)", 
where condition is a boolean-valued expression. This
condition expresses a precondition or postcondition that should hold at that point in the program.
When the computer encounters an assertion during the execution of the program,
it evaluates the condition. If the condition is false, the program is
terminated.  Otherwise, the program continues normally.  This allows the
programmer's belief that the condition is true to be tested; if it is not
true, that indicates that the part of the program that preceded the assertion
contained a bug.  One nice thing about assertions in C and C++ is that they can be
"turned off" at compile time. That is, if the program is compiled in one way,
then the assertions are included in the compiled code. If the program is
compiled in another way, the assertions are not included. During debugging, the
first type of compilation is used, with assertions turned on. The release version of the program is
compiled with assertions turned off. The release version will be more
efficient, because the computer won't have to evaluate all the assertions.

   
Although early versions of Java did not have assertions, an assertion facility similar 
to the one in C/C++ has been available in Java since version 1.4.  As with the
C/C++ version, Java assertions can be turned on during debugging and turned off
during normal execution.  In Java, however, assertions are turned on and off
at run time rather than at compile time.  An assertion in the Java source code
is always included in the compiled class file.  When the program is run in the normal
way, these assertions are ignored; since the condition in the assertion is not
evaluated in this case, there is little or no performance penalty for having the
assertions in the program.  When the program is being debugged, it can be run
with assertions enabled, as discussed below, and then the assertions can be
a great help in locating and identifying bugs.

   



   
An assertion statement in Java takes one of the following two forms:

   
assert condition ;

  
or

    
assert condition : error-message ;


where condition is a boolean-valued expression
and error-message is a string or an expression of type String.
The word "assert" is a reserved word in Java, which cannot be used as
an identifier.  An assertion statement can be used anyplace in Java where a statement is legal.

   
If a program is run with assertions disabled, an assertion statement is equivalent to
an empty statement and has no effect.  When assertions are enabled and an assertion statement
is encountered in the program, the condition 
in the assertion is evaluated.  If the value is true, the program proceeds normally.
If the value of the condition is false, then an exception of type
java.lang.AssertionError is thrown, and the program will crash (unless the
error is caught by a try statement).  If the assert statement
includes an error-message, then the error message string becomes the message
in the AssertionError.

   
So, the statement "assert condition : error-message;" is
similar to
   
   
if ( condition == false )
    throw new AssertionError( error-message );

   
except that the if statement is executed whenever the program is
run, and the assert statement is executed only when the program is
run with assertions enabled.

   
The question is, when to use assertions instead of exceptions? The general
rule is to use assertions to test conditions that should definitely be true,
if the program is written correctly.  Assertions are useful for testing a program 
to see whether or not it is correct and for finding the errors in an incorrect program.
After testing and debugging, when the program is used in the normal way, the
assertions in the program will be ignored.  However, if a problem turns up later,
the assertions are still there in the program to be used to help locate the
error.  If someone writes to you to say that your program doesn't work when
he does such-and-such, you can run the program with assertions enabled, do
such-and-such, and hope that the assertions in the program will help you
locate the point in the program where it goes wrong.

   
Consider, for example, the root() method from Subsection 8.3.3
that calculates a root of a quadratic equation.  If you believe that your program will
always call this method with legal arguments, then it would make sense to write the
method using assertions instead of exceptions:

   
/**
 * Returns the larger of the two roots of the quadratic equation
 *     A*x*x + B*x + C = 0.  
 * Precondition: A != 0 and B*B - 4*A*C >= 0.
 */
static public double root( double A, double B, double C )  {
   assert A != 0 : "Leading coefficient of quadratic equation cannot be zero.";
   double disc = B*B - 4*A*C;
   assert disc >= 0 : "Discriminant of quadratic equation cannot be negative.";
   return  (-B + Math.sqrt(disc)) / (2*A);
}


The assertions are not checked when the program is run in the normal way.  If you
are correct in your belief that the method is never called with illegal arguments,
then checking the conditions in the assertions would be unnecessary.  If your belief
is not correct, the problem should turn up during testing or debugging, when the program is
run with the assertions enabled.

   
If the root() method is part of a software library that you
expect other people to use, then the situation is less clear.  Oracle's
Java documentation advises that assertions should not be used for checking
the contract of public methods:  If the caller of a method violates the contract
by passing illegal parameters, then an exception should be thrown.  This will enforce
the contract whether or not assertions are enabled.  (However, while it's true
that Java programmers expect the contract of a method to be enforced with
exceptions, there are reasonable arguments for using assertions instead, in some
cases.)  One might say that assertions are for you, to help you in
debugging your code, while exceptions are for people who use your code, to alert
them that they are misusing it.

   
On the other hand, it never hurts to use an assertion to check a postcondition
or an invariant.  These are conditions that are definitely expected to be true
in any bug-free program, so an assertion is the natural way to check the
condition while debugging, without imposing an efficiency penalty when
the program is executed normally.   If the postcondition or invariant is 
false, there is a bug, and that is something that needs to be found during 
the testing and debugging phase of programming.

   



To have any effect, assertions must be enabled when the program is run.
How to do this depends on what programming environment you are using.  (See
Section 2.6 for a discussion of programming environments.)
In the usual command line environment, assertions are enabled by adding the 
option -enableassertions to the java command that 
is used to run the program.  For example, if the class that contains the main 
program is RootFinder, then the command

   
java  -enableassertions  RootFinder


will run the program with assertions enabled.  
The -enableassertions
option can be abbreviated to -ea, so the command can alternatively
be written as

   
java  -ea  RootFinder

   
In fact, it is possible to enable assertions in just part of a program.
An option of the form
"-ea:class-name
"
enables only the assertions in the specified class.  Note that there are no
spaces between the -ea, the ":", and the name of the class.  To
enable all the assertions in a package and in its subpackages, you can use
an option of the form "-ea:package-name...".
To enable assertions in the "default package" (that is, classes that are not specified to
belong to a package, like almost all the classes in this book), use
"-ea:...".  For
example, to run a Java program named "MegaPaint" with assertions enabled for every class
in the packages named "paintutils" and "drawing", you would use the command:


java  -ea:paintutils...  -ea:drawing...  MegaPaint

   
If you are using the Eclipse integrated development environment, you can
specify the -ea option by creating a run configuration.
Right-click the name of the main program class in the Package Explorer pane,
and select "Run As" from the pop-up menu and then "Run..." from the
submenu.  This will open a dialog box where you can manage run configurations.
The name of the project and of the main class will be already be filled in.
Click the "Arguments" tab, and enter -ea in the box
under "VM Arguments".  The contents of this box are added to the java
command that is used to run the program.  You can enter other options
in this box, including more complicated enableassertions options such 
as -ea:paintutils....  When you click the "Run" button,
the options will be applied.  Furthermore, they will be applied whenever
you run the program, unless you change the run configuration or add a
new configuration.  Note that it is possible to make two run configurations
for the same class, one with assertions enabled and one with assertions
disabled.

   

  



8.4.2  Annotations



The term "annotation" commonly refers to notes added to or written alongside a
main text, to help you understand or appreciate the text.  An annotation
might be a note that you make to yourself in the margin of a book.
It might be a footnote added to an old novel by an editor to explain
the historical context of some event.  The annotation is metadata or "metatext,"
that is, text written about the main text rather than as
part of the main text itself.


Comments on a program are actually a kind of annotation.  Since they
are ignored by the compiler, they have no effect on the meaning of
the program.  They are there to explain that meaning to a human
reader.  It is possible, of course, for another computer program
(not the compiler) to process comments.  That's what is done in the
case of Javadoc comments, which are processed by a program that
uses them to create API documentation.  But comments are only
one type of metadata that might be added to programs.


In Java 5.0, a new feature called annotations
was added to the Java language to make it easier to create new kinds
of metadata for Java programs.  This has made it possible for programmers
to devise new ways of annotating programs, and to write programs
that can read and use their annotations.


Java annotations have no direct effect on the program that
they annotate.  But they do have many potential uses.  Some
annotations are used to make the programmer's intent more
explicit. Such annotations might be checked by a compiler
to make sure that the code is consistent with the programmer's
intention.  For example, @Override is a standard
annotation that can be used to annotate method definitions.
It means that the method is intended to override (that is replace)
a method with the same signature that was defined in some
superclass.  A compiler can check that the superclass
method actually exists; if not, it can inform the programmer.
An annotation used in this way is an aid to writing correct
programs, since the programmer can be warned about a potential
error in advance, instead of having to hunt it down later
as a bug.


To annotate a method definition with the @Override
annotation,
simply place it in front of the definition.  Syntactically,
annotations are modifiers that are used in much the same way
as built-in modifiers like "public" and "final."  For example,



@Override public void WindowClosed(WindowEvent evt) { ... }


If there is no "WindowClosed(WindowEvent)" method
in any superclass, then the compiler can issue an error.  In fact,
this example is based on a hard-to-find bug that I once introduced
when trying to override a method named "windowClosed" with
a method that I called "WindowClosed" (with an upper case "W").
If the @Override annotation had existed at that time—and
if I had used it—the compiler could have rejected my code
and saved me the trouble of tracking down the bug.



(Annotations are a fairly advanced feature, and I might not have
mentioned them in this textbook, except that some notations, such as @Override,
can show up in code generated by Eclipse and other integrated
development environments.)


There are two other standard annotations. One is @Deprecated,
which can be used to mark deprecated classes, methods, and variables.
(A deprecated item is one that is considered to be obsolete, but is
still part of the Java language for backwards compatibility for old code.)
Use of this annotation would allow a compiler to generate warnings
when the deprecated item is used.



The other standard annotation is @SurpressWarnings,
which can be used by a compiler to turn off warning messages that
would ordinarily be generated when a class or method is compiled.
@SuppressWarnings is an example of an annotation that
has a parameter.  The parameter tells what class of warnings
are to be suppressed.  For example, when a class or method is
annotated with


@SuppressWarnings("deprecation")


then no warnings about the use of deprecated items will be emitted
when the class or method is compiled.  There are other types of
warning that can be suppressed; unfortunately the list of warnings
and their names is not standardized and will vary from one compiler
to another.


Note, by the way, that the syntax for annotation parameters—especially
for an annotation that accepts multiple parameters—is not
the same as the syntax for method parameters.  I won't cover
the annotation syntax here.


Programmers can define new annotations for use in their code.
Such annotations are ignored by standard compilers and programming
tools, but it's possible to write programs that can understand the
annotations and check for their presence in source code.  It is even
possible to create annotations that will be retained at run-time and
become part of the running program.  In that case, a program
can check for annotations in the actual compiled code that is being 
executed, and take actions that depend on the presence of the annotation
or the values of its parameters.


Annotations can help programmers to write correct programs.
To use an example from the Java documentation, they can help
with the creation of "boilerplate" code—that is, code that
has a very standardized format and that can be generated mechanically.
Often, boilerplate code is generated based on other code.  Doing
that by hand is a tedious and error-prone process.  A simple
example might be code to save certain aspects of a program's state
to a file and to restore it later.  The code for reading and writing
the values of all the relevant state variables is highly repetitious.
Instead of writing that code by hand, a programmer could use an
annotation to mark the variables that are part of the state
that is to be saved.  A program could then be used to check for
the annotations and generate the save-and-restore code.  In fact,
it would even be possible to do without that code altogether, if the program
checks for the presence of the annotation at run time to decide
which variables to save and restore.










Section 8.5

Analysis of Algorithms



   


This chapter has concentrated mostly on
correctness of programs.  In practice, another issue
is also important: efficiency.  When analyzing a
program in terms of efficiency, we want to look at questions such
as, "How long does it take for the program to run?" and "Is there
another approach that will get the answer more quickly?"  
Efficiency will always be less important than correctness; if you
don't care whether a program works correctly, you can make it run
very quickly indeed, but no one will think it's much of an
achievement!  On the other hand, a program that gives a correct
answer after ten thousand years isn't very useful either, so
efficiency is often an important issue.


The term "efficiency" can refer to efficient use of almost any
resource, including time, computer memory, disk space, or network
bandwidth.  In this section, however, we will deal exclusively with
time efficiency, and the major question that we want to ask about
a program is, how long does it take to perform its task?


It really makes little sense to classify an individual program
as being "efficient" or "inefficient."  It makes more sense to
compare two (correct) programs that perform the same task and ask
which one of the two is "more efficient," that is, which one
performs the task more quickly.  However, even here there are
difficulties.  The running time of a program is not well-defined.
The run time can be different depending on the number and speed of the
processors in the computer on which it is run and, in the case of Java,
on the design of the Java Virtual Machine which is used to interpret
the program.  It can depend on details of the compiler which is
used to translate the program from high-level language to machine
language.  Furthermore, the run time of a program depends on
the size of the problem which the program has to solve.  It takes
a sorting program longer to sort 10000 items than it takes it
to sort 100 items.  When the run times of two programs are 
compared, it often happens that Program A solves small problems
faster than Program B, while Program B solves large problems
faster than Program A, so that it is simply not the case that one
program is faster than the other in all cases.

   
In spite of these difficulties, there is a field of computer science
dedicated to analyzing the efficiency of programs.  The field is
known as Analysis of Algorithms.  The focus is
on algorithms, rather than on programs as such, to avoid having
to deal with multiple implementations of the same algorithm written
in different languages, compiled with different compilers, and running
on different computers.  Analysis of Algorithms is a mathematical
field that abstracts away from these down-and-dirty details.
Still, even though it is a theoretical field, every working programmer
should be aware of some of its techniques and results.  This section
is a very brief introduction to some of those techniques and results.
Because this is not a mathematics book, the treatment will be
rather informal.

   
One of the main techniques of analysis of algorithms is
asymptotic analysis.  The term "asymptotic"
here means basically "the tendency in the long run, as the size of
the input is increased."  An asymptotic
analysis of an algorithm's run time looks at the question of how
the run time depends on the size of the problem.  The analysis is
asymptotic because it only considers what happens to the run time
as the size of the problem increases without limit; it is not
concerned with what happens for problems of small size or, in fact,
for problems of any fixed finite size.  Only what happens in the
long run, as the problem size increases without limit, is important.
Showing that Algorithm A is asymptotically faster than
Algorithm B doesn't necessarily mean that Algorithm A will
run faster than Algorithm B for problems of size 10 or size
1000 or even size 1000000—it only means that if you keep 
increasing the problem size, you will eventually come to a point
where Algorithm A is faster than Algorithm B.  An asymptotic
analysis is only a first approximation, but in practice it often
gives important and useful information.

   


   
Central to asymptotic analysis is Big-Oh notation.
Using this notation, we might say, for example, that an algorithm has a running time
that is O(n2) or O(n) or O(log(n)).  These notations
are read "Big-Oh of n squared," "Big-Oh of n," and "Big-Oh of log n"
(where log is a logarithm function).  More generally, we can refer to
O(f(n)) ("Big-Oh of f of n"), where f(n) is some function that
assigns a positive real number to every positive integer n.  The "n"
in this notation refers to the size of the problem.  Before you can even
begin an asymptotic analysis, you need some way to measure problem size.
Usually, this is not a big issue.  For example, if the problem is to
sort a list of items, then the problem size can be taken to be the number of
items in the list.  When the input to an algorithm is an integer, as in
the case of an algorithm that checks whether a given positive integer is prime,
the usual measure of the size of a problem is the number of bits in the
input integer rather than the integer itself.  More generally, the number
of bits in the input to a problem is often a good measure of the size
of the problem.

   
To say that the running time of an algorithm is O(f(n)) means that
for large values of the problem size, n, the running time of the algorithm
is no bigger than some constant times f(n).  (More rigorously, there is a
number C and a positive integer M such that whenever n is greater than M,
the run time is less than or equal to C*f(n).)  The constant takes into
account details such as the speed of the computer on which the algorithm
is run; if you use a slower computer, you might have to use a bigger constant
in the formula, but changing the constant won't change the basic fact that the
run time is O(f(n)).  The constant also makes it unnecessary to say
whether we are measuring time in seconds, years, CPU cycles, or any other
unit of measure; a change from one unit of measure to another is just
multiplication by a constant.  Note also that O(f(n)) doesn't depend at
all on what happens for small problem sizes, only on what happens in the 
long run as the problem size increases without limit.

   
To look at a simple example, consider the problem of adding up all
the numbers in an array.  The problem size, n, is the length of the array.
Using A as the name of the array, the algorithm can be expressed in Java as:


total = 0;
for (int i = 0; i < n; i++)
   total = total + A[i];


This algorithm performs the same operation, total = total + A[i],
n times.  The total time spent on this operation is a*n, where a is the
time it takes to perform the operation once.  Now, this is not the only thing
that is done in the algorithm.  The value of i is incremented and
is compared to n each time through the loop.  This adds an additional
time of b*n to the run time, for some constant b.  Furthermore, i and
total both have to be initialized to zero; this adds some constant
amount c to the running time.  The exact running time would then be
(a+b)*n+c, where the constants a, b, and c depend on factors such as how the 
code is compiled and what computer it is run on.  Using the fact that c is less than
or equal to c*n for any positive integer n, we can say that the run time
is less than or equal to (a+b+c)*n.  That is, the run time is less than or equal
to a constant times n.  By definition, this means that the run time for this
algorithm is O(n).

   
If this explanation is too mathematical for you, we can just note that for large
values of n, the c in the formula (a+b)*n+c is insignificant compared to the other
term, (a+b)*n.  We say that c is a "lower order term."  When doing asymptotic analysis,
lower order terms can be discarded.  A rough, but correct, asymptotic analysis of
the algorithm would go something like this:  Each iteration of the for
loop takes a certain constant amount of time.  There are n iterations of the loop,
so the total run time is a constant times n, plus lower order terms (to account
for the initialization).  Disregarding lower order terms, we see that the
run time is O(n).




    
Note that to say that an algorithm has run time O(f(n)) is to say that its
run time is no bigger than some constant times f(n) (for large values of n).  O(f(n)) puts
an upper limit on the run time.  However, the run time could be smaller,
even much smaller.  For example, if the run time is O(n), it would also be
correct to say that the run time is O(n2) or even O(n10).
If the run time is less than a constant times n, then it is certainly less than the
same constant times n2 or n10.


Of course, sometimes it's useful to have a lower limit on the run time.
That is, we want to be able to say that the run time is greater than or equal to 
some constant times f(n) (for large values of n).  The notation for this
is Ω(f(n)), read "Omega of f of n" or "Big Omega of f of n."
"Omega" is the name of a letter
in the Greek alphabet, and Ω is the upper case version of that letter.
(To be technical, saying that the run time of an algorithm is Ω(f(n)) means that
there is a positive number C and a positive integer M such that whenever n is greater than M,
the run time is greater than or equal to C*f(n).)  O(f(n)) tells you something
about the maximum amount of time that you might have to wait for an algorithm to
finish; Ω(f(n)) tells you something about the minimum time.

   
The algorithm for adding up the numbers in an array has a run time that
is Ω(n) as well as O(n).  When an algorithm has a run time that is
both Ω(f(n)) and O(f(n)), its run time is said to be Θ(f(n)),
read "Theta of f of n" or "Big Theta of f of n."  
(Theta is another letter from the Greek alphabet.)
To say that the run time of an algorithm is Θ(f(n)) means that for large
values of n, the run time is between a*f(n) and b*f(n), where a and b are constants
(with b greater than a, and both greater than 0).

 
Let's look at another example.  Consider the algorithm that can be expressed in Java 
in the following method:

   
/**
 * Sorts the n array elements A[0], A[1], ..., A[n-1] into increasing order.
 */
public static void simpleBubbleSort( int[] A, int n ) {
   for (int i = 0; i < n; i++) {
         // Do n passes through the array...
      for (int j = 0; j < n-1; j++) {
         if ( A[j] > A[j+1] ) {
                // A[j] and A[j+1] are out of order, so swap them
             int temp = A[j];
             A[j] = A[j+1];
             A[j+1] = temp;
         }
      }
   }
}

   
Here, the parameter n represents the problem size.  The outer for
loop in the method is executed n times.  Each time the outer for loop
is executed, the inner for loop is executed n-1 times, so the if
statement is executed n*(n-1) times.  This is n2-n, but since lower order
terms are not significant in an asymptotic analysis, it's good enough to say that
the if statement is executed about n2 times.  In particular,
the test A[j] > A[j+1] is executed about n2 times,
and this fact by itself is enough to say that the run time of the algorithm is
Ω(n2), that is, the run time is at least some constant times
n2.  Furthermore, if we look at other operations—the assignment
statements, incrementing i and j, etc.—none
of them are executed more than n2 times, so the run time is also
O(n2), that is, the run time is no more than some constant
times n2.  Since it is both Ω(n2) and O(n2),
the run time of the simpleBubbleSort algorithm is Θ(n2).

   
You should be aware that some people use the notation O(f(n)) as if
it meant Θ(f(n)).  That is, when they say that the run time of an algorithm
is O(f(n)), they mean to say that the run time is about equal to
a constant times f(n).  For that, they should use Θ(f(n)).  Properly
speaking, O(f(n)) means that the run time is less than a constant times
f(n), possibly much less.

   


   
So far, my analysis has ignored an important detail.  We have looked at how run time
depends on the problem size, but in fact the run time usually depends not just on the
size of the problem but on the specific data that has to be processed.  For example, the
run time of a sorting algorithm can depend on the initial order of the items that are
to be sorted, and not just on the number of items.


To account for this dependency, we can consider either the
worst case run time analysis or the
average case run time analysis of an algorithm.
For a worst case run time analysis, we consider all possible problems of size n
and look at the longest possible run time for all such problems. 
For an average case analysis, we consider all possible problems of size n
and look at the average of the run times for all such problems.
Usually, the average case analysis assumes that all problems of size n
are equally likely to be encountered, although this is not always realistic—or
even possible in the case where there is an infinite number of different
problems of a given size.

   
In many cases, the average and the worst case run times are the same to within a
constant multiple.  This means that as far as asymptotic analysis is concerned, they
are the same.  That is, if the average case run time is O(f(n)) or Θ(f(n)), then
so is the worst case.  However, later in the book, we will encounter a few cases where
the average and worst case asymptotic analyses differ.


It is also possible to talk about best case run time
analysis, which looks at the shortest possible run time for all inputs
of a given size.  However, a best case analysis is only occasionally useful.

      


   
So, what do you really have to know about analysis of algorithms to read the rest
of this book?  We will not do any rigorous mathematical analysis, but you should be
able to follow informal discussion of simple cases such as the examples that we
have looked at in this section.  Most important, though, you should have a feeling
for exactly what it means to say that the running time of an algorithm is
O(f(n)) or Θ(f(n)) for some common functions f(n).  The main point is
that these notations do not tell you anything about the actual numerical value of
the running time of the algorithm for any particular case.  They do not tell you
anything at all about the running time for small values of n.  What they do tell
you is something about the rate of growth of the running time
as the size of the problem increases.

   
Suppose you compare two algorithms that solve the same problem.  The run time of
one algorithm is Θ(n2), while the run time of the second algorithm
is Θ(n3).  What does this tell you?  If you want to know which
algorithm will be faster for some particular problem of size, say, 100, nothing
is certain.  As far as you can tell just from the asymptotic analysis, either algorithm
could be faster for that particular case—or in any particular case.
But what you can say for sure is that if you look at larger and larger
problems, you will come to a point where the Θ(n2) algorithm
is faster than the Θ(n3) algorithm.  Furthermore, as you continue
to increase the problem size, the relative advantage of the Θ(n2)
algorithm will continue to grow.  There will be values of n for which the
Θ(n2) algorithm is a thousand times faster, a million times
faster, a billion times faster, and so on.  This is because for any positive
constants a and b, the function a*n3 grows faster than
the function b*n2 as n gets larger. (Mathematically, the limit of the ratio
of a*n3 to b*n2 is infinite as n approaches infinity.)

   
This means that for "large" problems, a Θ(n2) algorithm will
definitely be faster than a Θ(n3) algorithm. You just don't
know—based on the asymptotic analysis alone—exactly how large "large" has
to be.  In practice, in fact, it is likely that the Θ(n2)
algorithm will be faster even for fairly small values of n, and absent other
information you would generally prefer a Θ(n2) algorithm
to a Θ(n3) algorithm.

   
So, to understand and apply asymptotic analysis, it is essential to have some
idea of the rates of growth of some common functions.  For the power functions
n, n2, n3, n4, ..., the larger the
exponent, the greater the rate of growth of the function.  Exponential functions
such as 2n and 10n, where the n is in the exponent, have
a growth rate that is faster than that of any power function.  In fact,
exponential functions grow so quickly that an algorithm whose run time grows
exponentially is almost certainly impractical even for relatively modest
values of n, because the running time is just too long.  Another function that
often turns up in asymptotic analysis is the logarithm function, log(n).
There are actually many different logarithm functions, but the one that
is usually used in computer science is the so-called logarithm to the
base two, which is defined by the fact that log(2x) = x for
any number x.  (Usually, this function is written log2(n),
but I will leave out the subscript 2, since I will only use the base-two logarithm
in this book.)  The logarithm function grows very slowly.  The growth
rate of log(n) is much smaller than the growth rate of n.  The growth rate
of n*log(n) is a little larger than the growth rate of n, but much smaller
than the growth rate of n2.  The following table should help you
understand the differences among the rates of growth of various functions:



[image: Table of Rates of Growth of Various Functions]


   
The reason that log(n) shows up so often is because of its association
with multiplying and dividing by two:  Suppose you start with the number
n and divide it by 2, then divide by 2 again, and so on, until you get
a number that is less than or equal to 1.  Then the number of divisions
is equal (to the nearest integer) to log(n).

   
As an example, consider the binary search algorithm from Subsection 7.5.1.
This algorithm searches for an item in a sorted array.  The problem size, n, can be
taken to be the length of the array.  Each step in the binary search algorithm
divides the number of items still under consideration by 2, and the algorithm
stops when the number of items under consideration is less than or equal to 1
(or sooner).  It follows that the number of steps for an array of length n
is at most log(n).  This means that the worst-case run time for binary search
is Θ(log(n)).  (The average case run time is also Θ(log(n)).)
By comparison, the linear search algorithm, which was also presented in
Subsection 7.5.1 has a run time that is Θ(n).
The Θ notation gives us a quantitative way to express and to understand
the fact that binary search is "much faster" than linear search.


In binary search, each step of the algorithm divides the problem size by 2.
It often happens that some operation in an algorithm (not necessarily a single step)
divides the problem size by 2.  Whenever that happens, the logarithm function
is likely to show up in an asymptotic analysis of the run time of the
algorithm.

   
Analysis of Algorithms is a large, fascinating field.  We will only use
a few of the most basic ideas from this field, but even those can be very helpful
for understanding the differences among algorithms.

   







Programming Exercises for Chapter 8



Exercise 8.1:

Write a program that uses
the following subroutine, from Subsection 8.3.3, to solve
equations specified by the user.

/**
 * Returns the larger of the two roots of the quadratic equation
 * A*x*x + B*x + C = 0, provided it has any roots.  If A == 0 or
 * if the discriminant, B*B - 4*A*C, is negative, then an exception
 * of type IllegalArgumentException is thrown.
 */
static public double root( double A, double B, double C ) 
                              throws IllegalArgumentException {
    if (A == 0) {
      throw new IllegalArgumentException("A can't be zero.");
    }
    else {
       double disc = B*B - 4*A*C;
       if (disc < 0)
          throw new IllegalArgumentException("Discriminant < zero.");
       return  (-B + Math.sqrt(disc)) / (2*A);
    }
}

Your program should allow the user to specify values for A,
B, and C. It should call the subroutine to compute a solution
of the equation. If no error occurs, it should print the root. However, if an
error occurs, your program should catch that error and print an error message.
After processing one equation, the program should ask whether the user wants to
enter another equation. The program should continue until the user answers
no.


See the Solution




Exercise 8.2:

As discussed in Section 8.1,
values of type int are limited to 32 bits.
Integers that are too large to be represented in 32 bits cannot be stored in an
int variable. Java has a standard class,
java.math.BigInteger, that addresses this problem. An object of type
BigInteger is an integer that can be arbitrarily large. (The maximum
size is limited only by the amount of memory available to the Java Virtual Machine.) Since
BigIntegers are objects, they must be manipulated using instance
methods from the BigInteger class. For example, you can't add two
BigIntegers with the + operator. Instead, if N and
M are variables that refer to BigIntegers, you can compute
the sum of N and M with the function call N.add(M).
The value returned by this function is a new BigInteger object that is
equal to the sum of N and M.


The BigInteger class has a constructor 
new BigInteger(str), where str is a string.
The string must represent an integer, such as "3" or "39849823783783283733". If
the string does not represent a legal integer, then the constructor throws a
NumberFormatException.


There are many instance methods in the BigInteger class. Here are a
few that you will find useful for this exercise. Assume that N and
M are variables of type BigInteger.



	
N.add(M) — a function that returns a
BigInteger representing the sum of N and M.

	
N.multiply(M) — a function that
returns a BigInteger representing the result of multiplying N
times M.

	
N.divide(M) — a function that returns
a BigInteger representing the result of dividing N by
M, discarding the remainder.

	
N.signum() — a function that returns
an ordinary int. The returned value represents the sign of the integer
N. The returned value is 1 if N is greater than zero. It is
-1 if N is less than zero. And it is 0 if N is zero.

	
N.equals(M) — a function that returns
a boolean value that is true if N and M
have the same integer value.

	
N.toString() — a function that
returns a String representing the value of N.

	
N.testBit(k) — a function that
returns a boolean value. The parameter k is an integer. The
return value is true if the k-th bit in N is 1, and
it is false if the k-th bit is 0. Bits are numbered from
right to left, starting with 0. Testing "if (N.testBit(0))" is an easy
way to check whether N is even or odd. N.testBit(0) is
true if and only if N is an odd number.




For this exercise, you should write a program that prints 3N+1
sequences with starting values specified by the user. In this version of the
program, you should use BigIntegers to represent the terms in the
sequence. You can read the user's input into a String with the
TextIO.getln() function or with the nextLine() function
of a Scanner. Use the input value to create the
BigInteger object that represents the starting point of the
3N+1 sequence. Don't forget to catch and handle the
NumberFormatException that will occur if the user's input is not a
legal integer!  The program should not end when that happens; it should just output
an error message.  You should also check that the input number is greater than
zero.


If the user's input is legal, print out the 3N+1 sequence. Count
the number of terms in the sequence, and print the count at the end of the
sequence. Exit the program when the user inputs an empty line.


See the Solution




Exercise 8.3:

A Roman numeral represents
an integer using letters. Examples are XVII to represent 17, MCMLIII for 1953,
and MMMCCCIII for 3303. By contrast, ordinary numbers such as 17 or 1953 are
called Arabic numerals. The following table shows the Arabic equivalent of all
the single-letter Roman numerals:


M    1000            X   10
D     500            V    5
C     100            I    1
L      50


When letters are strung together, the values of the letters are just added
up, with the following exception. When a letter of smaller value is followed by
a letter of larger value, the smaller value is subtracted from the larger
value. For example, IV represents 5 - 1, or 4. And MCMXCV is interpreted as 
M + CM + XC + V, 
or 1000 + (1000 - 100) + (100 - 10) + 5, which is 1995. In
standard Roman numerals, no more than three consecutive copies of the same
letter are used. Following these rules, every number between 1 and 3999 can be
represented as a Roman numeral made up of the following one- and two-letter
combinations:


M    1000            X   10
CM    900            IX   9
D     500            V    5
CD    400            IV   4
C     100            I    1
XC     90
L      50
XL     40


Write a class to represent Roman numerals. The class should have two
constructors. One constructs a Roman numeral from a string such as "XVII" or
"MCMXCV". It should throw a NumberFormatException if the string is not
a legal Roman numeral. The other constructor constructs a Roman numeral from an
int. It should throw a NumberFormatException if the
int is outside the range 1 to 3999.


In addition, the class should have two instance methods. The method
toString() returns the string that represents the Roman numeral. The
method toInt() returns the value of the Roman numeral as an
int.


At some point in your class, you will have to convert an int into
the string that represents the corresponding Roman numeral. One way to approach
this is to gradually "move" value from the Arabic numeral to the Roman numeral.
Here is the beginning of a routine that will do this, where number is
the int that is to be converted:


String roman = "";
int N = number;
while (N >= 1000) {
      // Move 1000 from N to roman.
   roman += "M";
   N -= 1000;
}
while (N >= 900) {
      // Move 900 from N to roman.
   roman += "CM";
   N -= 900;
}
.
.  // Continue with other values from the above table.
.


(You can save yourself a lot of typing in this routine if you use arrays in
a clever way to represent the data in the above table.)


Once you've written your class, use it in a main program that will read both
Arabic numerals and Roman numerals entered by the user. If the user enters an
Arabic numeral, print the corresponding Roman numeral. If the user enters a
Roman numeral, print the corresponding Arabic numeral. (You can tell the
difference by using TextIO.peek() to peek at the first character in
the user's input (see Subsection 8.2.2). 
If the first character is a digit, then the user's input is an
Arabic numeral. Otherwise, it's a Roman numeral.) The program should end when
the user inputs an empty line.


See the Solution




Exercise 8.4:

The source code file Expr.java
defines a class, Expr, that can be
used to represent mathematical expressions involving the variable x.
The expression can use the operators +, -, *, /, 
and ^ (where ^ represents the
operation of raising a number to a power). It can use mathematical functions
such as sin, cos, abs, and ln. See the
source code file for full details. The Expr class uses some advanced
techniques which have not yet been covered in this textbook. However, the
interface is easy to understand. It contains only a constructor and two public
methods.


The constructor new Expr(def) creates
an Expr object defined by a given expression. The parameter,
def, is a string that contains the definition. For example, 
new Expr("x^2") or new Expr("sin(x)+3*x"). 
If the parameter in the
constructor call does not represent a legal expression, then the constructor
throws an IllegalArgumentException. The message in the exception
describes the error.


If func is a variable of type Expr and num is of
type double, then func.value(num)
is a function that returns the value
of the expression when the number num is substituted for the variable
x in the expression. For example, if Expr represents the
expression 3*x+1, then func.value(5) is 3*5+1, or
16. If the expression is undefined for the specified value of x, then
the special value Double.NaN is returned; no exception is thrown.


Finally, func.toString() returns
the definition of the expression. This is just the string that was used in the
constructor that created the expression object.


For this exercise, you should write a program that lets the user enter an
expression. If the expression contains an error, print an error message.
Otherwise, let the user enter some numerical values for the variable
x. Print the value of the expression for each number that the user
enters. However, if the expression is undefined for the specified value of
x, print a message to that effect. You can use the
boolean-valued function Double.isNaN(val) to check whether a
number, val, is Double.NaN.


The user should be able to enter as many values of x as desired.
After that, the user should be able to enter a new expression.


See the Solution




Exercise 8.5:

This exercise uses the
class Expr, which was described in
Exercise 8.4 and which is defined in the source code
file Expr.java.  For this exercise, you
should write a GUI program that can graph a function, f(x), whose
definition is entered by the user. The program should have a text-input box
where the user can enter an expression involving the variable x, such
as x^2 or sin(x-3)/x. This expression is the definition of
the function. When the user clicks an "Enter" button or presses return, the program
should use the contents of the text input box to construct an object of type
Expr. If an error is found in the definition, then the program should
display an error message. Otherwise, it should display a graph of the function.
(Recall: If you make a button into the default button for the window, then pressing
return will be equivalent to clicking the button (see the end of Subsection 6.4.2).)


The program will need a Canvas 
for displaying the graph. To keep
things simple, the canvas should represent a fixed region in the xy-plane,
defined by -5 <= x <= 5 and
-5 <= y <= 5. To draw the graph, compute a
large number of points and connect them with line segments. (This method does
not handle discontinuous functions properly; doing so is very hard, so you
shouldn't try to do it for this exercise.) My program divides the interval
-5 <= x <= 5 into 300 subintervals and uses
the 301 endpoints of these subintervals for drawing the graph. Note that the
function might be undefined at one of these x-values. In that case,
you have to skip that point.


A point on the graph has the form (x,y) where y is
obtained by evaluating the user's expression at the given value of x.
You will have to convert x and y values in the range from -5 to 5 to the
pixel coordinates that you need for drawing on the canvas.
The formulas for the conversion are:



double a  =  ( (x + 5)/10 * width );
double b  =  ( (5 - y)/10 * height );




where a and b are the horizontal and vertical pixel coordinates
on the canvas.  The values of width and height 
give the size of the canvas.



See the Solution






Quiz on Chapter 8


Question 1:


Why do programming languages
require that variables be declared before they are used? What does this have to
do with correctness and robustness?


Question 2:


What is a precondition? Give an example.


Question 3:


Explain how preconditions
can be used as an aid in writing correct programs.


Question 4:


Find a useful loop invariant for the while loop in
the binary search algorithm (Subsection 7.5.1).


Question 5:


Java has a predefined class
called Throwable. What does this class represent? Why does it
exist?


Question 6:


Write a method that
prints out a 3N+1 sequence starting from a given integer, N.
The starting value should be a parameter to the method. If the parameter is
less than or equal to zero, throw an IllegalArgumentException. If the
number in the sequence becomes too large to be represented as a value of type
int, throw an ArithmeticException.


Question 7:


Rewrite the method from the previous question, using assert
statements instead of exceptions to check for errors.  What is the difference between
the two versions of the method when the program is run?


Question 8:


Some classes of exceptions are checked exceptions that
require mandatory exception handling. Explain what this means.


Question 9:


Consider a subroutine processData() that has the header


static void processData() throws IOException


Write a try..catch statement that calls this subroutine and prints
an error message if an IOException occurs.


Question 10:


Why should a subroutine
throw an exception when it encounters an error? Why not just terminate the
program?


Question 11:


Suppose that you have a choice of two algorithms that perform
the same task.  One has average-case run time that is Θ(n2) while the run time
of the second algorithm has an average-case run time that is Θ(n*log(n)).  Suppose that
you need to process an input of size n = 100.  Which algorithm would
you choose?  Can you be certain that you are choosing the fastest algorithm for the
input that you intend to process?



Question 12:


Analyze the run time of the following algorithm.  That is, find a function
f(n) such that the run time of the algorithm is O(f(n)) or, better, Θ(f(n)).
Assume that A is an array of integers, and use the length of the array
as the input size, n.



int total = 0;
for (int i = 0; i < A.length; i++) {
   if (A[i] > 0)
      total = total + A[i];
}



See the Answers






Chapter 9

Linked Data Structures and Recursion





In this chapter, we look at two advanced
programming techniques, recursion and linked data structures, and some of their
applications. Both of these techniques are related to the seemingly paradoxical
idea of defining something in terms of itself. This turns out to be a
remarkably powerful idea.


A subroutine is said to be recursive if it calls itself, either directly or
indirectly. What this means is that the subroutine is used in its own definition. Recursion
can often be used to solve complex problems by reducing them to simpler
problems of the same type.


A reference to one object can be stored in an instance variable of another
object. The objects are then said to be "linked." Complex data structures can
be built by linking objects together. An especially interesting case occurs
when an object contains a link to another object that belongs to the same
class. In that case, the class is used in its own definition. Several important
types of data structures are built using classes of this kind.
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Section 9.1

Recursion



   


At one time or another, you've probably been told
that you can't define something in terms of itself. Nevertheless, if it's done
right, defining something at least partially in terms of itself can be a very
powerful technique. A recursive definition is one
that uses the concept or thing that is being defined as part of the definition.
For example: An "ancestor" is either a parent or an ancestor of a parent. A
"sentence" can be, among other things, two sentences joined by a conjunction
such as "and." A "directory" is a part of a disk drive that can hold files and
directories. In mathematics, a "set" is a collection of elements, which can themselves be
sets. A "statement" in Java can be a while statement, which is
made up of the word "while", a boolean-valued condition, and a statement.


Recursive definitions can describe very complex situations with just a few
words. A definition of the term "ancestor" without using recursion might go
something like "a parent, or a grandparent, or a great-grandparent, or a
great-great-grandparent, and so on." But saying "and so on" is not very
rigorous. (I've often thought that recursion is really just a rigorous way of
saying "and so on.") You run into the same problem if you try to define a
"directory" as "a file that is a list of files, where some of the files can be
lists of files, where some of those files can be lists of files, and so
on." Trying to describe what a Java statement can look like, without using
recursion in the definition, would be difficult and probably pretty comical.


Recursion can be used as a programming technique. A 
recursive subroutine (or recursive method)
is one that calls itself, either directly
or indirectly. To say that a subroutine calls itself directly means that its
definition contains a subroutine call statement that calls the subroutine that
is being defined. To say that a subroutine calls itself indirectly means that
it calls a second subroutine which in turn calls the first subroutine (either
directly or indirectly). A recursive subroutine can define a complex task in
just a few lines of code. In the rest of this section, we'll look at a variety
of examples, and we'll see other examples in the rest of the book.





9.1.1  Recursive Binary Search



Let's start with an example that you've seen before: the binary search
algorithm from Subsection 7.5.1. Binary search is used
to find a specified value in a sorted list of items (or, if it does not occur
in the list, to determine that fact). The idea is to test the element in the
middle of the list. If that element is equal to the specified value, you are
done. If the specified value is less than the middle element of the list, then
you should search for the value in the first half of the list. Otherwise, you
should search for the value in the second half of the list. The method used to
search for the value in the first or second half of the list is binary search.
That is, you look at the middle element in the half of the list that is still
under consideration, and either you've found the value you are looking for, or
you have to apply binary search to one half of the remaining elements. And so
on! This is a recursive description, and we can write a recursive subroutine to
implement it.


Before we can do that, though, there are two considerations that we need to
take into account. Each of these illustrates an important general fact about
recursive subroutines. First of all, the binary search algorithm begins by
looking at the "middle element of the list." But what if the list is empty? If
there are no elements in the list, then it is impossible to look at the middle
element. In the terminology of Subsection 8.2.2, having
a non-empty list is a "precondition" for looking at the middle element, and
this is a clue that we have to modify the algorithm to take this precondition
into account. What should we do if we find ourselves searching for a specified
value in an empty list? The answer is easy: If the list is empty, we can be sure that the
value does not occur in the list, so we can give the answer without any further work.
An empty list is a base case 
for the binary search algorithm. A base case for a recursive
algorithm is a case that is handled directly, rather than by applying the
algorithm recursively. The binary search algorithm actually has another type of
base case: If we find the element we are looking for in the middle of the list,
we are done. There is no need for further recursion.


The second consideration has to do with the parameters to the subroutine.
The problem is phrased in terms of searching for a value in a list. In the
original, non-recursive binary search subroutine, the list was given as an
array. However, in the recursive approach, we have to be able to apply the
subroutine recursively to just a part of the original list. Where the
original subroutine was designed to search an entire array, the recursive
subroutine must be able to search part of an array. The parameters to the
subroutine must tell it what part of the array to search. This illustrates a
general fact that in order to solve a problem recursively, it is often
necessary to generalize the problem slightly.


Here is a recursive binary search algorithm that searches for a given value
in part of an array of integers:


/**
 * Search in the array A in positions numbered loIndex to hiIndex,
 * inclusive, for the specified value.  If the value is found, return 
 * the index in the array where it occurs.  If the value is not found, 
 * return -1.  Precondition:  The array must be sorted into increasing 
 * order.
 */
static int binarySearch(int[] A, int loIndex, int hiIndex, int value) {
      
   if (loIndex > hiIndex) {
         // The starting position comes after the final index,
         // so there are actually no elements in the specified
         // range.  The value does not occur in this empty list!
      return -1;
   }
   
   else {
         // Look at the middle position in the list.  If the
         // value occurs at that position, return that position.
         // Otherwise, search recursively in either the first
         // half or the second half of the list.
      int middle = (loIndex + hiIndex) / 2;
      if (value == A[middle])
         return middle;
      else if (value < A[middle])
         return binarySearch(A, loIndex, middle - 1, value);
      else   // value must be > A[middle]
         return binarySearch(A, middle + 1, hiIndex, value);
   }

} // end binarySearch()


In this routine, the parameters loIndex and hiIndex
specify the part of the array that is to be searched. To search an entire
array, it is only necessary to call binarySearch(A, 0, A.length - 1,
value). In the two base cases—when there are no elements in the
specified range of indices and when the value is found in the middle of the
range—the subroutine can return an answer immediately, without using
recursion. In the other cases, it uses a recursive call to compute the answer
and returns that answer.


Most people find it difficult at first to convince themselves that recursion
actually works. The key is to note two things that must be true for recursion
to work properly: There must be one or more base cases, which can be handled
without using recursion. And when recursion is applied during the solution of a
problem, it must be applied to a problem that is in some sense smaller—that
is, closer to the base cases—than the original problem. The idea is that if
you can solve small problems and if you can reduce big problems to smaller
problems, then you can solve problems of any size. Ultimately, of course, the
big problems have to be reduced, possibly in many, many steps, to the very
smallest problems (the base cases). Doing so might involve an immense amount of
detailed bookkeeping. But the computer does that bookkeeping, not you! As a
programmer, you lay out the big picture: the base cases and the reduction of
big problems to smaller problems. The computer takes care of the details
involved in reducing a big problem, in many steps, all the way down to base
cases. Trying to think through this reduction in detail is likely to drive you
crazy, and will probably make you think that recursion is hard. Whereas in
fact, recursion is an elegant and powerful method that is often the simplest
approach to solving a complex problem.


A common error in writing recursive subroutines is to violate one of the two
rules: There must be one or more base cases, and when the subroutine is applied
recursively, it must be applied to a problem that is smaller than the original
problem. If these rules are violated, the result can be an 
infinite recursion, where the subroutine keeps calling itself
over and over, without ever reaching a base case. Infinite recursion is similar
to an infinite loop. However, since each recursive call to the subroutine uses
up some of the computer's memory, a program that is stuck in an infinite
recursion will run out of memory and crash before long. In Java, the program
will crash with an exception of type StackOverflowError.



   



9.1.2  Towers of Hanoi



We have been studying an algorithm, binary search, that 
can easily be implemented with a while loop, instead of with
recursion. Next, we
turn to a problem that is easy to solve with recursion but difficult to solve
without it. This is a standard example known as "The Towers of Hanoi." The
problem involves a stack of various-sized disks, piled up on a base in order of
decreasing size. The object is to move the stack from one base to another,
subject to two rules: Only one disk can be moved at a time, and no disk can
ever be placed on top of a smaller disk. There is a third base that can be used
as a "spare." The starting situation for a stack of ten disks is shown in the top half
of the following picture. The situation after a number of moves have been made
is shown in the bottom half of the picture. (These illustrations are from a sample
program from Chapter 12, 
TowersOfHanoiGUI.java, which displays an
animation of the step-by-step solution of the problem; however, that 
program uses some techniques that you haven't learned yet.)




[image: illustration of the Towers of Hanoi problem]



The problem is to move ten disks from Stack 0 to Stack 1, subject to the rules
given above. Stack 2 can be used as a spare location. Can we reduce this to smaller
problems of the same type, possibly generalizing the problem a bit to make this
possible? It seems natural to consider the size of the problem to be the number
of disks to be moved. If there are N disks in Stack 0, we know that we
will eventually have to move the bottom disk from Stack 0 to Stack 1. But
before we can do that, according to the rules, the first N-1 disks
must be on Stack 2. Once we've moved the N-th disk to Stack 1, we must
move the other N-1 disks from Stack 2 to Stack 1 to complete the
solution. But moving N-1 disks is the same type of problem as moving
N disks, except that it's a smaller version of the problem. This is
exactly what we need to do recursion! The problem has to be generalized a bit,
because the smaller problems involve moving disks from Stack 0 to Stack 2 or
from Stack 2 to Stack 1, instead of from Stack 0 to Stack 1. In the recursive
subroutine that solves the problem, the stacks that serve as the source and
destination of the disks have to be specified. It's also convenient to specify
the stack that is to be used as a spare, even though we could figure that out
from the other two parameters. The base case is when there is only one disk to
be moved. The solution in this case is trivial: Just move the disk in one step.
Here is a version of the subroutine that will print out step-by-step
instructions for solving the problem:


/**
 * Solve the problem of moving the number of disks specified
 * by the first parameter from the stack specified by the 
 * second parameter to the stack specified by the third 
 * parameter.  The stack specified by the fourth parameter
 * is available for use as a spare.  Stacks are specified by
 * number: 0, 1, or 2.
 */
static void towersOfHanoi(int disks, int from, int to, int spare) {
    if (disks == 1) {
            // There is only one disk to be moved.  Just move it.
        System.out.printf("Move disk 1 from stack %d to stack %d%n", 
                               from, to);
    }
    else {
            // Move all but one disk to the spare stack, then
            // move the bottom disk, then put all the other
            // disks on top of it.
        towersOfHanoi(disks-1, from, spare, to);
        System.out.printf("Move disk %d from stack %d to stack %d%n",
                              disks, from, to);
        towersOfHanoi(disks-1, spare, to, from);
    }
}


This subroutine just expresses the natural recursive solution. The recursion
works because each recursive call involves a smaller number of disks, and the
problem is trivial to solve in the base case, when there is only one disk. To
solve the "top level" problem of moving N disks from Stack 0 to Stack
1, the subroutine should be called with the command TowersOfHanoi(N,0,1,2). The
subroutine is used in the sample program TowersOfHanoi.java.
Here, for example, is the output from the program when it is run
with the number of disks set equal to 4:


Move disk 1 from stack 0 to stack 2
Move disk 2 from stack 0 to stack 1
Move disk 1 from stack 2 to stack 1
Move disk 3 from stack 0 to stack 2
Move disk 1 from stack 1 to stack 0
Move disk 2 from stack 1 to stack 2
Move disk 1 from stack 0 to stack 2
Move disk 4 from stack 0 to stack 1
Move disk 1 from stack 2 to stack 1
Move disk 2 from stack 2 to stack 0
Move disk 1 from stack 1 to stack 0
Move disk 3 from stack 2 to stack 1
Move disk 1 from stack 0 to stack 2
Move disk 2 from stack 0 to stack 1
Move disk 1 from stack 2 to stack 1



The output of this program shows you a mass of detail that you don't really want to
think about! The difficulty of following the details contrasts sharply with the
simplicity and elegance of the recursive solution. Of course, you really want
to leave the details to the computer. 
(You might think about what happens when the
precondition that the number of disks is positive is violated.  The result is
an example of infinite recursion.)


There is, by the way, a story that explains the name of this problem.
According to this story, on the first day of creation, a group of monks in an
isolated tower near Hanoi were given a stack of 64 disks and were assigned the
task of moving one disk every day, according to the rules of the Towers of
Hanoi problem. On the day that they complete their task of moving all the disks
from one stack to another, the universe will come to an end. But don't worry.
The number of steps required to solve the problem for N disks is
2N - 1, and 264 - 1 days is over 50,000,000,000,000
years. We have a long way to go.

   
(In the terminology of Section 8.5, the Towers of Hanoi
algorithm has a run time that is Θ(2n), where n is the number
of disks that have to be moved.
Since the exponential function 2n grows
so quickly, the Towers of Hanoi problem can be solved in practice only for a small
number of disks.)




   
By the way, in addition to the graphical Towers of Hanoi program, mentioned above, 
there are two more demo programs that you might want to look at.  Each program
provides a visual demonstration of a recursive algorithm.  In 
Maze.java, recursion is used to solve a maze.
In LittlePentominos.java, it is used to solve
a well-known kind of puzzle.  (LittlePentominos.java also requires
the file MosaicCanvas.java.) It would be useful
to run the programs and watch them for a while, but the source code
uses some techniques that won't be covered until Chapter 12.


The Maze program first creates a random maze. It then tries to solve the maze
by finding a path through the maze from the upper left corner to the lower
right corner. This problem is actually very similar to a "blob-counting"
problem that is considered later in this section. 
The recursive maze-solving routine starts from a given square, and it
visits each neighboring square and calls itself recursively from there. The
recursion ends if the routine finds itself at the lower right corner of the
maze.  When it can't find a solution from a square, it "backs up" out of
that square and tries somewhere else.  This common technique is referred to as
recursive backtracking.


The LittlePentominos program is an implementation of a classic puzzle. A pentomino
is a connected figure made up of five equal-sized squares. There are exactly
twelve figures that can be made in this way, not counting all the possible
rotations and reflections of the basic figures. The problem is to place the
twelve pentominos on an 8-by-8 board in which four of the squares have already
been marked as filled. The recursive solution looks at a board that has already
been partially filled with pentominos. The subroutine looks at each remaining
piece in turn. It tries to place that piece in the next available place on the
board. If the piece fits, it calls itself recursively to try to fill in the
rest of the solution. If that fails, then the subroutine goes on to the next
piece—another example of recursive backtracking.
A generalized version of the pentominos program with many more features
can be found at 
https://math.hws.edu/eck/js/pentominos/pentominos.html.


   

   



9.1.3  A Recursive Sorting Algorithm



Turning next to an application that is perhaps more practical, we'll look at
a recursive algorithm for sorting an array. The selection sort and insertion
sort algorithms, which were covered in Section 7.5,
are fairly simple, but they are rather slow
when applied to large arrays. Faster sorting algorithms are available. One of
these is Quicksort, a recursive algorithm which turns out to be the fastest
sorting algorithm in most situations.


The Quicksort algorithm is based on a simple but clever idea: Given a list
of items, select any item from the list. This item is called the 
pivot. (In practice, I'll just use the first item in the
list.) Move all the items that are smaller than the pivot to the beginning of
the list, and move all the items that are larger than the pivot to the end of
the list. Now, put the pivot between the two groups of items. This puts the
pivot in the position that it will occupy in the final, completely sorted
array. It will not have to be moved again. We'll refer to this procedure as
QuicksortStep.



[image: Illustration of QuicksortStep]



QuicksortStep is not recursive. It is used as a subroutine by Quicksort. The
speed of Quicksort depends on having a fast implementation of QuicksortStep.
Since it's not the main point of this discussion, I present one without much
comment.


/**
 * Apply QuicksortStep to the list of items in locations lo through hi 
 * in the array A.  The value returned by this routine is the final 
 * position of the pivot item in the array.
 */
 static int quicksortStep(int[] A, int lo, int hi) {
       
    int pivot = A[lo];  // Get the pivot value.
    
    // The numbers hi and lo mark the endpoints of a range
    // of numbers that have not yet been tested.  Decrease hi
    // and increase lo until they become equal, moving numbers
    // bigger than pivot so that they lie above hi and moving
    // numbers less than the pivot so that they lie below lo.
    // When we begin, A[lo] is an available space, since its
    // value has been moved into the local variable, pivot.
    
    while (hi > lo) {
    
       // Loop invariant (See Subsection Subsection 8.2.3):  A[i] <= pivot
       // for i < lo, and A[i] >= pivot for i > hi.
    
       while (hi > lo && A[hi] >= pivot) {
             // Move hi down past numbers greater than pivot.
             // These numbers do not have to be moved.
          hi--;
       }
       
       if (hi == lo)
          break;
          
       // The number A[hi] is less than pivot.  Move it into
       // the available space at A[lo], leaving an available
       // space at A[hi].
          
       A[lo] = A[hi];
       lo++;
       
       while (hi > lo && A[lo] <= pivot) {
             // Move lo up past numbers less than pivot.
             // These numbers do not have to be moved.
          lo++;
       }
       
       if (hi == lo)
          break;
       
       // The number A[lo] is greater than pivot.  Move it into
       // the available space at A[hi], leaving an available
       // space at A[lo].
          
       A[hi] = A[lo];
       hi--;
       
    } // end while
    
    // At this point, lo has become equal to hi, and there is
    // an available space at that position.  This position lies
    // between numbers less than pivot and numbers greater than
    // pivot.  Put pivot in this space and return its location.
    
    A[lo] = pivot;
    return lo;
    
 }  // end QuicksortStep


With this subroutine in hand, Quicksort is easy. The Quicksort algorithm for
sorting a list consists of applying QuicksortStep to the list, then applying
Quicksort recursively to the items that lie to the left of the new position of the
pivot and to the
items that lie to the right of that position. Of course, we need base cases. If the
list has only one item, or no items, then the list is already as sorted as it
can ever be, so Quicksort doesn't have to do anything in these cases.


/**
 * Apply quicksort to put the array elements between
 * position lo and position hi into increasing order.
 */
static void quicksort(int[] A, int lo, int hi) {
   if (hi <= lo) {
         // The list has length one or zero.  Nothing needs
         // to be done, so just return from the subroutine.
      return;
   }
   else {
         // Apply quicksortStep and get the new pivot position.
         // Then apply quicksort to sort the items that
         // precede the pivot and the items that follow it.
      int pivotPosition = quicksortStep(A, lo, hi);
      quicksort(A, lo, pivotPosition - 1);
      quicksort(A, pivotPosition + 1, hi);
   }
}


As usual, we had to generalize the problem. The original problem was to sort
an array, but the recursive algorithm is set up to sort a specified part of an
array. To sort an entire array, A, using the quickSort()
subroutine, you would call quicksort(A, 0, A.length - 1).

   
Quicksort is an interesting example from the point of view of the analysis
of algorithms (Section 8.5), because its average case
run time differs greatly from its worst case run time.  Here is a very informal
analysis, starting with the average case:  Note that an application of
quicksortStep divides a problem into two sub-problems.  On
the average, the subproblems will be of approximately the same size.  A
problem of size n is divided into two problems that are roughly of size
n/2; these are then divided into four problems that are roughly of size
n/4; and so on.  Since the problem size is divided by 2 on each level,
there will be approximately log(n) levels of subdivision.
The amount of processing on each level is proportional to n.  (On the
top level, each element in the array is looked at and possibly moved.
On the second level, where there are two subproblems, every element but
one in the array is part of one of those two subproblems and must be
looked at and possibly moved, so there is a total of about n steps
in both subproblems combined.  Similarly, on
the third level, there are four subproblems and a total of
about n steps in the four subproblems on that level....)
With a total of n steps on each level and approximately log(n) levels
in the average case, the average case run time for Quicksort is
Θ(n*log(n)).  This analysis assumes that quicksortStep divides
a problem into two approximately equal parts.  However, in the worst case,
each application of quicksortStep divides a problem of size n into
a problem of size 0 and a problem of size n-1.  This happens when the
pivot element ends up at the beginning or end of the array.  In this
worst case, there are n levels of subproblems, and the worst-case run
time is Θ(n2). The worst case is very rare—it
depends on the items in the array being arranged in a very special way,
so the average performance of Quicksort can be very good even though
it is not so good in certain rare cases.  (One of these "rare" cases is
when the original array is already sorted or almost sorted, which is
really not all that rare in practice.  Applying the Quicksort
algorithm as given above to a large sorted array will take a long time.
One way to avoid that—with high probablility—is to pick the pivot for QuickSort step at random,
rather than always using the first item.)


There are sorting algorithms that have both an average case and a worst case 
run time of Θ(n*log(n)).
One example that is fairly easy to understand is MergeSort, which you can 
look up if you are interested.







9.1.4  Blob Counting



Next, we will look at counting the number of squares in a group of
connected squares.  I call a group of connected squares a "blob," and the sample program
that we will consider is Blobs.java.
The  program displays a grid of small white, gray,
and red squares.  Here is a screenshot from the program, showing the
grid of squares along with some controls:



[image: screenshot from Blobs.java]



The gray or red squares are considered to be
"filled" and the white squares are "empty." For the purposes of this example, we
define a "blob" to consist of a filled square and all the filled squares that
can be reached from it by moving up, down, left, and right through other filled
squares. If the user clicks on any filled square in the program, the computer will
count the squares in the blob that contains the clicked square, and it will change the color of
those squares to red.  In the picture, one of the blobs is shown in red.
The program has several controls.  There is a 
"New Blobs" button; clicking this button will create a new random
pattern in the grid. A pop-up menu specifies the approximate percentage of
squares that will be filled in the new pattern. The more filled squares, the
larger the blobs. And a button labeled "Count the Blobs" will tell you how many
different blobs there are in the pattern.



Recursion is used in this program to count the number of squares in a blob.
Without recursion, this would be a very difficult thing to implement. Recursion
makes it relatively easy, but it still requires a new technique, which is also
useful in a number of other applications.


The data for the grid of squares is stored in a two dimensional array of
boolean values,


boolean[][]  filled;


The value of filled[r][c] is true if the square in row r
and in column c of the grid is filled. The number of rows in the grid
is stored in an instance variable named rows, and the number of
columns is stored in columns. The program uses a recursive instance
method named getBlobSize(r,c) to count the number of squares in a blob.
The parameters r and c tell which blob to count, namely
the blob that includes the square in a row r and column c. If
there is no filled square at position (r,c), then the answer is zero.
Otherwise, getBlobSize() has to count all the filled squares that can
be reached from the square at position (r,c). The idea is to use
getBlobSize() recursively to get the number of filled squares that can
be reached from each of the neighboring positions: (r+1,c),
(r-1,c), (r,c+1), and (r,c-1). Add up these numbers,
and add one to count the square at (r,c) itself, and you get the total
number of filled squares that can be reached from (r,c). Here is an
implementation of this algorithm, as stated. Unfortunately, it has a serious
flaw: It leads to an infinite recursion!


int getBlobSize(int r, int c) {  // BUGGY, INCORRECT VERSION!!
      // This INCORRECT method tries to count all the filled
      // squares that can be reached from position (r,c) in the grid.
   if (r < 0 || r >= rows || c < 0 || c >= columns) {
         // This position is not in the grid, so there is
         // no blob at this position.  Return a blob size of zero.
      return 0;
   }
   if (filled[r][c] == false) {
        // This square is not part of a blob, so return zero.
      return 0;
   }
   int size = 1;  // Count the square at this position, then count the
                  //   the blobs that are connected to this square
                  //   horizontally or vertically.
   size += getBlobSize(r-1,c);
   size += getBlobSize(r+1,c);
   size += getBlobSize(r,c-1);
   size += getBlobSize(r,c+1);
   return size;
}  // end INCORRECT getBlobSize()


Unfortunately, this routine will count the same square more than once. In
fact, if there are at least two squares in the blob,
then it will try to count each square infinitely often! Think of yourself
standing at position (r,c) and trying to follow these instructions.
The first instruction tells you to move up one row. You do that, and then you
apply the same procedure. As one of the steps in that procedure, you have to
move down one row and apply the same procedure yet again. But that puts
you back at position (r,c)! From there, you move up one row, and from
there you move down one row.... Back and forth forever! We have to make sure
that a square is only counted and processed once, so we don't end up going
around in circles. The solution is to leave a trail of breadcrumbs—or on the
computer a trail of boolean values—to mark the squares that you've
already visited. Once a square is marked as visited, it won't be processed
again. The remaining, unvisited squares are reduced in number, so definite
progress has been made in reducing the size of the problem. Infinite recursion
is avoided!


A second boolean array, visited[r][c], is used to keep track of
which squares have already been visited and processed. It is assumed that all
the values in this array are set to false before getBlobSize() is
called. As getBlobSize() encounters unvisited squares, it marks them
as visited by setting the corresponding entry in the visited array to
true. When getBlobSize() encounters a square that it has already
visited, it doesn't count it or process it further. The technique of "marking"
items as they are encountered is one that is used over and over in the programming
of recursive algorithms. Here is the corrected version of
getBlobSize(), with changes shown in red italic:



/**
 * Counts the squares in the blob at position (r,c) in the
 * grid.  Squares are only counted if they are filled and
 * unvisited.  If this routine is called for a position that
 * has been visited, the return value will be zero.
 */
int getBlobSize(int r, int c) {
   if (r < 0 || r >= rows || c < 0 || c >= columns) {
         // This position is not in the grid, so there is
         // no blob at this position.  Return a blob size of zero.
      return 0;
   }
   if (filled[r][c] == false || visited[r][c] == true) {
        // This square is not part of a blob, or else it has
        // already been counted, so return zero.
      return 0;
   }
   visited[r][c] = true;   // Mark the square as visited so that
                           //    we won't count it again during the
                           //    following recursive calls.
   int size = 1;  // Count the square at this position, then count the
                  //   the blobs that are connected to this square
                  //   horizontally or vertically.
   size += getBlobSize(r-1,c);
   size += getBlobSize(r+1,c);
   size += getBlobSize(r,c-1);
   size += getBlobSize(r,c+1);
   return size;
}  // end getBlobSize()


In the program, this method is used to determine the size of a blob when the
user clicks on a square. After getBlobSize() has performed its task,
all the squares in the blob are still marked as visited. The
method that draws the grid of squares shows visited squares in red, which makes the
blob visible.


The getBlobSize() method is also used for the other task that
can be done by the program:  counting all the
blobs. This is done by the following method, which includes comments to explain
how it works:


/**
 * When the user clicks the "Count the Blobs" button, find the 
 * number of blobs in the grid and report the number in the
 * message label.
 */   
void countBlobs() {
      
   int count = 0; // Number of blobs.
   
   /* First clear out the visited array. The getBlobSize() method 
      will mark every filled square that it finds by setting the 
      corresponding element of the array to true.  Once a square 
      has been marked as visited, it will stay marked until all the
      blobs have been counted.  This will prevent the same blob from 
      being counted more than once. */
   
   for (int r = 0; r < rows; r++)
      for (int c = 0; c < columns; c++)
         visited[r][c] = false;
         
   /* For each position in the grid, call getBlobSize() to get the
      size of the blob at that position.  If the size is not zero, 
      count a blob.  Note that if we come to a position that was part
      of a previously counted blob, getBlobSize() will return 0 and
      the blob will not be counted again. */
         
   for (int r = 0; r < rows; r++)
      for (int c = 0; c < columns; c++) {
         if (getBlobSize(r,c) > 0)
            count++;
      }
                  
   draw();  // Redraw the entire grid of squares. 
                // Note that all the filled squares will be red,
                //    since they have all now been visited.
   
   message.setText("The number of blobs is " + count);
         
} // end countBlobs()


   





Section 9.2

Linked Data Structures



   


Every useful object contains instance variables.
When the type of an instance variable is given by a class or interface name,
the variable can hold a reference to another object. Such a reference is also
called a pointer, and we say that the variable points to 
the object. (Of course, any variable that can contain a reference to
an object can also contain the special value null, which points to
nowhere.) When one object contains an instance variable that points to another
object, we think of the objects as being "linked" by the pointer. Data
structures of great complexity can be constructed by linking objects
together.

   



9.2.1  Recursive Linking



Something interesting happens when an object contains an instance variable
that can refer to another object of the same type. In that case, the definition
of the object's class is recursive. Such recursion arises naturally in many
cases. For example, consider a class designed to represent employees at a
company. Suppose that every employee except the boss has a supervisor, who is
another employee of the company. Then the Employee class would
naturally contain an instance variable of type Employee that points to
the employee's supervisor:



/**
 * An object of type Employee holds data about one employee.
 */
public class Employee {
       
   String name;          // Name of the employee.
   
   Employee supervisor;  // The employee's supervisor.

      .
      .  // (Other instance variables and methods.)
      .
      
} // end class Employee


If emp is a variable of type Employee, then
emp.supervisor is another variable of type Employee. If
emp refers to the boss, then the value of emp.supervisor
should be null to indicate the fact that the boss has no supervisor.
If we wanted to print out the name of the employee's supervisor, for example,
we could use the following Java statement:


if ( emp.supervisor == null) {
   System.out.println( emp.name + " is the boss and has no supervisor!" );
}
else {
   System.out.print( "The supervisor of " + emp.name + " is " );
   System.out.println( emp.supervisor.name );
}


Now, suppose that we want to know how many levels of supervisors there are
between a given employee and the boss. We just have to follow the chain of
command through a series of supervisor links, and count how many steps
it takes to get to the boss:


if ( emp.supervisor == null ) {
   System.out.println( emp.name + " is the boss!" );
}
else {
   Employee runner;  // For "running" up the chain of command.
   runner = emp.supervisor;
   if ( runner.supervisor == null) {
      System.out.println( emp.name  + " reports directly to the boss." );
   }
   else {
      int count = 0;
      while ( runner.supervisor != null ) {
         count++;  // Count the supervisor on this level.
         runner = runner.supervisor; // Move up to the next level.
      }
      System.out.println( "There are " + count
                             + " supervisors between " + emp.name
                             + " and the boss." );
   }
}


As the while loop is executed, runner points in turn to
the original employee (emp), then to emp's supervisor, then to
the supervisor of emp's supervisor, and so on. The count
variable is incremented each time runner "visits" a new employee. The
loop ends when runner.supervisor is null, which indicates
that runner has reached the boss. At that point, count has
counted the number of steps between emp and the boss.


In this example, the supervisor variable is quite natural and
useful. In fact, data structures that are built by linking objects together are
so useful that they are a major topic of study in computer science. We'll be
looking at a few typical examples. In this section and the
next, we'll be looking at linked lists. 
A linked list consists of a chain of objects of the same type,
linked together by pointers from one object to the next. This is much like the
chain of supervisors between emp and the boss in the above example.
It's also possible to have more complex situations, in which one object can contain
links to several other objects. We'll look at an example of this in Section 9.4.



[image: Some linked data structures]




   



9.2.2  Linked Lists



For most of the examples in the rest of this section, linked lists will be constructed out of
objects belonging to the class Node which is defined as follows:


class Node {
   String item;
   Node next;
}


The term node is often used to refer to one of
the objects in a linked data structure. Objects of type Node can be
chained together as shown in the top part of the above illustration. Each node holds
a String and a pointer to the next node in the list (if any).
The last node in such a list can always be identified by the fact that the instance variable
next in the last node holds the value null instead of a
pointer to another node.  The purpose of the chain of nodes is to represent a list
of strings.  The first string in the list is stored in the first node, the second
string is stored in the second node, and so on.  The pointers and the node objects
are used to build the structure, but the data that we want to represent
is the list of strings.  Of course, we could just as easily represent a list of integers or
a list of Colors or a list of any other type of data
by changing the type of the item that is stored in each node.



Although the Nodes in this example are very simple, we can use them
to illustrate the common operations on linked lists. Typical operations include
deleting nodes from the list, inserting new nodes into the list, and searching
for a specified String among the items in the list. We will
look at subroutines to perform all of these operations, among others.


For a linked list to be used in a program, that program needs a variable
that refers to the first node in the list. It only needs a pointer to the first
node since all the other nodes in the list can be accessed by starting at the
first node and following links along the list from one node to the next.
In my examples, I will always use a variable named head, of
type Node, that points to the first node in the linked list. When the
list is empty, the value of head is null.



[image: A variable pointing to the first node of a list]


   

   



9.2.3  Basic Linked List Processing


   
It is very common to want to process all the items in a linked list in some way.  The common
pattern is to start at the head of the list, then move from each node to the next
by following the pointer in the node, stopping when the null that marks
the end of the list is reached.  If head is a variable of
type Node that points to the first node in the list, then
the general form of the code for processing all the items in a linked list is:
   
   
Node runner;    // A pointer that will be used to traverse the list.
runner = head;  // Start with runner pointing to the head of the list.
while ( runner != null ) {     // Continue until null is encountered.
   process( runner.item );     // Do something with the item in the current node.
   runner = runner.next;       // Move on to the next node in the list.
}

   
Our only access to the list is
through the variable head, so we start by getting a copy of the value
in head with the assignment statement runner = head.
We need a copy of head because we are going to change the value 
of runner.
We can't change the value of head, or we would lose our only access to
the list! The variable runner will point to each node of the list in
turn.   When runner points to one of the nodes in the list,
runner.next is a pointer to the next node in the list, so the assignment
statement runner = runner.next moves the pointer along the  list
from each node to the next.  We know that we've reached the end of the list when
runner becomes equal to null.
Note that our list-processing code works even for an empty list, since for an empty list the value
of head is null and the body of the while loop is not executed
at all.  As an example, we can print all the strings in a list of Strings
by saying:

   
Node runner = head;
while ( runner != null ) {
   System.out.println( runner.item );
   runner = runner.next;
}

  
The while loop can, by the way, be rewritten as a for loop.
Remember that even though the loop control variable in a for loop is often
numerical, that is not a requirement.  Here is a for loop that is equivalent
to the above while loop:

   
for ( Node runner = head; runner != null; runner = runner.next ) {
   System.out.println( runner.item );
}


Similarly, we can traverse a list of integers to add up all the numbers in the list.
A linked list of integers can be constructed using the class

   
public class IntNode {
   int item;       // One of the integers in the list.
   IntNode next;   // Pointer to the next node in the list.
}

   
If head is a variable of type IntNode that points 
to a linked list of integers, we can find the sum of the integers in the list using:

      
int sum = 0;
IntNode runner = head;
while ( runner != null ) {
   sum = sum + runner.item;   // Add current item to the sum.
   runner = runner.next;
}
System.out.println("The sum of the list of items is " + sum);

   
It is also possible to use recursion to process a linked list.  Recursion is
rarely the natural way to process a list, since it's so easy to use a loop to
traverse the list.  However, understanding how to apply recursion to lists can
help with understanding the recursive processing of more complex data structures.
A non-empty linked list can be thought of as consisting of two parts: the
head of the list, which is just the first node in the list,
and the tail of the list, which consists of the remainder
of the list after the head.  Note that the tail is itself a linked list
and that it is shorter than the original list (by one node).  This is a natural
setup for recursion, where the problem of processing a list can be divided into
processing the head and recursively processing the tail.  The base case occurs
in the case of an empty list (or sometimes in the case of a list of length one).
For example, here is a recursive algorithm for adding up the numbers in a linked list of
integers:

   
if the list is empty then
   return 0 (since there are no numbers to be added up)
otherwise
   let listsum = the number in the head node 
   let tailsum be the sum of the numbers in the tail list (recursively)
   add tailsum to listsum
   return listsum


One remaining question is, how do we get the tail of a non-empty linked list?  If
head is a variable that points to the head node of the list,
then head.next is a variable that points to the second node
of the list—and that node is in fact the first node of the tail.  So, we
can view head.next as a pointer to the tail of the list.
One special case is when the original list consists of a single node.
In that case, the tail of the list is empty, and head.next is
null.  Since an empty list is represented by a null pointer,
head.next represents the tail of the list even in this special
case.  This allows us to write a recursive list-summing function in Java
as
   
 
/**
 *  Compute the sum of all the integers in a linked list of integers.
 *  @param head a pointer to the first node in the linked list
 */
public static int addItemsInList( IntNode head ) {
   if ( head == null ) {
         // Base case:  The list is empty,  so the sum is zero.
      return 0;
   }
   else {
         // Recursive case:  The list is non-empty.  Find the sum of
         // the tail list, and add that to the item in the head node.
         // (Note that this case could be written simply as
         //     return head.item + addItemsInList( head.next );)
      int listsum = head.item;
      int tailsum = addItemsInList( head.next );
      listsum = listsum + tailsum;
      return listsum;
   }
}

 
I will finish by presenting a list-processing problem that is easy to solve with recursion,
but quite tricky to solve without it.  The problem is to print out all the strings in a
linked list of strings in the reverse of the order in which they occur in the
list.  Note that when we do this, the item in the head of a list is printed out after
all the items in the tail of the list.  This leads to the following recursive routine.
You should convince yourself that it works, and you should think about trying to do the
same thing without using recursion:

       
public static void printReversed( Node head ) {
   if ( head == null ) {
         // Base case:  The list is empty, and there is nothing to print.
      return;
   }
   else {
         // Recursive case:  The list is non-empty.
      printReversed( head.next );  // Print strings from tail, in reverse order.
      System.out.println( head.item );  // Then print string from head node.
   }
}



   
   
In the rest of this section, we'll look at a few more advanced operations on
a linked list of strings.  The subroutines that we consider are instance methods
in a class that I wrote named StringList.  An object of type StringList 
represents a linked list of
strings. The class has a private instance
variable named head of type Node that points
to the first node in the list, or is null if the list is empty.  Instance
methods in class StringList access head
as a global variable.  The source code for StringList is in
the file StringList.java, and it is used in a
sample program named ListDemo.java, so you can 
take a look at the code in context if you want.

   
One of the methods in the StringList class searches the list,
looking for a specified string.  If the string that we are looking for is searchItem,
then we have to compare searchItem to each
item in the list.   This is an example of basic list traversal and
processing. However, in this case, we can stop processing if we find the
item that we are looking for.

   
/**
 * Searches the list for a specified item. 
 * @param searchItem the item that is to be searched for
 * @return true if searchItem is one of the items in the list or false if
 *    searchItem does not occur in the list.
 */
public boolean find(String searchItem) {

   Node runner;    // A pointer for traversing the list.

   runner = head;  // Start by looking at the head of the list.
                   //   (head is an instance variable! )
   
   while ( runner != null ) {
         // Go through the list looking at the string in each
         // node.  If the string is the one we are looking for,
         // return true, since the string has been found in the list.
      if ( runner.item.equals(searchItem) )
         return true;
      runner = runner.next;  // Move on to the next node.
   }

   // At this point, we have looked at all the items in the list
   // without finding searchItem.  Return false to indicate that
   // the item does not exist in the list.

   return false;

} // end find()

   

It is possible that the list is empty, that is, that the value of
head is null. We should be careful that this case is handled
properly. In the above code, if head is null, then the body
of the while loop is never executed at all, so no nodes are processed
and the return value is false.  This is exactly what we want when the 
list is empty, since the searchItem can't occur in an empty list.



   



9.2.4  Inserting into a Linked List



The problem of inserting a new item into a linked list is more difficult, at least
in the case where the item is inserted into the middle of the list.  (In
fact, it's probably the most difficult operation on linked data structures that
you'll encounter in this chapter.)  In the StringList class, the
items in the nodes of the linked list are kept in increasing order.
When a new item is inserted into the list, it must be inserted at the correct
position according to this ordering. This means that, usually, we will have to
insert the new item somewhere in the middle of the list, between two existing
nodes. To do this, it's convenient to have two variables of type Node,
which refer to the existing nodes that will lie on either side of the new node.
In the following illustration, these variables are previous and
runner. Another variable, newNode, refers to the new node. In
order to do the insertion, the link from previous to runner
must be "broken," and new links from previous to newNode and
from newNode to runner must be added:



[image: inserting a node]



Once we have previous and runner pointing to the right nodes,
the command "previous.next = newNode;" can be used to make
previous.next point to the new node. 
And the command "newNode.next = runner" will set
newNode.next to point to the correct place.   However, before we can use
these commands, we need to set up runner and previous as
shown in the illustration. The idea is to start at the first node of the list,
and then move along the list past all the items that are less than the new
item. While doing this, we have to be aware of the danger of "falling off the
end of the list." That is, we can't continue if runner reaches the end
of the list and becomes null. If insertItem is the item that
is to be inserted, and if we assume that it does, in fact, belong somewhere in
the middle of the list, then the following code would correctly position
previous and runner:


Node runner, previous;
previous = head;     // Start at the beginning of the list.  
runner = head.next;
while ( runner != null && runner.item.compareTo(insertItem) < 0 ) {
   previous = runner;  // "previous = previous.next" would also work
   runner = runner.next;
}


(This uses the compareTo() instance method from the String
class to test whether the item in the node is less than the item that is being
inserted. See Subsection 2.3.3.)


This is fine, except that the assumption that the new node is inserted into
the middle of the list is not always valid. It might be that
insertItem is less than the first item of the list. In that case, the
new node must be inserted at the head of the list. This can be done with the
instructions


newNode.next = head;   // Make newNode.next point to the old head.
head = newNode;        // Make newNode the new head of the list.


It is also possible that the list is empty. In that case, newNode
will become the first and only node in the list. This can be accomplished
simply by setting head = newNode. The following insert()
method from the StringList class covers all of these
possibilities:


/**
 * Insert a specified item into the list, keeping the list in order.
 * @param insertItem the item that is to be inserted.
 */
public void insert(String insertItem) {

   Node newNode;          // A Node to contain the new item.
   newNode = new Node();
   newNode.item = insertItem;  // (N.B.  newNode.next is null.)

   if ( head == null ) {
          // The new item is the first (and only) one in the list.
          // Set head to point to it.
      head = newNode;
   }
   else if ( head.item.compareTo(insertItem) >= 0 ) {
          // The new item is less than the first item in the list,
          // so it has to be inserted at the head of the list.
      newNode.next = head;
      head = newNode;
   }
   else {
          // The new item belongs somewhere after the first item
          // in the list.  Search for its proper position and insert it.
      Node runner;     // A node for traversing the list.
      Node previous;   // Always points to the node preceding runner.
      runner = head.next;   // Start by looking at the SECOND position.
      previous = head;
      while ( runner != null && runner.item.compareTo(insertItem) < 0 ) {
             // Move previous and runner along the list until runner
             // falls off the end or hits a list element that is
             // greater than or equal to insertItem.  When this 
             // loop ends, previous indicates the position where
             // insertItem must be inserted.
         previous = runner;
         runner = runner.next;
      }
      newNode.next = runner;     // Insert newNode after previous.
      previous.next = newNode;
   }

}  // end insert()


If you were paying close attention to the above discussion, you might have
noticed that there is one special case which is not mentioned. What happens if
the new node has to be inserted at the end of the list? This will happen if all
the items in the list are less than the new item. In fact, this case is already
handled correctly by the subroutine, in the last part of the if
statement. If insertItem is greater than all the items in the list, then
the while loop will end when runner has traversed the entire
list and become null. However, when that happens, previous
will be left pointing to the last node in the list. Setting previous.next = newNode 
adds newNode onto the end of the list. Since
runner is null, the command newNode.next = runner
sets newNode.next to null, which is exactly what is
needed to mark the end of the list.



   



9.2.5  Deleting from a Linked List



The delete operation is similar to insert, although a little simpler. There
are still special cases to consider. When the first node in the list is to be
deleted, then the value of head has to be changed to point to what was
previously the second node in the list. Since head.next refers to the
second node in the list, this can be done by setting head = head.next.
(Once again, you should check that this works when head.next is
null, that is, when there is no second node in the list. In that case,
the list becomes empty.)


If the node that is being deleted is in the middle of the list, then we can
set up previous and runner with runner pointing to
the node that is to be deleted and with previous pointing to the node
that precedes that node in the list. Once that is done, the command
"previous.next = runner.next;" will delete the node. The deleted node
will be garbage collected.  I encourage you to draw a picture for yourself to illustrate
this operation.  Here is the complete code for the delete() method:


/**
 * Delete a specified item from the list, if that item is present.
 * If multiple copies of the item are present in the list, only
 * the one that comes first in the list is deleted.
 * @param deleteItem the item to be deleted
 * @return true if the item was found and deleted, or false if the item
 *    was not in the list.
 */
public boolean delete(String deleteItem) {

   if ( head == null ) {
          // The list is empty, so it certainly doesn't contain deleteString.
      return false;
   }
   else if ( head.item.equals(deleteItem) ) {
           // The string is the first item of the list.  Remove it.
      head = head.next;
      return true;
   }
   else {
          // The string, if it occurs at all, is somewhere beyond the 
          // first element of the list.  Search the list.
      Node runner;     // A node for traversing the list.
      Node previous;   // Always points to the node preceding runner.
      runner = head.next;   // Start by looking at the SECOND list node.
      previous = head;
      while ( runner != null && runner.item.compareTo(deleteItem) < 0 ) {
             // Move previous and runner along the list until runner
             // falls off the end or hits a list element that is
             // greater than or equal to deleteItem.  When this 
             // loop ends, runner indicates the position where
             // deleteItem must be, if it is in the list.
         previous = runner;
         runner = runner.next;
      }
      if ( runner != null && runner.item.equals(deleteItem) ) {
             // Runner points to the node that is to be deleted.
             // Remove it by changing the pointer in the previous node.
         previous.next = runner.next;
         return true;
      }
      else {
             // The item does not exist in the list.
         return false;
      }
   }

} // end delete()



   




Section 9.3

Stacks, Queues, and ADTs






A linked list is a particular type of data
structure, made up of objects linked together by pointers. In the 
previous section, we used a linked list to store an ordered list
of Strings, and we implemented insert, delete, and
find operations on that list. However, we could easily have stored the
list of Strings in an array or ArrayList, instead of in a
linked list. We could still have implemented the same operations on the list. 
The implementations of these
operations would be different, but their interfaces and logical behavior
would still be the same.


The term abstract data type, or ADT, 
refers to a set of possible values and a set of
operations on those values, without any specification of how the values are to
be represented or how the operations are to be implemented. An "ordered list of
strings" can be defined as an abstract data type. Any sequence of
Strings that is arranged in increasing order is a possible value of
this data type. The operations on the data type include inserting a new string,
deleting a string, and finding a string in the list. There are often several
different ways to implement the same abstract data type. For example, the
"ordered list of strings" ADT can be implemented as a linked list or as an
array. A program that only depends on the abstract definition of the ADT can
use either implementation, interchangeably. In particular, the implementation
of the ADT can be changed without affecting the program as a whole. This can
make the program easier to debug and maintain, so ADTs are an important tool
in software engineering.  Abstraction is an important general concept
in computer science.  We have seen other examples:
control abstraction in Subsection 3.1.4 and
procedural abstraction in Section 4.1.  Here,
we are considering data abstraction.


In this section, we'll look at two common abstract data types, 
stacks and queues. Both stacks
and queues are often implemented as linked lists, but that is not the only
possible implementation. You should think of the rest of this section partly as
a discussion of stacks and queues and partly as a case study in ADTs.





9.3.1  Stacks



A stack consists of a sequence of items, which should be thought of as piled
one on top of the other like a physical stack of boxes or cafeteria trays. Only
the top item on the stack is accessible at any given time. It can be removed
from the stack with an operation called pop. An
item lower down on the stack can only be removed after all the items on top of
it have been popped off the stack. A new item can be added to the top of the
stack with an operation called push. We can make a
stack of any type of items. If, for example, the items are values of type
int, then the push and pop operations can be implemented as instance
methods



	
void push(int newItem) — Add newItem to top of stack.

	
int pop() — Remove the top int from the stack and return it.



   
It is an error to try to pop an item from an empty stack, so it is important
to be able to tell whether a stack is empty. We need another stack operation to
do the test, implemented as an instance method



	
boolean isEmpty() — Returns true if the stack is empty.




This defines "stack of ints" as an abstract data type. This ADT can be
implemented in several ways, but however it is implemented, its behavior must
correspond to the abstract mental image of a stack.



[image: A stack, showing result of push and pop]



In the linked list implementation of a stack, the top of the stack is
actually the node at the head of the list. It is easy to add and remove nodes
at the front of a linked list—much easier than inserting and deleting nodes
in the middle of the list. Here is a class that implements the "stack of ints"
ADT using a linked list. (It uses a static nested class to represent the nodes
of the linked list, but that is part of the private implementation of the ADT.)


public class StackOfInts {

   /**
    * An object of type Node holds one of the items in the linked list 
    * that represents the stack.
    */
   private static class Node {
      int item;
      Node next;
   }
   
   private Node top;  // Pointer to the Node that is at the top of
                      //   of the stack.  If top == null, then the
                      //   stack is empty.
   
   /**
    * Add N to the top of the stack.
    */
   public void push( int N ) {
      Node newTop;         // A Node to hold the new item.
      newTop = new Node();
      newTop.item = N;     // Store N in the new Node.
      newTop.next = top;   // The new Node points to the old top.
      top = newTop;        // The new item is now on top.
   }
   
   /**
    * Remove the top item from the stack, and return it.
    * Throws an IllegalStateException if the stack is empty when
    * this method is called.
    */
   public int pop() {
      if ( top == null )
         throw new IllegalStateException("Can't pop from an empty stack.");
      int topItem = top.item;  // The item that is being popped.
      top = top.next;          // The previous second item is now on top.
      return topItem;
   }
   
   /**
    * Returns true if the stack is empty.  Returns false
    * if there are one or more items on the stack.
    */
   public boolean isEmpty() {
      return (top == null);
   }

} // end class StackOfInts


You should make sure that you understand how the push and
pop operations operate on the linked list. Drawing some pictures might
help. Note that the linked list is part of the private implementation
of the StackOfInts class. A program that uses this class doesn't even
need to know that a linked list is being used.


(As an aside, the nested Node class in StackOfInts
could have been record class (Section 7.4), since nodes don't
need to be modified after they are created.  The implementation of push()
would have to be changed to use the record class constructor.  See
StackOfInt.java, which uses this approach.)


Now, it's pretty easy to implement a stack as an array instead of as a
linked list. Since the number of items on the stack varies with time, a counter
is needed to keep track of how many spaces in the array are actually in use. If
this counter is called top, then the items on the stack are stored in
positions 0, 1, ..., top-1 in the array. The item in
position 0 is on the bottom of the stack, and the item in position
top-1 is on the top of the stack. Pushing an item onto the stack is
easy: Put the item in position top and add 1 to the value of
top. If we don't want to put a limit on the number of items that the
stack can hold, we can use the dynamic array techniques from Subsection 7.2.4.
Note that the typical picture of the array
would show the stack "upside down," with the bottom of the stack at the top of
the array. This doesn't matter. The array is just an implementation of the
abstract idea of a stack, and as long as the stack operations work the way they
are supposed to, we are OK. Here is a second implementation of the
StackOfInts class, using a dynamic array:


import java.util.Arrays;  // For the Arrays.copyOf() method.

public class StackOfInts {  // (alternate version, using an array)

   private int[] items = new int[10];  // Holds the items on the stack.
   
   private int top = 0;  // The number of items currently on the stack.
   
   /**
    * Add N to the top of the stack.
    */
   public void push( int N ) {
       if (top == items.length) {
              // The array is full, so make a new, larger array and
              // copy the current stack items into it. 
           items = Arrays.copyOf( items, 2*items.length );
       }
       items[top] = N;  // Put N in next available spot.
       top++;           // Number of items goes up by one.
   }
   
   /**
    * Remove the top item from the stack, and return it.
    * Throws an IllegalStateException if the stack is empty when
    * this method is called.
    */
   public int pop() {
       if ( top == 0 )
          throw new IllegalStateException("Can't pop from an empty stack.");
       int topItem = items[top - 1];  // Top item in the stack.
       top--;    // Number of items on the stack goes down by one.
       return topItem;
   }
   
   /**
    * Returns true if the stack is empty.  Returns false
    * if there are one or more items on the stack.
    */
   public boolean isEmpty() {
      return (top == 0);
   }

} // end class StackOfInts


Once again, the implementation of the stack (as an array) is private to the
class. The two versions of the StackOfInts class can be used
interchangeably, since their public interfaces are identical—including the
fact that an attempt to pop from an empty stack will result in an
IllegalStateException.

   


   
It's interesting to look at the run time analysis of stack operations.
(See Section 8.5).  We can measure the size of the problem
by the number of items that are on the stack.
For the linked list implementation of a stack, the worst case run
time both for the push and for the pop operation is
Θ(1).  This just means that the run time is less than some constant, independent
of the number of items on the stack.  This is easy to see if you look at the code.
The operations are implemented with a few simple assignment statements, and the
number of items on the stack has no effect.

   
For the array implementation, on the other hand, a special case occurs in the
push operation when the array is full.  In that case, a new array
is created and all the stack items are copied into the new array.  This takes
an amount of time that is proportional to the number of items on the stack.
So, although the run time for push is usually Θ(1), 
the worst case run time is Θ(n), where n is the number of items on the stack.
(However, the worst case occurs only rarely, and there is a natural sense in which the
average case run time for the array implementation is still Θ(1).)




   



9.3.2  Queues



Queues are similar to stacks in that a queue consists of a sequence of
items, and there are restrictions about how items can be added to and removed
from the list. However, a queue has two ends, called the front and the back of
the queue. Items are always added to the queue at the back and removed from the
queue at the front. The operations of adding and removing items are called
enqueue and dequeue in this book.
(These names are not completely standardized, in the way that "push" and "pop" are.
For example, the operations are sometimes called "put" and "take.")
An item that is added to the back of the queue will remain on the queue until
all the items in front of it have been removed. This should sound familiar. A
queue is like a "line" or "queue" of customers waiting for service. Customers
are serviced in the order in which they arrive on the queue.



[image: A queue showing result of enqueue and dequeue]



A queue can hold items of any type. For a queue of ints, the
enqueue and dequeue operations can be implemented as instance methods in a
"QueueOfInts" class. We also need an instance method for checking
whether the queue is empty:



	
void enqueue(int N) — Add N to the back of the queue.

	
int dequeue() — Remove the item at the front and return it.

	
boolean isEmpty() — Return true if the queue is empty.




A queue can be implemented as a linked list or as an array. An efficient
array implementation is trickier than the array implementation of a
stack, so I won't give it here. In the linked list implementation, the first
item of the list is at the front of the queue. Dequeueing an item from the front
of the queue is just like popping an item off a stack. The back of the queue is
at the end of the list. Enqueueing an item involves setting a pointer in the
last node of the current list to point to a new node that contains the item. To
do this, we'll need a command like "tail.next = newNode;", where
tail is a pointer to the last node in the list. If head is a
pointer to the first node of the list, it would always be possible to get a
pointer to the last node of the list by saying:


Node tail;    // This will point to the last node in the list.
tail = head;  // Start at the first node.
while (tail.next != null) {
   tail = tail.next;  // Move to next node.
}
// At this point, tail.next is null, so tail points to
// the last node in the list.


However, it would be very inefficient to do this over and over every time an
item is enqueued. For the sake of efficiency, we'll use another instance
variable to store a pointer to the last node. This complicates the class somewhat;
we have to be careful to update the value of
this variable whenever a new node is added to the end of the list. Given all
this, writing the QueueOfInts class is not all that difficult:


public class QueueOfInts {

   /**
    * An object of type Node holds one of the items
    * in the linked list that represents the queue.
    */
   private static class Node {
      int item;
      Node next;
   }

   private Node head = null;  // Points to first Node in the queue.
                              // The queue is empty when head is null.
   
   private Node tail = null;  // Points to last Node in the queue
                              // when the queue is not empty.

   /**
    * Add N to the back of the queue.
    */
   public void enqueue( int N ) {
      Node newTail = new Node();  // A Node to hold the new item.
      newTail.item = N;
      if (head == null) {
            // The queue was empty.  The new Node becomes
            // the only node in the list.  Since it is both
            // the first and last node, both head and tail
            // point to it.
         head = newTail;
         tail = newTail;
      }
      else {
            // The new node becomes the new tail of the list.
            // (The head of the list is unaffected.)
         tail.next = newTail;
         tail = newTail;
      }
   }
   
   /**
    * Remove and return the front item in the queue.
    * Throws an IllegalStateException if the queue is empty.
    */
   public int dequeue() {
      if ( head == null)
          throw new IllegalStateException("Can't dequeue from an empty queue.");
      int firstItem = head.item;
      head = head.next;  // The previous second item is now first.
                         // If we have just removed the last item,
                         // then head is null.
      if (head == null) {
            // The queue has become empty.  The Node that was
            // deleted was the tail as well as the head of the
            // list, so now there is no tail.  (Actually, the
            // class would work fine without this step.)
         tail = null;
      } 
      return firstItem;
   }
   
   /**
    * Return true if the queue is empty.
    */
   boolean isEmpty() {
      return (head == null);
   }
   
} // end class QueueOfInts


To help you follow what is being done here with the tail pointer,
it might help to think in terms of a class invariant (Subsection 8.2.3):
"If the queue is non-empty, then tail points to the last node in the queue."
This invariant must be true at the beginning and at the end of each method call. For example,
applying this to the enqueue() method, in the case of a non-empty list,
the invariant tells us that a new node can be added to the back of the list simply
by saying "tail.next = newNode.  It also tells us how the
value of tail must be set before returning from the method: it must
be set to point to the node that was just added to the queue.


Queues are typically used in a computer (as in real life) when only one item
can be processed at a time, but several items can be waiting for processing.
For example:



	In a Java program that has multiple threads, the threads that want
processing time on the CPU are kept in a queue. When a new thread is started,
it is added to the back of the queue. A thread is removed from the front of the
queue, it is given some processing time, and then—if it has not terminated—is
sent to the back of the queue to wait for another turn.

	Events such as keystrokes and mouse clicks are stored in a queue called the
"event queue." A program removes events from the event queue and processes
them. It's possible for several more events to occur while one event is being
processed, but since the events are stored in a queue, they will always be
processed in the order in which they occurred.

	A web server is a program that receives requests from web browsers for "pages." 
It is easy for new requests to arrive while the web server is still fulfilling
a previous request.  Requests that arrive while the web server is busy are placed
into a queue to await processing.  Using a queue ensures that requests will be
processed in the order in which they were received.




Queues are said to implement a FIFO policy:
First In, First Out. Or, as it is more commonly expressed, first come, first
served. Stacks, on the other hand implement a LIFO
policy: Last In, First Out. The item that comes out of the stack is the last
one that was put in. Just like queues, stacks can be used to hold items that
are waiting for processing (although in applications where queues are typically
used, a stack would be considered "unfair").

   



To get a better handle on the difference between stacks and queues, consider
the sample program DepthBreadth.java. 
I suggest that you try out the program.
The program shows a grid of squares.  Initially, all the squares are white.
When you click on a white square, that square is "marked" by turning it red.
The program than starts marking squares that are connected, horizontally or vertically, 
to squares that have already been marked.  This process will eventually
process every square in the grid. To understand how the program works, think of yourself in
the place of the program. When the user clicks a square, you are handed an index
card. The location of the square—its row and column—is written on the
card. You put the card in a pile, which then contains just that one card. Then,
you repeat the following: If the pile is empty, you are done. Otherwise, remove
an index card from the pile. The index card specifies a square. Look at each
horizontal and vertical neighbor of that square. If the neighbor has not
already been encountered, write its location on a new index card and put the card
in the pile.  You are done when there are no more index cards waiting in
the pile to be processed.

   
In the program, while a square is in the pile, waiting to be processed, it is colored red;
that is, red squares have been encountered but not yet processed.
When a square is taken from the pile and processed, its color changes to gray.
Once a square has been colored gray, the program will never consider it again,
since all of its neighbors have already been accounted for.
Eventually, all the squares have been processed, all the squares are gray, and the procedure ends. 
In the index card analogy, the pile of cards has been emptied.


The program can use your choice of three methods: Stack, Queue, and Random.
In each case, the same general procedure is used. The only difference is how
the "pile of index cards" is managed. For a stack, cards are added and removed
at the top of the pile. For a queue, cards are added to the bottom of the pile
and removed from the top. In the random case, the card to be processed is
picked at random from among all the cards in the pile. The order of processing is
very different in these three cases.  Here are three pictures from the program,
using the three different processing methods.  In each case, the process was
started by selecting a square near the middle of the grid.  A stack is used
for the picture on the left, a queue for the picture in the middle, and
random selection for the picture on the right:



[image: three screenshots from DepthBreadth]



The patterns that are produced are very different.  When using a stack, the program explores
out as far as possible before it starts backtracking to look at previously encountered squares.
With a queue, squares are processed roughly in the order of their distance from the starting
point.  When random selection is used, the result is an irregular blob, but it is
a connected blob since a square can only be encountered if it is next to a previously
encountered square.


You should experiment with the program to see how it all works. Try to
understand how stacks and queues are being used. Try starting from one of the
corner squares. While the process is going on, you can click on other white
squares, and they will be added to the list of encountered squares. When you do this with a stack, you
should notice that the square you click is processed immediately, and all the
red squares that were already waiting for processing have to wait. On the other
hand, if you do this with a queue, the square that you click will wait its
turn until all the squares that were already in the pile have been processed.
Again, the source code for the program is DepthBreadth.java.



   



Queues seem very natural because they occur so often in real life, but there
are times when stacks are appropriate and even essential. For example, consider
what happens when a routine calls a subroutine. The first routine is suspended
while the subroutine is executed, and it will continue only when the subroutine
returns. Now, suppose that the subroutine calls a second subroutine, and the
second subroutine calls a third, and so on. Each subroutine is suspended while
the subsequent subroutines are executed. The computer has to keep track of all
the subroutines that are suspended. It does this with a stack.


When a subroutine is called, an activation record 
is created for that subroutine. The activation record contains
information relevant to the execution of the subroutine, such as its local
variables, parameters, and return address (the the point in the program where
the computer should return to when the subroutine ends). 
The activation record for the subroutine is placed on
a stack. It will be removed from the stack and destroyed when the subroutine
returns. If the subroutine calls another subroutine, the activation record of
the second subroutine is pushed onto the stack, on top of the activation record
of the first subroutine. The stack can continue to grow as more subroutines are
called, and it shrinks as those subroutines return.


In the case of a recursive subroutine, which calls itself, there can be
several activation records on the stack for the same subroutine.  This is
how the computer keeps track of many recursive calls at the same time:
It has a different activation record for each call.

   

   



9.3.3  Postfix Expressions



As another example, stacks can be used to evaluate 
postfix expressions. An ordinary mathematical expression such
as 2+(15-12)*17 is called an infix expression. 
In an infix expression, an operator comes in between its two
operands, as in "2 + 2". In a postfix expression, an operator comes
after its two operands, as in "2 2 +". The infix expression
"2+(15-12)*17" would be written in postfix form as 
"2 15 12 - 17 * +". 
The "-" operator in this expression applies to the two operands that
precede it, namely "15" and "12". The "*" operator
applies to the two operands that precede it, namely "15 12 -" and
"17". And the "+" operator applies to "2" and 
"15 12 - 17 *". 
These are the same computations that are done in the original infix
expression.


Now, suppose that we want to process the expression 
"2 15 12 - 17 * +", 
from left to right and find its value. The first item we encounter is
the 2, but what can we do with it? At this point, we don't know what
operator, if any, will be applied to the 2 or what the other operand
might be. We have to remember the 2 for later processing. We do this
by pushing it onto a stack. Moving on to the next item, we see a 15,
which is pushed onto the stack on top of the 2. Then the 12
is added to the stack. Now, we come to the operator, "-". This operation
applies to the two operands that preceded it in the expression. We have saved
those two operands on the stack. So, to process the "-" operator, we pop two
numbers from the stack, 12 and 15, and compute 15 - 12
to get the answer 3. This 3 must be remembered to be used in later
processing, so we push it onto the stack, on top of the 2 that is
still waiting there. The next item in the expression is a 17, which is
processed by pushing it onto the stack, on top of the 3. To process
the next item, "*", we pop two numbers from the stack. The numbers are
17 and the 3 that represents the value of "15 12 -".
These numbers are multiplied, and the result, 51, is pushed onto the
stack. The next item in the expression is a "+" operator, which is processed by
popping 51 and 2 from the stack, adding them, and pushing the
result, 53, onto the stack. Finally, we've come to the end of the
expression. The number on the stack is the value of the entire expression, so
all we have to do is pop the answer from the stack, and we are done! The value
of the expression is 53.


Although it's easier for people to work with infix expressions, postfix
expressions have some advantages. For one thing, postfix expressions don't
require parentheses or precedence rules. The order in which operators are
applied is determined entirely by the order in which they occur in the
expression. This allows the algorithm for evaluating postfix expressions to be
fairly straightforward:


Start with an empty stack
for each item in the expression:
    if the item is a number:
       Push the number onto the stack
    else if the item is an operator:
       Pop the operands from the stack  // Can generate an error
       Apply the operator to the operands
       Push the result onto the stack
    else
       There is an error in the expression
Pop a number from the stack  // Can generate an error
if the stack is not empty:
   There is an error in the expression
else:
   The last number that was popped is the value of the expression


Errors in an expression can be detected easily. For example, in the
expression "2 3 + *", there are not enough operands for the
"*" operation. This will be detected in the algorithm when an attempt
is made to pop the second operand for "*" from the stack, since the
stack will be empty. The opposite problem occurs in "2 3 4 +". There
are not enough operators for all the numbers. This will be detected when the
2 is left still sitting in the stack at the end of the algorithm.


This algorithm is demonstrated in the sample program PostfixEval.java.
This program lets you type in
postfix expressions made up of non-negative real numbers and the operators "+",
"-", "*", "/", and "^". 
The "^" represents
exponentiation. That is, "2 3 ^" is evaluated as
2
3. The program prints out a message as it processes each
item in the expression. The stack class that is used in the program is defined in the
file StackOfDouble.java.  The
StackOfDouble class is identical to the first StackOfInts
class, given above, except that it has been modified to store values of type
double instead of values of type int.


The only interesting aspect of this program is the method that implements
the postfix evaluation algorithm. It is a direct implementation of the
pseudocode algorithm given above:


/**
 *  Read one line of input and process it as a postfix expression.
 *  If the input is not a legal postfix expression, then an error
 *  message is displayed.  Otherwise, the value of the expression
 *  is displayed.  It is assumed that the first character on
 *  the input line is a non-blank.
 */
private static void readAndEvaluate() {

   StackOfDouble stack;  // For evaluating the expression.

   stack = new StackOfDouble();  // Make a new, empty stack.

   System.out.println();

   while (TextIO.peek() != '\n') {

      if ( Character.isDigit(TextIO.peek()) ) {
             // The next item in input is a number.  Read it and
             // save it on the stack.
         double num = TextIO.getDouble();
         stack.push(num);
         System.out.println("   Pushed constant " + num);
      }
      else {
             // Since the next item is not a number, the only thing
             // it can legally be is an operator.  Get the operator
             // and perform the operation.
         char op;  // The operator, which must be +, -, *, /, or ^.
         double x,y;     // The operands, from the stack, for the operation.
         double answer;  // The result, to be pushed onto the stack.
         op = TextIO.getChar();
         if (op != '+' && op != '-' && op != '*' && op != '/' && op != '^') {
                // The character is not one of the acceptable operations.
            System.out.println("\nIllegal operator found in input: " + op);
            return;
         }
         if (stack.isEmpty()) {
            System.out.println("   Stack is empty while trying to evaluate " + op);
            System.out.println("\nNot enough numbers in expression!");
            return;
         }
         y = stack.pop();
         if (stack.isEmpty()) {
            System.out.println("   Stack is empty while trying to evaluate " + op);
            System.out.println("\nNot enough numbers in expression!");
            return;
         }
         x = stack.pop();
         switch (op) {
	         case '+' -> answer = x + y; 
	         case '-' -> answer = x - y;
	         case '*' -> answer = x * y;  
	         case '/' -> answer = x / y;  
	         default  -> answer = Math.pow(x,y);  // (op must be '^'.)
         }
         stack.push(answer);
         System.out.println("   Evaluated " + op + " and pushed " + answer);
      }

      TextIO.skipBlanks();

   }  // end while

   // If we get to this point, the input has been read successfully.
   // If the expression was legal, then the value of the expression is
   // on the stack, and it is the only thing on the stack.

   if (stack.isEmpty()) {  // Impossible if the input is really non-empty.
      System.out.println("No expression provided.");
      return;
   }

   double value = stack.pop();  // Value of the expression.
   System.out.println("   Popped " + value + " at end of expression.");

   if (stack.isEmpty() == false) {
      System.out.println("   Stack is not empty.");
      System.out.println("\nNot enough operators for all the numbers!");
      return;
   }

   System.out.println("\nValue = " + value);


} // end readAndEvaluate()


Postfix expressions are often used internally by computers. In fact, the
Java virtual machine is a "stack machine" which uses the stack-based approach
to expression evaluation that we have been discussing. The algorithm can easily
be extended to handle variables, as well as constants. When a variable is
encountered in the expression, the value of the variable is pushed onto the
stack. It also works for operators with more or fewer than two operands. As
many operands as are needed are popped from the stack and the result is pushed
back onto the stack. For example, the unary minus
operator, which is used in the expression "-x", has a single operand.
We will continue to look at expressions and expression evaluation in the next
two sections.

   

   





Section 9.4

Binary Trees






We have seen in the two previous sections how
objects can be linked into lists. When an object contains two pointers to
objects of the same type, structures can be created that are much more
complicated than linked lists. In this section, we'll look at one of the most
basic and useful structures of this type: binary trees. 
Each of the objects in a binary tree contains two pointers,
typically called left and right. In addition to these
pointers, of course, the nodes can contain other types of data. For example, a
binary tree of integers would be made up of objects of the following type:


class TreeNode {
   int item;        // The data in this node.
   TreeNode left;   // Pointer to the left subtree.
   TreeNode right;  // Pointer to the right subtree.
}


The left and
right pointers in a TreeNode can be null or can
point to other objects of type TreeNode. A node that points to another
node is said to be the parent of that node, and
the node it points to is called a child.  In a binary
tree, a child is either a "left child" or a "right child," and a node can
have a right child even if it has no left child.  In the
picture below, for example, node 3 is the parent of node 6, and nodes 4
and 5 are children of node 2. Not every linked structure made up of tree nodes
is a binary tree. A binary tree must have the following properties: There is
exactly one node in the tree which has no parent; this node is called the
root of the tree. Every other node in the tree has
exactly one parent. Finally, there can be no loops in a binary tree. That is,
it is not possible to follow a chain of pointers starting at some node and
arriving back at the same node.



[image: TreeNodes linked to make a tree]

 

A node that has no children is called a leaf. A
leaf node can be recognized by the fact that both the left and right pointers
in the node are null. In the standard picture of a binary tree, the
root node is shown at the top and the leaf nodes at the bottom—which doesn't
show much respect for the analogy to real trees. But at least you can see the
branching, tree-like structure that gives a binary tree its name.

   



9.4.1  Tree Traversal



Consider any node in a binary tree. Look at that node together with all its
descendants (that is, its children, the children of its children, and so on).
This set of nodes forms a binary tree, which is called a 
subtree of the original tree. For example, in the picture,
nodes 2, 4, and 5 form a subtree. This subtree is called the 
left subtree of the root. Similarly, nodes 3 and 6 make up the
right subtree of the root. We can consider any
non-empty binary tree to be made up of a root node, a left subtree, and a right
subtree. Either or both of the subtrees can be empty. This is a recursive
definition, matching the recursive definition of the TreeNode class.
So it should not be a surprise that recursive subroutines are often used to
process trees.


Consider the problem of counting the nodes in a binary tree.  As an exercise,
you might try to come up with a non-recursive algorithm to do the counting,
but you shouldn't expect to find one easily.  The
heart of the problem is keeping track of which nodes remain to be counted. It's not
so easy to do this, and in fact it's not even possible without an auxiliary
data structure such as a stack or queue. With recursion, however, the algorithm
is almost trivial. Either the tree is empty or it consists of a root and two
subtrees. If the tree is empty, the number of nodes is zero. (This is the base
case of the recursion.) Otherwise, use recursion to count the nodes in each
subtree. Add the results from the subtrees together, and add one to count the
root. This gives the total number of nodes in the tree. Written out in
Java:


/**
 * Count the nodes in the binary tree to which root points, and
 * return the answer.  If root is null, the answer is zero.
 */
static int countNodes( TreeNode root ) {
   if ( root == null ) {  // Base case:  empty tree.
      return 0;  // An empty tree contains no nodes.
   }
   else {  // Recursive case:  root node plus two subtrees.
      int count = 1;   // Start by counting the root.
      count += countNodes(root.left);  // Add the number of nodes
                                       //     in the left subtree.
      count += countNodes(root.right); // Add the number of nodes
                                       //    in the right subtree.
      return count;  // Return the total.
   }
} // end countNodes()


Or, consider the problem of printing the items in a binary tree. If the tree
is empty, there is nothing to do. If the tree is non-empty, then it consists of
a root and two subtrees. Print the item in the root and use recursion to print
the items in the subtrees. Here is a subroutine that prints all the items on
one line of output:


/**
 * Print all the items in the tree to which root points.
 * The item in the root is printed first, followed by the
 * items in the left subtree and then the items in the
 * right subtree.
 */
static void preorderPrint( TreeNode root ) {
   if ( root != null ) {  // (Otherwise, there's nothing to print.)
      System.out.print( root.item + " " );  // Print the root item.
      preorderPrint( root.left );   // Print items in left subtree.
      preorderPrint( root.right );  // Print items in right subtree.
   }
} // end preorderPrint()


This routine is called "preorderPrint" because it uses a 
preorder traversal of the tree. In a preorder traversal, the
root node of the tree is processed first, then the left subtree is traversed,
then the right subtree. In a postorder traversal,
the left subtree is traversed, then the right subtree, and then the root node
is processed. And in an inorder traversal, the
left subtree is traversed first, then the root node is processed, then the
right subtree is traversed. Subroutines that use postorder and inorder
traversal to print the contents of a tree differ from preorderPrint() only in the placement of the
statement that outputs the root item:


/**
 * Print all the items in the tree to which root points.
 * The items in the left subtree are printed first, followed
 * by the items in the right subtree and then the item
 * in the root node.
 */
static void postorderPrint( TreeNode root ) {
   if ( root != null ) {  // (Otherwise, there's nothing to print.)
      postorderPrint( root.left );   // Print items in left subtree.
      postorderPrint( root.right );  // Print items in right subtree.
      System.out.print( root.item + " " );  // Print the root item.
   }
} // end postorderPrint()
     
     
/**
 * Print all the items in the tree to which root points.
 * The items in the left subtree are printed first, followed
 * by the item in the root node and then the items
 * in the right subtree.
 */
static void inorderPrint( TreeNode root ) {
   if ( root != null ) {  // (Otherwise, there's nothing to print.)
      inorderPrint( root.left );   // Print items in left subtree.
      System.out.print( root.item + " " );  // Print the root item.
      inorderPrint( root.right );  // Print items in right subtree.
   }
} // end inorderPrint()


Each of these subroutines can be applied to the binary tree shown in the
illustration at the beginning of this section. The order in which the items are
printed differs in each case:


preorderPrint outputs:   1  2  4  5  3  6

postorderPrint outputs:  4  5  2  6  3  1

inorderPrint outputs:    4  2  5  1  3  6


In preorderPrint, for example, the item at the root of the tree,
1, is output before anything else. But the preorder printing also
applies to each of the subtrees of the root. The root item of the left subtree,
2, is printed before the other items in that subtree, 4 and
5. As for the right subtree of the root, 3 is output before
6. A preorder traversal applies at all levels in the tree. The other
two traversal orders can be analyzed similarly.







9.4.2  Binary Sort Trees



One of the examples in Section 9.2 was a linked list of
strings, in which the strings were kept in increasing order. While a linked
list works well for a small number of strings, it becomes inefficient for a
large number of items. When inserting an item into the list, searching for that
item's position requires looking at, on average, half the items in the list.
Finding an item in the list requires a similar amount of time. If the strings
are stored in a sorted array instead of in a linked list, then searching
becomes more efficient because binary search can be used.
However, inserting a new item into the array
is still inefficient since it means moving, on average, half of the items in
the array to make a space for the new item. A binary tree can be used to store
an ordered list in a way that makes both searching
and insertion efficient. A binary tree used in this way is called a
binary sort tree or BST.


A binary sort tree is a binary tree with the following property: For every
node in the tree, the item in that node is greater than or equal to every item in the left
subtree of that node, and it is less than or equal to all the items in the
right subtree of that node. Here for example is a binary sort tree containing
items of type String. (In this picture, I haven't bothered to draw all
the pointer variables. Non-null pointers are shown as arrows.)



[image: A binary sort tree]




Binary sort trees have this useful property: An inorder traversal of the
tree will process the items in increasing order. In fact, this is really just
another way of expressing the definition. For example, if an inorder traversal
is used to print the items in the tree shown above, then the items will be in
alphabetical order. The definition of an inorder traversal guarantees that all
the items in the left subtree of "judy" are printed before "judy", and all the
items in the right subtree of "judy" are printed after "judy". But the binary
sort tree property guarantees that the items in the left subtree of "judy" are
precisely those that precede "judy" in alphabetical order, and all the items in
the right subtree follow "judy" in alphabetical order. So, we know that "judy"
is output in its proper alphabetical position. But the same argument applies to
the subtrees. "Bill" will be output after "alice" and before "fred" and its
descendants. "Fred" will be output after "dave" and before "jane" and "joe".
And so on.


Suppose that we want to search for a given item in a binary search tree.
Compare that item to the root item of the tree. If they are equal, we're done.
If the item we are looking for is less than the root item, then we need to
search the left subtree of the root—the right subtree can be eliminated
because it only contains items that are greater than or equal to the root.
Similarly, if the item we are looking for is greater than the item in the root,
then we only need to look in the right subtree. In either case, the same
procedure can then be applied to search the subtree. Inserting a new item is
similar: Start by searching the tree for the position where the new item
belongs. When that position is found, create a new node and attach it to the
tree at that position.


Searching and inserting are efficient operations on a binary search tree,
provided that the tree is close to being balanced.
A binary tree is balanced if for each node, the left subtree of that node
contains approximately the same number of nodes as the right subtree. In a
perfectly balanced tree, the two numbers differ by at most one. Not all binary
trees are balanced, but if the tree is created by inserting items in a random
order, there is a high
probability that the tree is approximately balanced. (If the order of insertion
is not random, however, it's quite possible for the tree to be very unbalanced.)
During a search of any
binary sort tree, every comparison eliminates one of two subtrees from further
consideration. If the tree is balanced, that means cutting the number of items
still under consideration in half. This is exactly the same as the binary
search algorithm, and the result is a similarly efficient algorithm.

   
In terms of asymptotic analysis (Section 8.5), searching, inserting,
and deleting in a binary search tree have average case run time Θ(log(n)).
The problem size, n, is the number of items in the tree, and the average is
taken over all the different orders in which the items could have been inserted into the tree.
As long as the actual insertion order is random, the actual run time can be expected
to be close to the average.  However, the worst case run time for binary
search tree operations is Θ(n), which is much worse than Θ(log(n)).
The worst case occurs for  particular insertion orders.  For example,
if the items are inserted into the tree in order of increasing size, then every
item that is inserted moves always to the right as it moves down the tree.
The result is a "tree" that looks more like a linked list, since it consists
of a linear string of nodes strung together by their right child
pointers.  Operations on such a tree have the same performance as operations
on a linked list.  Now, there are data structures that are similar to simple binary
sort trees, except that insertion and deletion of nodes are implemented in
a way that will always keep the tree balanced, or almost balanced.  For
these data structures, searching, inserting, and deleting have both average case 
and worst case run times that are Θ(log(n)).  Here, however, we will
look at only the simple versions of inserting and searching.


The sample program SortTreeDemo.java is a demonstration of
binary sort trees. The program includes subroutines that implement inorder
traversal, searching, and insertion. We'll look at the latter two subroutines
below. The main() routine tests the subroutines by letting you type in
strings to be inserted into the tree.


In SortTreeDemo, nodes in the binary tree are represented using the
following static nested class, which includes a simple constructor to make creating nodes
easier:



/**
 * An object of type TreeNode represents one node in a binary tree of strings.
 */
private static class TreeNode {
   String item;      // The data in this node.
   TreeNode left;    // Pointer to left subtree.
   TreeNode right;   // Pointer to right subtree.
   TreeNode(String str) {
          // Constructor.  Make a node containing str.
          // Note that left and right pointers are null.
      item = str;
   }
}  // end class TreeNode


A static member variable of type TreeNode points to the binary sort
tree that is used by the program:


private static TreeNode root;  // Pointer to the root node in the tree.
                               // When the tree is empty, root is null.


A recursive subroutine named treeContains is used to search for a
given item in the tree. This routine implements the search algorithm for binary
trees that was outlined above:


/**
 * Return true if item is one of the items in the binary
 * sort tree to which root points.  Return false if not.
 */
static boolean treeContains( TreeNode root, String item ) {
   if ( root == null ) {
          // Tree is empty, so it certainly doesn't contain item.
      return false;
   }
   else if ( item.equals(root.item) ) {
          // Yes, the item has been found in the root node.
      return true;
   }
   else if ( item.compareTo(root.item) < 0 ) {
          // If the item occurs, it must be in the left subtree.
      return treeContains( root.left, item );
   }
   else {
          // If the item occurs, it must be in the right subtree.
      return treeContains( root.right, item );
   }
}  // end treeContains()


When this routine is called in the main() routine, the first
parameter is the static member variable root, which points to the root
of the entire binary sort tree.


It's worth noting that recursion is not really essential in this case. A
simple, non-recursive algorithm for searching a binary sort tree follows
the rule: Start at the root and move down the tree until you find the item or reach a null pointer.
Since the search follows a single path down the tree, it can be implemented as
a while loop. Here is a non-recursive version of the search routine:


private static boolean treeContainsNR( TreeNode root, String item ) {
   TreeNode runner;  // For "running" down the tree.
   runner = root;    // Start at the root node.
   while (true) {
      if (runner == null) {
            // We've fallen off the tree without finding item.
         return false;  
      }
      else if ( item.equals(runner.item) ) {
            // We've found the item.
         return true;
      }
      else if ( item.compareTo(runner.item) < 0 ) {
            // If the item occurs, it must be in the left subtree.
            // So, advance the runner down one level to the left.
         runner = runner.left;
      }
      else {
            // If the item occurs, it must be in the right subtree.
            // So, advance the runner down one level to the right.
         runner = runner.right;
      }
   }  // end while
} // end treeContainsNR();


The subroutine for inserting a new item into the tree turns out to be more
similar to the non-recursive search routine than to the recursive. The
insertion routine has to handle the case where the tree is empty. In that case,
the value of root must be changed to point to a node that contains the
new item:


root = new TreeNode( newItem ); 


But this means, effectively, that the root can't be passed as a parameter to
the subroutine, because it is impossible for a subroutine to change the value
stored in an actual parameter. (I should note that this is something that
is possible in other languages.) Recursion uses parameters in an
essential way. There are ugly ways to work around the problem, but the easiest thing
is just to use a non-recursive insertion routine that accesses the static
member variable root directly. One difference between inserting an
item and searching for an item is that we have to be careful not to fall off
the tree. That is, we have to stop searching just before runner
becomes null. When we get to an empty spot in the tree, that's where
we have to insert the new node:


/**
 * Add the item to the binary sort tree to which the global variable 
 * "root" refers.  (Note that root can't be passed as  a parameter to 
 * this routine because the value of root might change, and a change 
 * in the value of a formal parameter does not change the actual parameter.)
 */
private static void treeInsert(String newItem) {
   if ( root == null ) {
          // The tree is empty.  Set root to point to a new node containing
          // the new item.  This becomes the only node in the tree.
      root = new TreeNode( newItem );
      return;
   }
   TreeNode runner;  // Runs down the tree to find a place for newItem.
   runner = root;   // Start at the root.
   while (true) {
      if ( newItem.compareTo(runner.item) < 0 ) {
             // Since the new item is less than the item in runner,
             // it belongs in the left subtree of runner.  If there
             // is an open space at runner.left, add a new node there.
             // Otherwise, advance runner down one level to the left.
         if ( runner.left == null ) {
            runner.left = new TreeNode( newItem );
            return;  // New item has been added to the tree.
         }
         else
            runner = runner.left;
      }
      else {
             // Since the new item is greater than or equal to the item in
             // runner, it belongs in the right subtree of runner.  If there
             // is an open space at runner.right, add a new node there.
             // Otherwise, advance runner down one level to the right.
         if ( runner.right == null ) {
            runner.right = new TreeNode( newItem );
            return;  // New item has been added to the tree.
         }
         else
            runner = runner.right;
      }
   } // end while
}  // end treeInsert()







9.4.3  Expression Trees



Another application of trees is to store mathematical expressions such as
15*(x+y) or sqrt(42)+7 in a convenient form. Let's stick for
the moment to expressions made up of numbers and the operators +, -,
*, and /. Consider the expression
3*((7+1)/4)+(17-5). This expression is made up of two subexpressions,
3*((7+1)/4) and (17-5), combined with the operator "+". When
the expression is represented as a binary tree, the root node holds the
operator +, while the subtrees of the root node represent the subexpressions
3*((7+1)/4) and (17-5). Every node in the tree holds either a
number or an operator. A node that holds a number is a leaf node of the tree. A
node that holds an operator has two subtrees representing the operands to which
the operator applies. The tree is shown in the illustration below. I will refer
to a tree of this type as an expression tree.


Given an expression tree, it's easy to find the value of the expression that
it represents. Each node in the tree has an associated value. If the node is a
leaf node, then its value is simply the number that the node contains. If the
node contains an operator, then the associated value is computed by first
finding the values of its child nodes and then applying the operator to those
values. The process is shown by the upward-directed arrows in the illustration. The value
computed for the root node is the value of the expression as a whole. There are
other uses for expression trees. For example, a postorder traversal of the tree
will output the postfix form of the expression.



[image: An expression tree]




An expression tree contains two types of nodes: nodes that contain numbers
and nodes that contain operators. Furthermore, we might want to add other types
of nodes to make the trees more useful, such as nodes that contain variables.
If we want to work with expression trees in Java, how can we deal with this
variety of nodes? One way—which will be frowned upon by object-oriented
purists—is to include an instance variable in each node object to record
which type of node it is:


enum NodeType { NUMBER, OPERATOR }   // Possible kinds of node.
   
class ExpNode {  // A node in an expression tree.

    NodeType kind;  // Which type of node is this?
    double number;  // The value in a node of type NUMBER.
    char op;        // The operator in a node of type OPERATOR.
    ExpNode left;   // Pointers to subtrees,
    ExpNode right;  //     in a node of type OPERATOR.
    
    ExpNode( double val ) {
          // Constructor for making a node of type NUMBER.
       kind = NodeType.NUMBER;
       number = val;
    }
 
    ExpNode( char op, ExpNode left, ExpNode right ) {
          // Constructor for making a node of type OPERATOR.
       kind = NodeType.OPERATOR;
       this.op = op;
       this.left = left;
       this.right = right;
    }
 
 } // end class ExpNode


Given this definition, the following recursive subroutine will find the
value of an expression tree:


static double getValue( ExpNode node ) {
       // Return the value of the expression represented by
       // the tree to which node refers.  Node must be non-null.
    if ( node.kind == NodeType.NUMBER ) {
          // The value of a NUMBER node is the number it holds.
       return node.number;
    }
    else {  // The kind must be OPERATOR.
            // Get the values of the operands and combine them
            //    using the operator.
       double leftVal = getValue( node.left );
       double rightVal = getValue( node.right );
       switch ( node.op ) {
          case '+':  return leftVal + rightVal;
          case '-':  return leftVal - rightVal;
          case '*':  return leftVal * rightVal;
          case '/':  return leftVal / rightVal;
          default:   return Double.NaN;  // Bad operator.
       }
    }
 } // end getValue()


Although this approach works, a more object-oriented approach is to note
that since there are two types of nodes, there should be two classes to
represent them, perhaps named ConstNode and BinOpNode. To represent the
general idea of a node in an expression tree, we need another class,
ExpNode. Both ConstNode and BinOpNode will be
subclasses of ExpNode. Since any actual node will be either a
ConstNode or a BinOpNode, ExpNode should be an
abstract class. (See Subsection 5.5.5.) Since one of the
things we want to do with nodes is find their values, each class should have an
instance method for finding the value:


abstract class ExpNode {
       // Represents a node of any type in an expression tree.
       
    abstract double value();  // Return the value of this node.
    
} // end class ExpNode


class ConstNode extends ExpNode {
       // Represents a node that holds a number.
       
    double number;  // The number in the node.
    
    ConstNode( double val ) {
          // Constructor.  Create a node to hold val.
       number = val;
    }
 
    double value() {
          // The value is just the number that the node holds.
       return number;
    }
 
 } // end class ConstNode
 
 
 class BinOpNode extends ExpNode {
       // Represents a node that holds an operator.
  
    char op;        // The operator.
    ExpNode left;   // The left operand.
    ExpNode right;  // The right operand.
 
    BinOpNode( char op, ExpNode left, ExpNode right ) {
          // Constructor.  Create a node to hold the given data.
       this.op = op;
       this.left = left;
       this.right = right;
    }
 
    double value() {
          // To get the value, compute the value of the left and
          // right operands, and combine them with the operator.
        double leftVal = left.value();
        double rightVal = right.value();
        switch ( op ) {
            case '+':  return leftVal + rightVal;
            case '-':  return leftVal - rightVal;
            case '*':  return leftVal * rightVal;
            case '/':  return leftVal / rightVal;
            default:   return Double.NaN;  // Bad operator.
         }
    }
 
 } // end class BinOpNode


Note that the left and right operands of a BinOpNode are of type
ExpNode, not BinOpNode. This allows the operand to be either
a ConstNode or another BinOpNode—or any other type of
ExpNode that we might eventually create. Since every ExpNode
has a value() method, we can call left.value() to compute the
value of the left operand. If left is in fact a ConstNode,
this will call the value() method in the ConstNode class. If
it is in fact a BinOpNode, then left.value() will call the
value() method in the BinOpNode class. Each node knows how to
compute its own value.


Although it might seem more complicated at first, the object-oriented
approach has some real advantages. For one thing, it doesn't waste memory. In the
original ExpNode class, only some of the instance variables in each
node were actually used, and we needed an extra instance variable to keep track
of the type of node. More important, though, is the fact that new types of
nodes can be added more cleanly, since it can be done by creating a new
subclass of ExpNode rather than by modifying an existing class.


We'll return to the topic of expression trees in the next section, where
we'll see how to create an expression tree to represent a given expression.

   






Section 9.5

A Simple Recursive Descent Parser



   


I have always been fascinated by language—both
natural languages like English and the artificial languages that are used by
computers. There are many difficult questions about how languages can convey
information, how they are structured, and how they can be processed. Natural
and artificial languages are similar enough that the study of programming
languages, which are pretty well understood, can give some insight into the
much more complex and difficult natural languages. And programming languages
raise more than enough interesting issues to make them worth studying in their
own right. How can it be, after all, that computers can be made to "understand"
even the relatively simple languages that are used to write programs?
Computers can only directly use instructions expressed in very
simple machine language. Higher level languages must be translated into machine
language. But the translation is done by a compiler, which is just a program.
How could such a translation program be written?

   



9.5.1  Backus-Naur Form



Natural and artificial languages are similar in that they have a structure
known as grammar or syntax. Syntax can be expressed by a set of rules that
describe what it means to be a legal sentence or program. For programming
languages, syntax rules are often expressed in BNF
(Backus-Naur Form), a system that was developed by computer scientists John
Backus and Peter Naur in the late 1950s. Interestingly, an equivalent system
was developed independently at about the same time by linguist Noam Chomsky to
describe the grammar of natural language. BNF cannot express all possible
syntax rules. For example, it can't express the fact that a variable must be
defined before it is used. Furthermore, it says nothing about the meaning or
semantics of the language. The problem of specifying the semantics of a
language—even of an artificial programming language—is one that is still
far from being completely solved. However, BNF does express the basic structure
of the language, and it plays a central role in the design of compilers.


A variety of different notations are used for BNF.  The one that I will use here is
fairly common.  Although other notations are used, they express the same concepts.


In English, terms such as "noun", "transitive verb," and "prepositional
phrase" are syntactic categories that describe
building blocks of sentences. Similarly, "statement", "number," and "while
loop" are syntactic categories that describe building blocks of Java programs.
In BNF, a syntactic category is written as a word enclosed between
"<" and ">". For example: <noun>,
<verb-phrase>, or <while-loop>. A 
rule in BNF specifies the structure of an item in a given
syntactic category, in terms of other syntactic categories and/or basic symbols
of the language. For example, one BNF rule for the English language might
be


<sentence>  ::=  <noun-phrase> <verb-phrase>


The symbol "::=" is read "can be", so this rule says that a
<sentence> can be a <noun-phrase> followed by a
<verb-phrase>. (The term is "can be" rather than "is" because
there might be other rules that specify other possible forms for a sentence.)
This rule can be thought of as a recipe for a sentence: If you want to make a
sentence, make a noun-phrase and follow it by a verb-phrase. Noun-phrase and
verb-phrase must, in turn, be defined by other BNF rules.


In BNF, a choice between alternatives is represented by the symbol "|",
which is read "or". For example, the rule


<verb-phrase>  ::=  <intransitive-verb>  |
                    ( <transitive-verb> <noun-phrase> )


says that a <verb-phrase> can be an
<intransitive-verb>, or a
<transitive-verb> followed by a <noun-phrase>.
Note also that parentheses can be used for grouping. To express the fact that
an item is optional, it can be enclosed between "[" and "]".
An optional item that can be repeated any number of times is enclosed between
"[" and "]...". And a symbol that is an actual part of the
language that is being described is enclosed in quotes. For example,


<noun-phrase>  ::=  <common-noun> [ "that" <verb-phrase> ]  |
                    <common-noun> [ <prepositional-phrase> ]...


says that a <noun-phrase> can be a
<common-noun>, optionally followed by the literal word
"that" and a <verb-phrase>, or it can be a
<common-noun> followed by zero or more
<prepositional-phrase>'s. Obviously, we can describe very
complex structures in this way. The real power comes from the fact that BNF
rules can be recursive. In fact, the two preceding rules, taken together, are
recursive. A <noun-phrase> is defined partly in terms of
<verb-phrase>, while <verb-phrase> is defined
partly in terms of <noun-phrase>. For example, a
<noun-phrase> might be "the rat that ate the cheese", since "ate
the cheese" is a <verb-phrase>. But then we can, recursively,
make the more complex <noun-phrase> "the cat that caught the rat
that ate the cheese" out of the <common-noun> "the cat", the word "that"
and the <verb-phrase> "caught the rat that ate the cheese".
Building from there, we can make the <noun-phrase> "the dog that
chased the cat that caught the rat that ate the cheese". The recursive
structure of language is one of the most fundamental properties of language,
and the ability of BNF to express this recursive structure is what makes it so
useful.


BNF can be used to describe the syntax of a programming language such as
Java in a formal and precise way. For example, a <while-loop>
can be defined as


<while-loop>  ::=  "while" "(" <condition> ")" <statement>


This says that a <while-loop> consists of the word "while",
followed by a left parenthesis, followed by a <condition>,
followed by a right parenthesis, followed by a <statement>. Of
course, it still remains to define what is meant by a condition and by a
statement. Since a statement can be, among other things, a while loop,
we can already see the recursive structure of the Java language. The exact
specification of an if statement, which is hard to express clearly in
words, can be given as


<if-statement>  ::=  
             "if" "(" <condition> ")" <statement>
             [ "else" "if" "(" <condition> ")" <statement> ]...
             [ "else" <statement> ]


This rule makes it clear that the "else" part is optional and that
there can be, optionally, one or more "else if" parts.

  
   

   



9.5.2  Recursive Descent Parsing




In the rest of this section, I will show how a BNF grammar for a language
can be used as a guide for constructing a parser. A parser is a program that
determines the grammatical structure of a phrase in the language. This is the
first step in determining the meaning of the phrase—which for a programming
language means translating it into machine language. Although we will look at
only a simple example, I hope it will be enough to convince you that compilers
can in fact be written and understood by mortals and to give you some idea of
how that can be done.


The parsing method that we will use is called recursive descent parsing. 
It is not the only possible parsing
method, or the most efficient, but it is the one most suited for writing
compilers by hand (rather than with the help of so called "parser generator"
programs). In a recursive descent parser, every rule of the BNF grammar is the
model for a subroutine. Not every BNF grammar is suitable for recursive descent
parsing. The grammar must satisfy a certain property. Essentially, while
parsing a phrase, it must be possible to tell what syntactic category is coming
up next just by looking at the next item in the input. Many grammars are
designed with this property in mind.





When we try to parse a phrase that contains a syntax error, we need some way
to respond to the error. A convenient way of doing this is to throw an
exception. I'll use an exception class called ParseError, defined as
follows:


/**
 * An object of type ParseError represents a syntax error found in 
 * the user's input.
 */
private static class ParseError extends Exception {
   ParseError(String message) {
      super(message);
   }
} // end nested class ParseError


Another general point is that our BNF rules don't say anything about spaces
between items, but in reality we want to be able to insert spaces between items
at will. To allow for this, I'll always call the routine TextIO.skipBlanks()
before trying to look ahead to see what's coming up next in input.
TextIO.skipBlanks() skips past any whitespace, such as spaces and tabs, in the input,
and stops when the next character in the input is either a non-blank character or the
end-of-line character.  (For a discussion of robust handling of TextIO input, see
Subsection 8.2.4.)


Let's start with a very simple example. A "fully parenthesized expression"
can be specified in BNF by the rules


<expression>  ::=  <number>  |
                   "(" <expression> <operator> <expression> ")"
                   
<operator>  ::=  "+" | "-" | "*" | "/"


where <number> refers to any non-negative real number. An example
of a fully parenthesized expression is "(((34-17)*8)+(2*7))". Since
every operator corresponds to a pair of parentheses, there is no ambiguity
about the order in which the operators are to be applied. Suppose we want a
program that will read and evaluate such expressions. We'll read the
expressions from standard input, using TextIO. To apply recursive
descent parsing, we need a subroutine for each rule in the grammar.
Corresponding to the rule for <operator>, we get a subroutine
that reads an operator. The operator can be a choice of any of four things. Any
other input will be an error.


/**
 * If the next character in input is one of the legal operators,
 * read it and return it.  Otherwise, throw a ParseError.
 */
static char getOperator() throws ParseError {
   TextIO.skipBlanks();
   char op = TextIO.peek(); // look ahead at the next char, without reading it
   if ( op == '+' || op == '-' || op == '*' || op == '/' ) {
      TextIO.getAnyChar();  // read the operator, to remove it from the input
      return op;
   }
   else if (op == '\n')
      throw new ParseError("Missing operator at end of line.");
   else
      throw new ParseError("Missing operator.  Found \"" +
            op + "\" instead of +, -, *, or /.");
} // end getOperator()


I've tried to give a reasonable error message, depending on whether the next
character is an end-of-line or something else. I use TextIO.peek() to
look ahead at the next character before I read it, and I call
TextIO.skipBlanks() before testing TextIO.peek() in order to ignore
any blanks that separate items. I will follow this same pattern in every
case.


When we come to the subroutine for <expression>, things are a
little more interesting. The rule says that an expression can be either a
number or an expression enclosed in parentheses. We can tell which it is by
looking ahead at the next character. If the character is a digit, we have to
read a number. If the character is a "(", we have to read the "(", followed by
an expression, followed by an operator, followed by another expression,
followed by a ")". If the next character is anything else, there is an error.
Note that we need recursion to read the nested expressions. The routine doesn't
just read the expression. It also computes and returns its value. This requires
semantical information that is not specified in the BNF rule.


/**
 * Read an expression from the current line of input and return its value.
 * @throws ParseError if the input contains a syntax error
 */
private static double expressionValue() throws ParseError {
   TextIO.skipBlanks();
   if ( Character.isDigit(TextIO.peek()) ) {
          // The next item in input is a number, so the expression
          // must consist of just that number.  Read and return
          // the number.
      return TextIO.getDouble();
   }
   else if ( TextIO.peek() == '(' ) {
          // The expression must be of the form 
          //         "(" <expression> <operator> <expression> ")"
          // Read all these items, perform the operation, and
          // return the result.
      TextIO.getAnyChar();  // Read the "("
      double leftVal = expressionValue();  // Read and evaluate first operand.
      char op = getOperator();             // Read the operator.
      double rightVal = expressionValue(); // Read and evaluate second operand.
      TextIO.skipBlanks();
      if ( TextIO.peek() != ')' ) {
             // According to the rule, there must be a ")" here.
             // Since it's missing, throw a ParseError.
         throw new ParseError("Missing right parenthesis.");
      }
      TextIO.getAnyChar();  // Read the ")"
      switch (op) {   //  Apply the operator and return the result. 
         case '+':  return leftVal + rightVal;
         case '-':  return leftVal - rightVal;
         case '*':  return leftVal * rightVal;
         case '/':  return leftVal / rightVal;
         default:   return 0;  // Can't occur since op is one of the above.
                               // (But Java syntax requires a return value.)
      }
   }
   else {  // No other character can legally start an expression.
      throw new ParseError("Encountered unexpected character, \"" + 
            TextIO.peek() + "\" in input.");
   }
} // end expressionValue()


I hope that you can see how this routine corresponds to the BNF rule. Where
the rule uses "|" to give a choice between alternatives, there is an
if statement in the routine to determine which choice to take. Where
the rule contains a sequence of items, "(" <expression>
<operator> <expression> ")", there is a sequence
of statements in the subroutine to read each item in turn.


When expressionValue() is called to evaluate the expression
(((34-17)*8)+(2*7)), it sees the "(" at the beginning of the input, so
the else part of the if statement is executed. The "(" is
read. Then the first recursive call to expressionValue() reads and
evaluates the subexpression ((34-17)*8), the call to
getOperator() reads the "+" operator, and the second recursive call to
expressionValue() reads and evaluates the second subexpression
(2*7). Finally, the ")" at the end of the expression is read. Of
course, reading the first subexpression, ((34-17)*8), involves further
recursive calls to the expressionValue() routine, but it's better not
to think too deeply about that! Rely on the recursion to handle the
details.


You'll find a complete program that uses these routines in the file 
SimpleParser1.java.




   
Fully parenthesized expressions aren't very natural for people to use. But
with ordinary expressions, we have to worry about the question of operator
precedence, which tells us, for example, that the "*" in the
expression "5+3*7" is applied before the "+". The complex expression
"3*6+8*(7+1)/4-24" should be seen as made up of three "terms",
3*6, 8*(7+1)/4, and 24, combined with "+" and "-"
operators. A term, on the other hand, can be made up of several factors
combined with "*" and "/" operators. For example,
8*(7+1)/4 contains the factors 8, (7+1) and
4. This example also shows that a factor can be either a number or an
expression in parentheses. To complicate things a bit more, we allow for
leading minus signs in expressions, as in "-(3+4)" or "-7".
(Since a <number> is a positive number, this is the only way we
can get negative numbers. It's done this way to avoid "3 * -7", for
example.) This structure can be expressed by the BNF rules


<expression>  ::=  [ "-" ] <term> [ ( "+" | "-" ) <term> ]...
<term>  ::=  <factor> [ ( "*" | "/" ) <factor> ]...
<factor>  ::=  <number>  |  "(" <expression> ")"


The first rule uses the "[ ]..." notation, which says that the
items that it encloses can occur zero, one, two, or more times. The rule means that
an <expression> can begin, optionally, with a "-". Then there
must be a <term> which can optionally be followed by one of the
operators "+" or "-" and another <term>, optionally followed by
another operator and <term>, and so on. In a subroutine that
reads and evaluates expressions, this repetition is handled by a while
loop. An if statement is used at the beginning of the loop to test
whether a leading minus sign is present:


/**
 * Read an expression from the current line of input and return its value.
 * @throws ParseError if the input contains a syntax error
 */
private static double expressionValue() throws ParseError {
   TextIO.skipBlanks();
   boolean negative;  // True if there is a leading minus sign.
   negative = false;
   if (TextIO.peek() == '-') {
      TextIO.getAnyChar();  // Read the minus sign.
      negative = true;
   }
   double val;  // Value of the expression.
   val = termValue();  // Read and evaluate the first term.
   if (negative)
      val = -val;  // Apply the leading minus sign to the first term.
   TextIO.skipBlanks();
   while ( TextIO.peek() == '+' || TextIO.peek() == '-' ) {
          // Read the next term and add it to or subtract it from
          // the value of previous terms in the expression.
      char op = TextIO.getAnyChar();  // Read the operator.
      double nextVal = termValue();    // Read and evaluate the next term.
      if (op == '+')
         val += nextVal;
      else
         val -= nextVal;
      TextIO.skipBlanks();
   }
   return val;
} // end expressionValue()


The subroutine for <term> is very similar to this, and the
subroutine for <factor> is similar to the example given above
for fully parenthesized expressions. A complete program that reads and
evaluates expressions based on the above BNF rules can be found in the file
SimpleParser2.java.



   



9.5.3  Building an Expression Tree



Now, so far, we've only evaluated expressions. What does that have to do
with translating programs into machine language? Well, instead of actually
evaluating the expression, it would be almost as easy to generate the machine
language instructions that are needed to evaluate the expression. If we are
working with a "stack machine," these instructions would be stack operations
such as "push a number" or "apply a + operation". The program 
SimpleParser3.java can both evaluate the
expression and print a list of stack machine operations for evaluating the
expression.


   
It's quite a jump from this program to a recursive descent parser that can
read a program written in Java and generate the equivalent machine language
code—but the conceptual leap is not huge.


The SimpleParser3 program doesn't actually generate the stack
operations directly as it parses an expression. Instead, it builds an
expression tree, as discussed in Subsection 9.4.3, to
represent the expression. The expression tree is then used to find the value
and to generate the stack operations. The tree is made up of nodes belonging to
classes ConstNode and BinOpNode that are similar to those
given in Subsection 9.4.3. Another subclass of ExpNote, 
UnaryMinusNode, has been
introduced to represent the unary minus operation. I've added a method,
printStackCommands(), to each class. This method is responsible for
printing out the stack operations that are necessary to evaluate an expression.
Here for example is the new BinOpNode class from SimpleParser3.java:


private static class BinOpNode extends ExpNode {
   char op;        // The operator.
   ExpNode left;   // The expression for its left operand.
   ExpNode right;  // The expression for its right operand.
   BinOpNode(char op, ExpNode left, ExpNode right) {
          // Construct a BinOpNode containing the specified data.
      assert op == '+' || op == '-' || op == '*' || op == '/';
      assert left != null && right != null;
           // (for assert statements, see Subsection 8.4.1)
      this.op = op;
      this.left = left;
      this.right = right;
   }
   double value() {
          // The value is obtained by evaluating the left and right
          // operands and combining the values with the operator.
      double x = left.value();
      double y = right.value();
      switch (op) {
      case '+':  
         return x + y;
      case '-':  
         return x - y;
      case '*':  
         return x * y;
      case '/':  
         return x / y;
      default:   
         return Double.NaN;  // Bad operator! Should not be possible.
      }
   }
   void  printStackCommands() {
          // To evaluate the expression on a stack machine, first do
          // whatever is necessary to evaluate the left operand, leaving
          // the answer on the stack.  Then do the same thing for the
          // second operand.  Then apply the operator (which means popping
          // the operands, applying the operator, and pushing the result).
      left.printStackCommands();
      right.printStackCommands();
      System.out.println("  Operator " + op);
   }
}


It's also interesting to look at the new parsing subroutines. Instead of
computing a value, each subroutine builds an expression tree. For example, the
subroutine corresponding to the rule for <expression>
becomes



    static ExpNode expressionTree() throws ParseError {
           // Read an expression from the current line of input and
           // return an expression tree representing the expression.
           // (The return value is a pointer to the root of the tree.)
       TextIO.skipBlanks();
       boolean negative;  // True if there is a leading minus sign.
       negative = false;
       if (TextIO.peek() == '-') {
          TextIO.getAnyChar();
          negative = true;
       }
       ExpNode exp;   // The expression tree for the expression.
       exp = termTree();  // Start with a tree for first term.
       if (negative) {
              // Build the tree that corresponds to applying a
              // unary minus operator to the term we've
              // just read.
          exp = new UnaryMinusNode(exp);
       }
       TextIO.skipBlanks();
       while ( TextIO.peek() == '+' || TextIO.peek() == '-' ) {
                // Read the next term and combine it with the
                // previous terms into a bigger expression tree.
           char op = TextIO.getAnyChar();
           ExpNode nextTerm = termTree();
                // Create a tree that applies the binary operator
                // to the previous tree and the term we just read.
           exp = new BinOpNode(op, exp, nextTerm);
           TextIO.skipBlanks();
       }
       return exp;
    } // end expressionTree()




In some real compilers, the parser creates a tree to represent the program
that is being parsed. This tree is called a parse tree
or abstract syntax tree. 
Parse trees are somewhat different in form from expression trees,
but the purpose is the same. Once you have the tree, there are a number of
things you can do with it. For one thing, it can be used to generate machine
language code. But there are also techniques for examining the tree and
detecting certain types of programming errors, such as an attempt to reference
a local variable before it has been assigned a value. (The Java compiler, of
course, will reject the program if it contains such an error.) It's also
possible to manipulate the tree to optimize the
program. In optimization, the tree is transformed to make the program more
efficient before the code is generated.


And so we are back where we started in Chapter 1, looking at programming
languages, compilers, and machine language. But looking at them, I hope, with a
lot more understanding and a much wider perspective.

   

   

   




Programming Exercises for Chapter 9



Exercise 9.1:

In many textbooks, the first examples of recursion are
the mathematical functions factorial and fibonacci.  These functions
are defined for non-negative integers using the following recursive formulas:

factorial(0)  =  1
factorial(N)  =  N*factorial(N-1)   for N > 0

fibonacci(0)  =  1
fibonacci(1)  =  1
fibonacci(N)  =  fibonacci(N-1) + fibonacci(N-2)   for N > 1

Write recursive functions to compute factorial(N) and
fibonacci(N) for a given non-negative integer N,
and write a main() routine to test your functions. Consider
using the BigInteger class (see Exercise 8.2)

(In fact, factorial and fibonacci are really not very good
examples of recursion, since the most natural way to compute them is to use
simple for loops.  Furthermore, fibonacci is a particularly
bad example, since the natural recursive approach to computing this function
is extremely inefficient.)


See the Solution




Exercise 9.2:


Exercise 7.6 asked you to read a file, make an 
alphabetical list of all the words that occur in the file, and write the list to another
file.  In that exercise, you were asked to use an ArrayList<String> to
store the words.  Write a new version of the same program that stores the words
in a binary sort tree instead of in an arraylist.  You can use the binary sort tree
routines from SortTreeDemo.java, which was discussed in 
Subsection 9.4.2.


See the Solution




Exercise 9.3:

Suppose that linked lists
of integers are made from objects belonging to the class


class ListNode {
   int item;       // An item in the list.
   ListNode next;  // Pointer to the next node in the list.
}


Write a subroutine that will make a copy of a list, with the order of the
items of the list reversed. The subroutine should have a parameter of type
ListNode, and it should return a value of type ListNode. The
original list should not be modified.


You should also write a main() routine to test your subroutine.


See the Solution




Exercise 9.4:


Subsection 9.4.1 
explains how to use recursion to print out the items in a binary tree
in various orders. That section also notes that a non-recursive subroutine can
be used to print the items, provided that a stack or queue is used as an
auxiliary data structure. Assuming that a queue is used, here is an algorithm
for such a subroutine:

Add the root node to an empty queue
while the queue is not empty:
   Get a node from the queue
   Print the item in the node
   if node.left is not null:
      add it to the queue
   if node.right is not null:
      add it to the queue

Write a subroutine that implements this algorithm, and write a program to
test the subroutine. Note that you will need a queue of TreeNodes, so
you will need to write a class to represent such queues.

(Note that the order in which items are printed by this algorithm is different
from all three of the orders considered in Subsection 9.4.1.


See the Solution




Exercise 9.5:

In Subsection 9.4.2, I say that "if the
[binary sort] tree is created by 
inserting items in a random order, there is a high probability that the tree 
is approximately balanced."
For this exercise, you will do an experiment to test whether that is true.

The depth of a node in a binary tree is the
length of the path from the root of the tree to that node. That is, the root
has depth 0, its children have depth 1, its grandchildren have depth 2, and so
on. In a balanced tree, all the leaves in the tree are about the same depth.
For example, in a perfectly balanced tree with 1023 nodes, all the leaves are
at depth 9. In an approximately balanced tree with 1023 nodes, the average
depth of all the leaves should be not too much bigger than 9.

On the other hand, even if the tree is approximately balanced, there might
be a few leaves that have much larger depth than the average, so we might also
want to look at the maximum depth among all the leaves in a tree.

For this exercise, you should create a random binary sort tree with 1023
nodes. The items in the tree can be real numbers, and you can create the tree
by generating 1023 random real numbers and inserting them into the tree, using
the usual treeInsert() method for binary sort trees. Once you have the
tree, you should compute and output the average depth of all the leaves in the
tree and the maximum depth of all the leaves. To do this, you will need three
recursive subroutines: one to count the leaves, one to find the sum of the
depths of all the leaves, and one to find the maximum depth. The latter two
subroutines should have an int-valued parameter, depth, that
tells how deep in the tree you've gone. When you call this routine from the main
program, the depth parameter is 0; when you call the routine recursively,
the parameter increases by 1.


See the Solution




Exercise 9.6:

 The parsing programs in
Section 9.5 work with expressions made up of numbers and operators. We can
make things a little more interesting by allowing the variable "x" to occur.
This would allow expression such as "3*(x-1)*(x+1)", for example. Make
a new version of the sample program SimpleParser3.java that can work with such
expressions. In your program, the main() routine can't simply print
the value of the expression, since the value of the expression now depends on
the value of x. Instead, it should print the value of the expression
for x=0, x=1, x=2, and x=3.

The original program will have to be modified in several other ways.
Currently, the program uses classes ConstNode, BinOpNode, and
UnaryMinusNode to represent nodes in an expression tree. Since
expressions can now include x, you will need a new class,
VariableNode, to represent an occurrence of x in the
expression.

In the original program, each of the node classes has an instance method,
"double value()", which returns the value of the node. But in your
program, the value can depend on x, so you should replace this method
with one of the form "double value(double xValue)", where the
parameter xValue is the value of x.

Finally, the parsing subroutines in your program will have to take into
account the fact that expressions can contain x. There is just one
small change in the BNF rules for the expressions: A <factor> is
allowed to be the variable x:

<factor>  ::=  <number>  |  <x-variable>  |  "(" <expression> ")"

where <x-variable> can be either a lower case or an upper
case "X". This change in the BNF requires a change in the factorTree()
subroutine.


See the Solution




Exercise 9.7:

This exercise builds on
the previous exercise, Exercise 9.6. To
understand it, you should have some background in Calculus. The derivative of
an expression that involves the variable x can be defined by a few
recursive rules:



	The derivative of a constant is 0.


	The derivative of x is 1.


	If A is an expression, let dA be the derivative of
A. Then the derivative of -A is -dA.


	If A and B are expressions, let dA be the
derivative of A and let dB be the derivative of B.
Then the derivative of A+B is dA+dB.


	The derivative of A-B is dA-dB.


	The derivative of A*B is A*dB + B*dA.


	The derivative of A/B is (B*dA - A*dB) / (B*B).




For this exercise, you should modify your program from the previous exercise
so that it can compute the derivative of an expression. You can do this by
adding a derivative-computing method to each of the node classes. First, add
another abstract method to the ExpNode class:


abstract ExpNode derivative();


Then implement this method in each of the four subclasses of
ExpNode. All the information that you need is in the rules given
above. In your main program, instead of printing the stack operations for the original 
expression, you should print out the stack operations that define the derivative.
Note that the formula that you get for the derivative can be much more
complicated than it needs to be. For example, the derivative of 3*x+1
will be computed as (3*1+0*x)+0. This is correct, even though it's
kind of ugly, and it would be nice for it to be simplified.  However, simplifying
expressions is not easy.


As an alternative to printing out stack operations, you might want to print
the derivative as a fully parenthesized expression. You can do this by adding a
printInfix() routine to each node class. It would be nice to leave
out unnecessary parentheses, but again, the problem of deciding which
parentheses can be left out without altering the meaning of the expression is a
fairly difficult one, which I don't advise you to attempt.


(There is one curious thing that happens here: If you apply the rules, as
given, to an expression tree, the result is no longer a tree, since the same
subexpression can occur at multiple points in the derivative. For example, if
you build a node to represent B*B by saying "new
BinOpNode('*',B,B)", then the left and right children of the new node are
actually the same node! This is not allowed in a tree. However, the difference
is harmless in this case since, like a tree, the structure that you get has no
loops in it. Loops, on the other hand, would be a disaster in most of the
recursive tree-processing subroutines that we have written, since it would
lead to infinite recursion.  The type of structure that is built by the
derivative functions is technically referred to as a directed acyclic graph.)



See the Solution






Quiz on Chapter 9


Question 1:


Explain what is meant by a recursive subroutine.


Question 2:


Consider the following subroutine:

static void printStuff(int level) {
    if (level == 0) {
       System.out.print("*");
    }
    else {
       System.out.print("[");
       printStuff(level - 1);
       System.out.print(",");
       printStuff(level - 1);
       System.out.print("]");
    }
}

Show the output that would be produced by the subroutine calls
printStuff(0), printStuff(1), printStuff(2), and
printStuff(3).


Question 3:


Suppose that a linked list
is formed from objects that belong to the class

class ListNode {
   int item;       // An item in the list.
   ListNode next;  // Pointer to next item in the list.
}

Write a subroutine that will count the number of zeros that occur in a given
linked list of ints. The subroutine should have a parameter of type ListNode
and should return a value of type int.


Question 4:


Let ListNode be defined as in the previous
problem.  Suppose that head is a variable of type
ListNode that points to the first node in a
linked list.  Write a code segment that will add the number 42 in a new
node at the end of the list.  Assume that the list is not empty.
(There is no "tail pointer" for the list.)


Question 5:


List nodes can be used to build linked data structures that do not have
the form of linked lists.  Consider the list node class shown on the left and
the code shown on the right:


class ListNode {                        ListNode one = new ListNode(10);
    int item;                           ListNode two = new ListNode(20);
    ListNode next;                      ListNode three = new ListNode(30);
    Listnode(int i) {                   ListNode four = new ListNode(40);
        item = i;                       one.next = two;
        next = null;                    two.next = three;
    }                                   three.next = four;
}                                       four.next = two;


Draw the data structure that is constructed by the code.  What happens if
you try to print the items in the data structure using the usual code for
traversing a linked list:

ListNode runner = one;
while (runner != null) {
    System.out.println(runner.item);
    runner = runner.next();
}


Question 6:


What are the three operations on a stack?



Question 7:


What is the basic difference
between a stack and a queue?


Question 8:


What is an activation
record? What role does a stack of activation records play in a
computer?


Question 9:


Suppose that a binary tree of integers
is formed from objects belonging to the class

class TreeNode {
   int item;       // One item in the tree.
   TreeNode left;  // Pointer to the left subtree.
   TreeNode right; // Pointer to the right subtree.
}

Write a recursive subroutine that will find the sum of all the nodes in the
tree. Your subroutine should have a parameter of type TreeNode, and it
should return a value of type int.


Question 10:


Let TreeNode be the same class as in the previous
problem.  Write a recursive subroutine that makes a copy of a binary tree.
The subroutine has a parameter that points to the root of the tree that is
to be copied.  The return type is TreeNode,
and the return value should be a pointer to the root of the copy.
The copy should consist of newly created nodes, and it should have exactly
the same structure as the original tree.



Question 11:


What is a postorder traversal of a binary tree?


Question 12:


Suppose that a binary sort tree of integers is initially empty and
that the following integers are inserted into the tree in the order shown:

5   7   1   3   4   2   6

Draw the binary sort tree that results.  Then list the integers in the
order that is produced by a post-order traversal of the tree.


Question 13:


Suppose that a <multilist> is defined by the BNF rule

<multilist>  ::=  <word>  |  "(" [ <multilist> ]... ")"

where a <word> can be any sequence of letters. Give five
different <multilist>'s that can be generated by this rule.
(This rule, by the way, is almost the entire syntax of the programming language
LISP! LISP is known for its simple syntax and its elegant and
powerful semantics.)


Question 14:


Explain what is meant by parsing a computer program.


See the Answers






Glossary


abstraction. 
    Abstraction refers, in general, to the idea of providing
a simplified or higher level interface to a complex system.  It is closely related
to the idea of a "black box." Abstraction makes it possible to understand or
use a system, while ignoring some of the details of what actually goes on in the
system.  For example, control abstractions such as if statements and while
loops are actually implemented in machine language by jump and conditional jump 
instructions, but it is possible—and easier—to use if statements
and while loops without knowing anything about their machine language implementation.
Control abstractions make it possible to implement algorithms on a higher level
than machine language.  Abstraction is a fundamental concept in computer science.



abstract class. 
    A class that cannot be used to create objects, and that
exists only for the purpose of creating subclasses.  Abstract classes in Java are
defined using the modifier abstract.



abstract data type (ADT). 
    A data type for which the possible values of the type
and the permissible operations on those values are specified, without specifying how
the values and operations are to be implemented.



access specifier. 
    A modifier used on a method definition or variable
specification that determines what classes can use that method or variable.
The access specifiers in Java are public, protected, and
private.  A method or variable that has no access specifier is said
to have "package" visibility.



activation record. 
    A data structure that contains all the information 
necessary to implement a subroutine call, including the values of parameters and local
variables of the subroutine and the return address to which the computer will return
when the subroutine ends.  Activation records are stored on a stack, which makes it
possible for several subroutine calls to be active at the same time.  This is particularly
important for recursion, where several calls to the same subroutine can be active
at the same time.



actual parameter. 
    A parameter in a subroutine call statement, whose value
will be passed to the subroutine when the call statement is executed.  Actual parameters
are also called "arguments".



address. 
    Each location in the computer's memory has an address, which is
a number that identifies that location.  Locations in memory are numbered sequentially.
In modern computers, each byte of memory has its own address.
Addresses are used when information is being stored into or retrieved from memory.



algorithm. 
    An unambiguous, step-by-step procedure for performing some task,
which is guaranteed to terminate after a finite number of steps.



alpha color component. 
    A component of a color that says how transparent or opaque
that color is.  The higher the alpha component, the more opaque the color.



ALU. 
    Arithmetic Logic Unit.  The ALU is the part of
the CPU that performs arithmetic operations such as addition and subtraction and logical
operations such as AND and OR.



API. 
    Application Programming Interface.  A specification of the interface
to a software package or "toolbox."  The API says what classes or subroutines are provided
in the toolbox and how to use them.



applet. 
    A type of Java program that is meant to run on a Web page in
a Web browser, as opposed to a stand-alone application.



animation. 
    An apparently moving picture created by rapidly showing a sequence of
still images, called frames, one after the other.  In Java, animations are often driven by Timer
objects; a new frame of the animation is shown each time the timer fires. 



antialiasing. 
    Adjusting the color of pixels to reduce the "jagged" effect
that can occur when shapes and text are represented by pixels.  For antialiased drawing,
when the shape covers only part of a pixel, the color of the shape is blended with the
previous color of the pixel.  The degree of blending depends on how much of the pixel
is covered.



array. 
    A list of items, sequentially numbered.  Each item in the list can be
identified by its index, that is, its sequence number.  In Java, all the items in 
array must have the same type, called the base type of the array.  An array
is a random access data structure; that is, you can get directly at any item
in the array at any time.



array type. 
    A data type whose possible values are arrays.  If Type
is the name of a type, then Type[] is the array type for arrays that
have base type Type.



assignment statement. 
    A statement in a computer program that retrieves or 
computes a value and stores that value in a variable.  An assignment statement
in Java has the form: variable-name = expression;



asynchronous event. 
    An event that can occur at an unpredictable time, outside
the control of a computer program.  User input events, such as pressing a button on the
mouse, are asynchronous.



ASCII. 
    American Standard Code for Information Interchange.
A way of encoding characters using 7 bits for characters.  ASCII code
only supports 128 characters, with no accented letters, non-English alphabets, special symbols,
or ideograms for non-alphabetic languages such as Chinese.  Java uses the much larger and
more complete Unicode code for characters.



base case. 
    In a recursive algorithm, a simple case that is handled directly
rather than by applying the algorithm recursively.



binary number. 
    A number encoded as a sequence of zeros and ones.  A binary
number is represented in the "base 2" in the same way that ordinary numbers are
represented in the "base 10."



binary tree. 
    A linked data structure that is either empty or consists of a root
node that contains pointers to two smaller (possibly empty) binary trees.  The two smaller
binary trees are called the left subtree and the right subtree.



bit. 
    A single-digit binary number, which can be either 0 or 1.



black box. 
    A system or component of a system that can be used without understanding
what goes on inside the box.  A black box has an interface and an implementation.
A black box that is meant to be used as a component in a system is called a module.



block. 
    In Java programming, a sequence of statements enclosed between a pair
of braces, { and }.  Blocks are used to group several statements
into a single statement.  A block can also be empty, meaning that it contains no statements
at all and consists of just an empty pair of braces.



blocking operation. 
    An operation, such as reading data from a network connection,
is said to "block" if it has to wait for some event to occur.  A thread that performs a blocking
operation can be "blocked" until the required event occurs.  A thread cannot execute any
instructions while it is blocked.  Other threads in the same program, however, can continue
to run.



blocking queue. 
    A queue in which the dequeue operation will block if the
queue is empty, until an item is added to the queue.  If the blocking queue has a
limited capacity, the enqueue operation can also block, if the queue is full.



bottom-up design. 
    An approach to software design in which you start by designing
basic components of the system, then combine them into more complex components, and so on.



BufferedImage. 
    A class representing "off-screen canvases," that is, images
that are stored in the computer's memory and that can be used for drawing images off-screen.



branch. 
    A control structure that allows the computer to choose among
two or more different courses of action.  Java has two branch statements:  if
statements and switch statements.



byte. 
    A unit of memory that consists of eight bits.  One byte of memory can
hold an eight-bit binary number.



bytecode. 
    "Java bytecode" is the usual name for the machine language of
the Java Virtual Machine.  Java programs are compiled into Java bytecode, which can
then be executed by the JVM.



charset. 
    A particular encoding of character data into binary form.  Examples
include UTF-8 and ISO-8859-1.



checked exception. 
    An exception in Java that must be handled, either by
a try..catch statement or by a throws clause on the method
that can throw he exception.  Failure to handle a checked exception in one way or
the other is a syntax error.



class. 
    The basic unit of programming in Java.  A class is a collection 
of static and non-static methods and variables.  Static members of a class are part of
the class itself; non-static, or "instance," members constitute a blueprint for
creating objects, which are then said to "belong" to the class.



class invariant. 
    A statement about the state of a class, or of an object created from
that class, that is always true.  Any method in a class, to be correct, must preserve the
truth of all class invariants.



class variables and class methods. 
    Alternative terms for "static variables" and
"static methods", which are part of the class itself rather than of objects.



client/server. 
    A model of network communication in which a "server" waits
at a known address on the network for connection requests that are sent to the server
by "clients."  This is the basic model for communication using the TCP/IP protocol.



command-line interface. 
    A way of interacting with the computer in which
the user types in commands to the computer and the computer responds to
each command.



comment. 
    In a computer program, text that is ignored by the computer.  Comments
are for human readers, to help them understand the program.



compiler. 
    A computer program that translates programs written in some
computer language (generally a high-level language) into programs written in machine
language.



component. 
    General term for a visual element of a GUI, such as a window,
button, or menu.



constructor. 
    A special kind of subroutine in a class whose purpose is
to construct objects belonging to that class.  A constructor is called using
the new operator, and is not considered to be a "method."



container. 
    A component, such as a BorderPane, that
can contain other GUI components.



contract of a method. 
    The semantic component of the method's interface.
The contract specifies the responsibilities of the method and of the caller of the
method.  It says how to use the method correctly and specifies the task that the method
will perform when it is used correctly.  The contract of a method should be fully specified
by its Javadoc comment.



control structure. 
    A program structure such as an if statement
or a while loop that affects the flow of control in a program (that is, the
order in which the instructions in the program are executed).



CPU. 
    Central Processing Unit.  The CPU is the part of
the computer that actually performs calculations and carries out programs.



CSS. 
    Cascading Style Sheets, a language that can be used to control the
visual appearance of components in JavaFX or of elements on a web page.



data structure. 
    An organized collection of data, that can be treated
as a unit in a program.



deadlock. 
    A situation in which several threads hang indefinitely, 
for example because each of them is waiting for some resource that is locked by one of the
other threads.



default method. 
    A method in a Java interface that has an implementation.
The default implementation is used in any class that implements the interface but
does not override the method.  Default methods are marked with the reserved word
default.  Not supported in Java 7 and earlier.



default package. 
    The unnamed package.  A class that does not declare itself
to be in a named package is considered to be in the default package.



definite assignment. 
    Occurs at a particular point in a program if
it is definitely true that a given variable must have been assigned a value
before that point in the program.  It is only legal to use the value of a local variable if
that variable has "definitely" been assigned a value before it is used.  For this to
be true, the compiler must be able to verify that every path through the program
from the declaration of the variable to its use must pass through a statement that
assigns a value to that variable.



deprecated. 
    Considered to be obsolete, but still available for backwards
compatibility.  A deprecated Java class or method is still part of the Java language,
but it is not advisable to use it in new code.  Deprecated items might be removed in
future versions of Java.



dialog box. 
    A window that is dependent on another window, called its parent owner.
Dialog boxes are usually popped up to get information from the user or to display a
message to the user.



distributed computing. 
    A kind of parallel processing in which several
computers, connected by a network, work together to solve a problem.



dummy parameter. 
    Identifier that is used in a subroutine definition
to stand for the value of an actual parameter that will be passed to the subroutine
when the subroutine is called.  Dummy parameters are also called "formal parameters"
(or sometimes just "parameters," when the term "argument" is used instead of actual
parameter).



enum. 
    Enumerated type.  A type that is defined by listing every possible
value of that type.  An enum type in Java is a class, and the possible values of the
type are objects.



event. 
    In GUI programming, something that happens outside the control
of the program, such as a mouse click, and that the program must respond to when
it occurs.



exception. 
    An error or exceptional condition that is outside the normal
flow of control of a program.  In Java, an exception can be represented by an object
of type Throwable that can be caught and handled in a 
try..catch statement.



factory method. 
    A method, usually a static function, that returns an object. 
Factory methods are an alternative to constructors.



fetch-and-execute cycle. 
    The process by which the CPU executes machine language
programs.  It fetches (that is, reads) an instruction from memory and carries out
(that is, executes) the instruction, and it repeats this over and over in a continuous
cycle.



fill. 
    A drawing operation that applies a color (or other type of fill) to each
of the pixels inside a shape.



flag. 
    A boolean value that is set to true to indicate that some condition
or event is true.  A single bit in a binary number can also be used as a flag.



formal parameter. 
    Another term for "dummy parameter."



frame. 
    One of the images that make up an animation.  Also used as
another name for activation record.



function. 
    A subroutine that returns a value.



functional interface. 
    A Java interface that defines only a single subroutine
(where the term "interface" here means an interface that defines a Java type.)



garbage collection. 
    The automatic process of reclaiming memory that is
occupied by objects that can no longer be accessed.



generic programming. 
    Writing code that will work with various types
of data, rather than with just a single type of data.  The Java Collection Framework,
and classes that use similar techniques, are examples of generic programming in Java.



getter. 
    An instance method in a class that is used to read the value
of some property of that class.  Usually the property is just the value of some
instance variable.  By convention, a getter is named getXyz() where
xyz is the name of the property.



global variable. 
    Another name for member variable, emphasizing the fact
that a member variable in a class exists outside the methods of that class.



graphics context. 
    The data and methods necessary for
drawing to some particular destination.  A graphics context in JavaFX is an object
belonging to the GraphicsContext class.



GUI. 
    Graphical User Interface.  The modern way of interacting with a computer,
in which the computer displays interface components such as buttons and menus on a screen
and the user interacts with them—for example by clicking on them with a mouse.



hash table. 
    A data structure optimized for efficient search, insertion, and deletion
of objects.  A hash table consists of an array of locations, and the location in which
an object is stored is determined by that object's "hash code," an integer that can be
efficiently computed from the contents of the object.



heap. 
    The section of the computer's memory in which objects are stored.



high level language. 
    A programming language, such as Java, that is convenient
for human programmers but that has to be translated into machine language before it
can be executed.



HSB. 
    A color system in which colors are specified by three numbers (in Java, real
numbers in the range 0.0 to 1.0) giving the hue, saturation, and brightness.



IDE. 
    Integrated Development Environment.  A programming environment with
a graphical user interface that integrates tools for creating, compiling, and executing
programs.



identifier. 
    A sequence of characters that can be used as a name in a program.
Identifiers are used as names of variables, methods, and classes.



index. 
    The position number of one item in an array.



implementation. 
    The inside of a black box, such as the code
that defines a subroutine.



immutable object. 
    An immutable object cannot be modified after it is constructed,
because all of its instance variables are final.  (In my use of the term, an immutable
object can contain pointers to other objects that are not immutable.)



infinite loop. 
    A loop that never ends, because its continuation condition
always evaluates to true.



inheritence. 
    The fact that one class can extend another.  It then inherits
the data and behavior of the class that it extends.



instance of a class. 
    An object that belongs to that class (or a subclass of that class).
An object belongs to a class in this sense when the class is used as a template for the object when
the object is created by a constructor defined in that class.



instance method. 
    A non-static method in a class and hence a method 
in any object that is an instance of that class.



instance variable. 
    A non-static variable in a class and hence a variable 
in any object that is an instance of that class.



interface. 
    As a general term, how to use a black box such as a subroutine.
Knowing the interface tells you nothing about what goes on inside the box.  "Interface"
is also a reserved word in Java; in this sense, an interface is a type
that specifies one or more abstract methods.  An object that implements the interface
must provide definitions for those methods.




interpreter. 
    A computer program that executes program written in some
computer language by reading instructions from the program, one-by-one, and carrying each
one out (by translating it into equivalent machine language instructions).



I/O. 
    Input/Output, the way a computer program communicates with the
rest of the world, such as by displaying data to the user, getting information from the user,
reading and writing files, and sending and receiving data over a network.



I/O stream. 
    An abstraction representing a source of input data or a destination
for output data.  Java has four basic IO stream classes representing input and output
of character and binary data.  These classes form the foundation for Java's
input/output API.



iterator. 
    An object associated with a collection, such a list or a set,
that can be used to traverse that collection.  The iterator will visit each member of
the collection in turn.



Java Collection Framework (JCF). 
    A set of standard classes that implement
generic data structures, including ArrayList and TreeSet,
for example.



JavaFX. 
    A toolkit for GUI applications, which was introduced as a more
modern alternative to the Swing GUI toolkit.  JavaFX is not a standard part of Java
but is used in this textbook.



JDK. 
    Java Development Kit.  Basic software that supports both compiling
and running Java programs.  A JDK includes a command-line programming environment as 
well as a JRE.  You need a JDK if you want to compile Java source code, as well as
executing pre-compiled programs.



JRE. 
    Java Runtime Environment.  Basic software that supports running
standard Java programs that have already been compiled.  A JRE includes a Java
Virtual Machine and all the standard Java classes.



just-in-time compiler. 
    A kind of combination interpreter/compiler that
compiles parts of a program as it interprets them.  This allows subsequent executions
of the same parts of the program to be executed more quickly than they were the first
time.  This can result is greatly increased speed of execution.  Modern JVMs use 
a just-in-time compiler.



JVM. 
    Java Virtual Machine.  The imaginary computer whose machine language
is Java bytecode.  Also used to refer to computer programs that act as interpreters for
programs written in bytecode; to run Java programs on your computer, you need a JVM.



lambda expression. 
    A notation that defines an anonymous method.  More precisely,
a lambda expression is a kind of literal that represents a value whose type is given
by a functional interface.



linked data structure. 
    A collection of data consisting of a number of objects
that are linked together by pointers which are stored in instance variables of the objects.
Examples include linked lists and binary trees.



linked list. 
    A linked data structure in which nodes are linked together by pointers
into a linear chain.



listener. 
    In GUI programming, an object that can be registered to be notified
when events of some given type occur.  The object is said to "listen" for the events.



literal. 
    A sequence of characters that is typed in a program to represent
a constant value.  For example, 'A' is a literal that represents the
constant char value, A, when it appears in a Java program.



location (in memory). 
    The computer's memory is made up of a sequence of
locations.  These locations are sequentially numbered, and the number that identifies
a particular location is called the address of that location.



local class. 
    A class that is defined inside a method definition. Local classes
are often anonymous, but that is not required.



local variable. 
    A variable declared within a method, for use only inside
that method.  A variable declared inside a block
is valid from the point where it is declared until the end of
block in which the declaration occurs.



loop. 
    A control structure that allows a sequence of instructions to
be executed repeatedly.  Java has three kinds of loops:  for loops, while
loops, and do loops



loop control variable. 
    A variable in a for loop whose value is modified
as the loop is executed and is checked to determine whether or not to end the loop.



loop invariant. 
    A statement such that, if the statement is true before
a loop executes, then it will remain true after each execution of the loop, and therefore
will still be true after the loop ends.  Loop invariants can be a tool for proving
correctness of loops.



machine language. 
    A programming language consisting of instructions that
can be executed directed by a computer.  Instructions in machine language are
encoded as binary numbers.  Each type of computer has its own machine
language.  Programs written in other languages must be translated into a computer's machine
language before they can be executed by that computer.



main memory. 
    Programs and data can be stored in a computer's main memory,
where they are available to the CPU.  Other forms of memory, such as a disk drive,
also store information, but only main memory is directly accessible to the CPU.
Programs and data from a disk drive have to be copied into main memory before they can be used
by the CPU.



map (data structure). 
    An associative array; a data structure that associates an object from some
collection to each object in some set.  In Java, maps are
represented by the generic interface Map<T,S>




map (stream operator). 
    One of the fundamental operations on streams, defined
as part of Java's stream API.  A map operator applies a function to each
element of a stream, producing a new stream consisting of the values output by the function.



member variable. 
    A variable defined in a class but not inside a method,
 as opposed to a local variable, which is defined inside some method.



memory. 
    Memory in a computer is used to hold programs and data.



method. 
    Another term for subroutine, used in the context of
object-oriented programming.  A method is a subroutine that is contained in a class or in an object.



method reference. 
    A notation for a lambda expression that represents a method that
already exists in some class or object.  A method reference uses the :: operator,
such as Math::sqrt.



module. 
    In general, a component of a larger system that interacts with
the rest of the system in a simple, well-defined, straightforward manner.
In Java 9 and later, a module is a collection of Java packages, allowing explicit control of
dependencies between different modules, and the standard Java packages have been divided into 
q set of modules.



multitasking. 
    Performing multiple tasks at once, either by switching rapidly
back and forth from one task to another or by literally working on multiple tasks at
the same time.



multiprocessing. 
    Multitasking in which more than one processor is used,
so that multiple tasks can literally be worked on at the same time.



mutual exclusion. 
    Prevents two threads from accessing the same resource
at the same time.  In Java, this only applies to threads that access the resource
in synchronized methods or synchronized statements.
Mutual exclusion can prevent race conditions but introduces the possibility of deadlock.



MVC pattern. 
    The Model/View/Controller pattern, a strategy for dividing responsibility
in a GUI component.  The model is the data for the component.  The view is the visual presentation
of the component on the screen. The controller is responsible for reacting to events by 
changing the model.  According to the MVC pattern, these responsibilities should be handled
by different objects.



NaN. 
    Not a Number.  Double.NaN is a special value of type
double that represents an undefined or illegal value.



node. 
    Common term for one of the objects in a linked data structure.



null. 
    A special pointer value that means "not pointing to anything."



numerical analysis. 
    The field that studies algorithms that use approximations,
such as real numbers, and the errors that can result from such approximation.



off-by-one error. 
    A common type of error in which one too few or one
too many items are processed, often because counting is not being handled correctly
or because the processing stops too soon or continues too long for some other reason.



object. 
    An entity in a computer program that can have data (variables) and
behaviors (methods).  An object in Java must be created using some class as a template.
The class of an object determines what variables and methods it contains.



object type. 
    A type whose values are objects, as opposed to primitive types.
Classes and interfaces are object types.



observable value. 
    A value that generates an event when it is modified,
so that observers of the value can be notified of the change and can react to it.



OOP. 
    Object-Oriented Programming. An approach to the design and implementation
of computer programs in which classes and objects are created to represent concepts and
entities and their interactions.



operating system. 
    The basic software that is always running on a computer,
without which it would not be able to function.  Examples include Linux, MacOS, and
Windows Vista.



operator. 
    A symbol such as "+", "<=", or "++" that represents
an operation that can be applied to one or more values in an expression.



overloading (of operators). 
    The fact that the same operator can be used with
different types of data.  For example, the "+" operator can be applied to both numbers
and strings.



overloading (of method names). 
    The fact that several methods that
are defined in the same class can have the same name, as long as they have different signatures.



overriding. 
    Redefining in a subclass.  When a subclass provides a new definition
of a method that is inherited from a superclass, the new definition is said to override the 
original definition.



package. 
    In Java, a named collection of related classes and subpackages, such as
java.io and javafx.scene.control.



parallel processing. 
    When several tasks are being performed simultaneously, either
by multiple processors or by one processor that switches back and forth among
the tasks.



parameter. 
    Used to provide information to a subroutine when that subroutine
is called.  Values of "actual parameters" in the subroutine call statement are
assigned to the "dummy parameters" in the subroutine definition before the code
in the subroutine is executed.



parameterized type. 
    A type such as ArrayList<String>
that includes one or more type parameters (String in the example).



parsing. 
    Determining the syntactical structure of a string in some language.
To parse a string is to determine whether the string is legal according to the grammar of
the language, and if so, how it can be created using the rules of the grammar.




partially full array. 
    An array that is used to store varying numbers of items.
A partially full array can be represented as a normal array plus a counter to keep track
of how many items are actually stored.



pixel. 
    A "picture element" on the screen or in an image.  A picture consists of
rows and columns of pixels.  The color of each pixel can be individually set.



polymorphism. 
    The fact that the meaning of a call to an instance method
can depend on the actual type of the object that is used to make the call at run time.
That is, if var is a variable of object type, then the method that is called
by a statement such as var.action() depends on the type of the object to which
var refers when the statement is executed at run time, not on the type of
variable var.



pointer. 
    A value that represents an address in the computer's memory, and hence
can be thought of as "pointing" to the location that has that address.  A variable in Java can never hold
an object; it can only hold a pointer to the location where the object is stored.
A pointer is also called a "reference."



pragmatics. 
    Rules of thumb that describe what it means to write a
good program.  For example, style rules and guidelines about how to structure
a program are part of the pragmatics of a programming language.



precedence. 
    The precedence of operators determines the order in which
they are applied, when several operators occur in an expression, in the absence of parentheses.



precondition. 
    A condition that must be true at some point in the execution of a program,
in order for the program to proceed correctly from that point.  A precondition of a subroutine
is something that must be true when the subroutine is called, in order for the subroutine to
function properly.  Subroutine preconditions are often restrictions on the values of the actual
parameters that can be passed into the subroutine.



predicate. 
    A function that outputs a boolean value.
Predicates in Java can be represented by the parameterized functional interface
Predicate<T>.



priority queue. 
    A data structure representing a collection of items where each item
has a "priority." A priority queue has operations add and remove.  Items
can be added in any order, but the remove operation always removes an item of
minimal priority.  (Some version of priority queue use maximum instead of minimum priority.)



postcondition. 
    A condition that is known to be true at some point in the execution
of a program, as a result of the computation that has come before that point.  A postcondition
of a subroutine is something that must be true after the subroutine finishes its execution.
A postcondition of a function often describe the return value of the function.



primitive type. 
    One of the eight basic built-in data types in Java, double,
float, long, int, short,
byte, boolean, and char.  A variable of
primitive type holds an actual value, as opposed to a pointer to that value.



priority of a thread. 
    An integer associated with a thread that can affect the
order in which threads are executed.  A thread with greater priority is executed in preference
to a thread with lower priority.



producer/consumer. 
    A classic pattern in parallel programming in which
one or more producers produce items that are consumed by one or more consumers,
and the producers and consumers are meant to run in parallel.  The problem is to get
items safely and efficiently from the producers to the consumers.  In Java, the
producer/consumer pattern is implemented by blocking queues.



program. 
    A set of instructions to be carried out by a computer, written
in an appropriate programming language.  Used as a
verb, it means to create such a set of instructions.



programming language. 
    A language that can be used to write programs for a
computer.  Programming languages range in complexity from machine language to high-level
languages such as Java.



protocol. 
    A specification of what constitutes legal communication in a give
context. A protocol specifies the format of legal messages, when they can be sent,
what kind of reply is expected, and so on.



pseudocode. 
    Informal specification of algorithms, expressed in language that
is closer to English than an actual programming language, and usually without filling in
every detail of the procedure.



queue. 
    A data structure consisting of a list of items,
where items can only be added at one end and removed at
the opposite end of the list.



race condition. 
    A source of possible errors in parallel programming, where
one thread can cause an error in another thread by changing some aspect of the state of 
the program that the second thread is depending on (such as the value of variable).



RAM. 
    Random Access Memory.  This term is often used as a synonym for the
main memory of a computer.  Technically, however, it means memory in which all 
locations are equally accessible at any given time.  The term also implies that
data can be written to the memory as well as read from it.



record. 
    A simple data structure containing several data items, or fields,
that are identified by name.  The fields can be of different types.  Java has
record classes to represent (immutable) records.



recursion. 
    Defining something in terms of itself.  In particular, a
recursive subroutine is one that calls itself, either directly, or indirectly through a
chain of other subroutines.  Recursive algorithms work by reducing a complex problem into
smaller problems which can be solved either directly or by applying the same algorithm "recursively."



reduce (stream operator). 
    One of the fundamental operations on a stream.  A reduce
operation combines all the elements from a stream in some way, such as by summing them or finding
their maximum, producing a final result.



RGB. 
    A color system in which colors are specified by three numbers (in Java, integers
in the range 0 to 255) giving the red, green, and blue components of the color.



reference. 
    Another term for "pointer."



return type of a function. 
    The type of value that is returned by that function.



reserved word. 
    A sequence of characters that looks like an identifier
but can't be used as an identifier because it has a special meaning in the language.
For example, class, public, and if are reserved
words in Java.



resource. 
    An image, sound, text, or other data file that is part of a program.
Resource files for Java programs are stored on the same class path where the compiled class
files for the program are stored.



robust program. 
    A program is robust if it is not only correct, but also is
capable of handling errors such as a non-existent file or a failed network connection
in a reasonable way.



scene graph. 
    In JavaFX, the hierarchical data structure that contains 
all the GUI components that are shown in a window.



set. 
    A collection of objects which contains no duplicates.  In Java, sets are
represented by the generic interface Set<T>




scope. 
    The region in a program where the declaration of an identifier is
valid.



semantics. 
    Meaning.  The semantics rules of a language determine the
meaning of strings of symbols (such as sentences or statements) in that language.



sentinel value. 
    A special value that marks the end of a sequence of data
values, to indicate the end of the data.



setter. 
    An instance method in a class that is used to set the value
of some property of that class.  Usually the property is just the value of some
instance variable.  By convention, a setter is named setXyz() where
xyz is the name of the property.



signature of a method. 
    The name of the method, the number of formal
parameters in its definition, and the type of each formal parameter.  Method signatures
are the information needed by a compiler to tell which method is being called by
a given subroutine call statement.



socket. 
    An abstraction representing one end of a connection between 
two computers on a network.  A socket represents a logical connection between computer
programs, not a physical connection between computers.



stack. 
    A data structure consisting of a list of items where items can only be added and removed at
one end of the list, which is known as the "top" of the stack.
Adding an item to a stack is called "pushing," and removing
an item is called "popping."  The term stack also refers to the stack of activation records
that is used to implement subroutine calls.



standard input. 
    The standard source from which a program reads input data.  It is 
represented by the object System.in.  Usually, standard input comes from text typed
by the user, but standard input can be "redirected" to read from another source, such as a file,
instead.



standard output. 
    The standard destination to which a program writes output text.  It is 
represented by the object System.out.  Usually, standard output is displayed to
the user, but standard output can be "redirected" to write to another destination, such as a file,
instead.  There is also an object System.err that is meant for writing error messages.



state machine. 
    A model of computation where an abstract "machine" can be
in any of some finite set of different states.  The behavior of the machine depends on
its state, and the state can change in response to inputs or events.  The basic logical
structure of a GUI program can often be represented as a state machine.



step-wise refinement. 
    A technique for developing an algorithm by starting
with a general outline of the procedure, often expressed in pseudocode, and then
gradually filling in the details.



stream. 
    In Java 8, an abstraction representing a stream of values that
can be processed.  A stream can be created from a Collection,
an array, or some other data source.  Java's stream API includes many predefined
operations that can be applied to streams.
The term "stream" also refers to I/O streams, which are used for input and output.



stroke. 
    A drawing operation that applies a color (or other type of paint) to pixels along
the boundary of a shape.



source code. 
    Text written in a high-level programming language, which must
be translated into a machine language such as Java bytecode before it can be executed by
a computer.



subclass. 
    A class that extends another class, directly or indirectly, and
therefore inherits its data and behaviors.  The first class is said to be a subclass
of the second.



subroutine. 
    A sequence of program instructions that have been grouped together
and given a name.  The name can then be used to "call" the subroutine.  Subroutines are
also called methods in the context of object-oriented programming.



subroutine call statement. 
    A statement in a program that calls a subroutine.
When a subroutine call statement is executed, the computer executes the code that is
inside the subroutine.



super. 
    A special variable, automatically defined in any instance method,
that refers to the object that contains the method, but considered as belonging to
the superclass of the class in which the method definition occurs.
super gives access to members of the superclass that are hidden by
members of the same name in the subclass.



syntax. 
    Grammar.  The syntax rules of a language determine what strings of symbols 
are legal—that is, grammatical—in that language.



TCP/IP. 
    Protocols that are used for network communication on the Internet.



this. 
    A special variable, automatically defined in any instance method,
that refers to the object that contains the method.



thread. 
    An abstraction representing a sequence of instructions to be
executed one after the other.  It is possible for a computer to execute several threads
in parallel.



thread pool. 
    A collection of "worker threads" that are available to perform tasks.
As tasks become available, they are assigned to threads in the pool.  A thread
pool is often used with a blocking queue that holds the tasks.



top-down design. 
    An approach to software design in which you start with the
problems, as a whole, subdivide it into smaller problems, divide those into even smaller
problems, and so on, until you get to problems that can be solved directly.



type. 
    Specifies some specific kind of data values.  For example, the type
int specifies integer data values that can be represented as 32-bit binary numbers.  In Java,
a type can be a primitive type, a class names, or an interface name.  Type names are used to
specify the types of variables, of dummy parameters in subroutines, and of return values of subroutines.



type cast. 
    Forces the conversion of a value of one type into another type.
For example, in (int)(6*Math.random()), the (int) is a type-cast
operation that converts the double value (6*Math.random()) into
an integer by discarding the fractional part of the real number.



Unicode. 
    A way of encoding characters as binary numbers.  The Unicode character
set includes characters used in many languages, not just English.  Unicode is the character
set that is used internally by Java.



URL. 
    Universal Resource Locator; an address for a resource on the Internet, such as a web page.



variable. 
    A named memory location (or sequence of locations)
that can be used to store data.  A variable is created in a program, and a name is assigned
to the variable, in a variable declaration
statement.  The name can then be used in that program to refer to the memory
location, or to the data stored in that memory location, depending on context.  
In Java, a variable has a type, which specifies what kind of data it can hold.



wrapper class. 
    A class such as Double or Integer
that makes it possible to "wrap" a primitive type value in an object belonging to the wrapper class.
This allows primitive type values to be used in contexts were objects are required, such as with
the Java Collection Framework.



XML. 
    eXtensible Markup Language.  A very common 
and well-supported standard syntax for creating text-based 
data-representation languages.






Answers for Quiz on Chapter 3


Question 1:


What is an algorithm?




Answer:


An algorithm is an unambiguous, step-by-step procedure for performing
a certain task, which is guaranteed to finish after a finite number of steps.
(An algorithm is not the same thing as a program, but it can be the idea
behind a program.)




Question 2:


Explain briefly what is
meant by "pseudocode" and how is it useful in the development of
algorithms.




Answer:


Pseudocode refers to informal
descriptions of algorithms, written in a language that imitates the structure
of a programming language, but without the strict syntax. Pseudocode can be
used in the process of developing an algorithm with stepwise refinement. You
can start with a brief pseudocode description of the algorithm and then add
detail to the description through a series of refinements until you have
something that can be translated easily into a program written in an actual
programming language.




Question 3:


What is a block
statement? How are block statements used in Java programs?




Answer:


A block statement is just a
sequence of Java statements enclosed between braces, { and }. The body of a
subroutine is a block statement. Block statements are often used in control
structures. A block statement is generally used to group together several
statements so that they can be used in a situation that only calls for a single
statement. For example, the syntax of a while loop calls for a single
statement: "while (condition) do statement". However, the statement can be a
block statement, giving the structure: "while (condition) { statement;
statement; ...}".




Question 4:


What is the main difference
between a while loop and a do..while loop?




Answer:


Both types of loop repeat a
block of statements until some condition becomes false. The main difference is
that in a while loop, the condition is tested at the beginning of the
loop, and in a do..while loop, the condition is tested at the end of
the loop. It is possible that the body of a while loop might not be
executed at all. However, the body of a do..while loop is executed at
least once since the condition for ending the loop is not tested until the body
of the loop has been executed.




Question 5:


What does it mean to
prime a loop?




Answer:


The condition at the beginning
of a while loop has to make sense even the first time it is tested, before the
body of the loop is executed. To prime the loop is to set things up before the
loop starts so that the test makes sense (that is, the variables that it
contains have reasonable values). For example, if the test in the loop is
"while the user's response is yes," then you will have to prime the loop by
getting a response from the user (or making one up) before the loop.




Question 6:


Explain what is meant by an
animation and how a computer displays an animation.




Answer:


An animation consists of a
series of "frames." Each frame is a still image, but there are slight
differences from one frame to the next. When the images are displayed rapidly
one frame after another, the eye perceives motion. A computer displays an
animation by showing one image on the screen, then replacing it with the next
image, then the next, and so on.




Question 7:


Write a for loop
that will print out all the multiples of 3 from 3 to 36, that is: 3 6 9 12 15
18 21 24 27 30 33 36.




Answer:


Here are two possible answers.
Assume that N has been declared to be a variable of type
int:

        for ( N = 3;  N <= 36;  N = N + 3 ) {
            System.out.println( N );
        }
  
or
        for ( N = 3;  N <= 36;  N++ ) {
            if ( N % 3 == 0 )
                System.out.println( N );
        }




Question 8:


Fill in the following
main() routine so that it will ask the user to enter an integer, read
the user's response, and tell the user whether the number entered is even or
odd. (You can use TextIO.getInt() to read the integer. Recall that an
integer n is even if n % 2 == 0.)

public static void main(String[] args) {
 
         // Fill in the body of this subroutine!
 
}




Answer:


The problem already gives an
outline of the program. The last step, telling the user whether the number is
even or odd, requires an if statement to decide between the two
possibilities.

import textio.TextIO;

public static void main (String[] args) {

   int n;  // the number read from the user

   TextIO.put("Type an integer: ");  // ask the use to enter an integer
 
   n = TextIO.getInt();   // read the user's response
 
   if (n % 2 == 0)        // tell the user whether the number is even or odd
      System.out.println("That's an even number.");
   else
      System.out.println("That's an odd number.");
}




Question 9:


Write a code segment that will print out two different random integers
selected from the range 1 to 10.  All possible outputs should have the same probability.
Hint:  You can easily select two random numbers, but you have to account for the
fact that the two numbers that you pick might be the same.




Answer:


The code for selecting two random integers has to be wrapped in a loop that
will end only when the two selected numbers are different.  This can be done easily with
a do..while loop.  A while loop can also be used, but it
must be "primed" in some way.  Note that by using a loop to choose the numbers, we can
be absolutely sure that after the loop ends, the two numbers are different.
Here are three possible solutions:

(1)     int x,y; // Two random integers.
        do {
            x = (int)(10*Math.random() + 1);
            y = (int)(10*Math.random() + 1);
        } while (x == y);  // continue if x and y are the same number.
        System.out.println(x + " " + y);
        
(2)     int x,y;  // Two random integers.
        x = y = 0;  // Give them junk value to "prime" the loop to make sure it runs.
        while (x == y) {
            x = (int)(10*Math.random() + 1);
            y = (int)(10*Math.random() + 1);
        }
        System.out.println(x + " " + y);
        
(3)     int x,y; // Two random integers.
        x = (int)(10*Math.random() + 1);  // Pick x, and keep its value.
        do { // The loop finds a y with a different value from x.
            y = (int)(10*Math.random() + 1);
        } while (x == y);
        System.out.println(x + " " + y);




Question 10:


Suppose that s1 and s2 are variables of type
String, whose values are expected to be string representations
of values of type int.  Write a code segment that will compute and print
the integer sum of those values, or will print an error message if the values cannot
successfully be converted into integers.  (Use a try..catch statement.)




Answer:


The function Integer.parseInt can be used to convert the strings
into integers.  This function will throw an exception of type NumberFormatException
if the conversion fails.  A try..catch statement can catch this exception and
print an error message.  So, the code segment can be written:

try {
   int n1, n2;  // The values of s1 and s2 as integers.
   int sum;     // The sum of n1 and n2.
   n1 = Integer.parseInt(s1);
   n2 = Integer.parseInt(s2);
   sum = n1 + n2;   // (If an exception occurs, we don't get to this point.)
   System.out.println("The sum is " + sum);
}
catch ( NumberFormatException e ) {
    System.out.println("Error!  Unable to convert strings to integers.");  
}




Question 11:


Show the exact output that
would be produced by the following main() routine:

public static void main(String[] args) {
    int N;
    N = 1;
    while (N <= 32) {
       N = 2 * N;
       System.out.println(N);   
    }
}




Answer:


The exact output printed by this
program is:

2
4
8
16
32
64

(The hard part to get right is the 64 at the end. The value of N doubles
each time through the loop. For the final execution of the loop, N starts out
with the value 32, but N is doubled to 64 before it is printed.)




Question 12:


Show the exact output
produced by the following main() routine:

public static void main(String[] args) {
   int x,y;
   x = 5;
   y = 1;
   while (x > 0) {
      x = x - 1;
      y = y * x;
      System.out.println(y);
   }
}




Answer:


The way to answer this question
is to trace exactly what the program does, step-by-step. The output is shown
below on the right. On the left is a table that shows the values of the
variables x and y as the program is being executed.

 value of x   |   value of y                 OUTPUT
--------------|--------------             -------------
      5       |     1  [ before loop]
      4       |     4  [ = 1*4 ]               4
      3       |    12  [ = 4*3 ]               12
      2       |    24  [ = 12*2 ]              24
      1       |    24  [ = 24*1 ]              24
      0       |     0  [ = 24*0 ]              0




Question 13:


What output is produced by
the following program segment? Why? (Recall that name.charAt(i)
is the i-th character in the string, name.)

String name;
int i;
boolean startWord;

name = "Richard M. Nixon";
startWord = true;
for (i = 0; i < name.length(); i++) {
   if (startWord)
      System.out.println(name.charAt(i));
   if (name.charAt(i) == ' ')
      startWord = true;
   else
      startWord = false;
}




Answer:


This is a tough one! The output
from this program consists of the three lines:

    R
    M
    N

As the for loop in this code segment is executed,
name.charAt(i) represents each of the characters in the string
"Richard M. Nixon" in succession. The statement
System.out.println(name.charAt(i)) outputs the single character
name.charAt(i) on a line by itself. However, this output statement
occurs inside an if statement, so only some of the characters are
output. The character is output if startWord is true. This variable is
initialized to true, so when i is 0, startWord is true, and the first
character in the string, 'R', is output. Then, since 'R' does not equal ' ',
startWorld becomes false, so no more characters are output until
startWord becomes true again. This happens when
name.charAt(i) is a space, that is, just before the 'M' is
processed and again just before the 'N' is processed. In fact whatever the
value of name, this for statement would print the first
character in name and every character in name that follows a
space. (It is almost true that this for statement prints the first
character of each word in the string, but something goes wrong when the first
character is a space or when there are
two spaces in a row. What happens in these cases?)





Question 14:


Suppose that numbers is an array of type int[].
Write a code segment that will count and output the number of times that the
number 42 occurs in the array.




Answer:


Use a for loop to go through the array and test each array element.
If the value is 42, add 1 to a counter:

int count42;  // The number of 42s in the array
count42 = 0;
int i;  // loop control variable
for ( i = 0; i < numbers.length; i++ ) {
    if ( numbers[i] == 42 ) {
        count42++;
    }
}
System.out.println("There were " + count42 + " 42s in the array.")




Question 15:


Define the range of an array of numbers to be
the maximum value in the array minus the minimum value.  Suppose that
raceTimes is an array of type double[].
Write a code segment that will find and print the range of raceTimes.




Answer:


We need both the minimum and the maximum value in the array.  We can compute both
using one for loop.

double max;    // maximum value from the array
double min;    // minimum value from the array
double range;  // the range of the array, max - min
int i;         // for-loop variable
max = min = raceTimes[0];  // start with both equal to the first element
for ( i = 1; i < raceTimes.length; i++ ) {
    if ( raceTimes[i] > max )
        max = raceTimes[i];
    if ( raceTimes[i] < min )
        min = raceTimes[i];
}
range = max - min;
System.out.println("The range is " + range);







Answers for Quiz on Chapter 4


Question 1:


A "black box" has an
interface and an implementation. Explain what is meant by the terms
interface and implementation.




Answer:


The interface of a black box is
its connection with the rest of the world, such as the name and parameters of a
subroutine or the dial for setting the temperature on a thermostat. The
implementation refers to internal workings of the black box. To use the black
box, you need to understand its interface, but you don't need to know anything
about the implementation.




Question 2:


A subroutine is said to have
a contract. What is meant by the contract of a subroutine? When you want
to use a subroutine, why is it important to understand its contract? The
contract has both "syntactic" and "semantic" aspects. What is the syntactic
aspect? What is the semantic aspect?




Answer:


The contract of a subroutine
says what must be done to call the subroutine correctly and what it will do
when it is called. It is, in short, everything a programmer needs to know about
the subroutine in order to use it correctly. (It does not include the
"insides," or implementation, of the subroutine.)

The syntactic component of a subroutine's contract includes the name of the
subroutine, the number of parameters, and the type of each parameter. This is
the information needed to write a subroutine call statement that can be
successfully compiled. The semantic component of the contract specifies the
meaning of the subroutine, that is, the task that the subroutine performs. It
might also specify limitations on what parameter values the subroutine can
process correctly. The semantic component is not part of the program. It is
generally expressed in comments.




Question 3:


Briefly explain how
subroutines can be useful in the top-down design of programs.




Answer:


Top-down refers to starting from
the overall problem to be solved, and breaking it up into smaller problems that
can be solved separately. When designing a program to solve the problem, you
can simply make up a subroutine to solve each of the smaller problems. Then you
can separately design and test each subroutine.




Question 4:


Discuss the concept of
parameters. What are parameters for? What is the difference between
formal parameters and actual parameters?




Answer:


Parameters are used for
communication between a subroutine and the part of the program that calls the
subroutine. If a subroutine is thought of as a black box, then parameters are
part of the interface to that black box. Formal parameters are found in the
subroutine definition. Actual parameters are found in subroutine call
statements. When the subroutine is called, the values of the actual parameters
are assigned to the formal parameters before the body of the subroutine is
executed.




Question 5:


Give two different reasons
for using named constants (declared with the final modifier).




Answer:


A constant has a meaningful
name, which makes the program easier to read. It's easier to understand what a
name like INTEREST_RATE is for than it is to figure out how a literal
number like 0.07 is being used.

A second reason for using named constants is that it's easy to modify the
value of the constant if that becomes necessary. If a literal value is used
throughout the program, the programmer has to track down each occurrence of the
value and change it. When a constant is used correctly, it is only necessary to
change the value assigned to the constant at one point in the program.

A third reason is that using the final modifier protects the value
of a variable from being changed. This is especially important for member
variables that are accessible from outside the class where they are
declared.




Question 6:


What is an API? Give an example.




Answer:


An API is an Applications
Programming Interface. It is the interface to a "toolbox" of subroutines that
someone has written. It tells you what routines are available, how to call
them, and what they do, but it does not tell you how the subroutines are
implemented. An example is the standard Java API which describes the interfaces
of all the subroutines in all the classes that are available in such packages
as java.lang and java.util.




Question 7:


What might the following expression mean in a program?

(a,b) -> a*a + b*b + 1




Answer:


The operator "->" means that this is a "lambda expression,"
that is, an anonymous function.  There must be a functional interface that specifies
the type of this lambda expression.  It might, for example, be a functional interface
that defines a function double f(double x, double y).
In any case, the function must take two numeric parameters (since the expression a*a+b*b+1
would only be defined when a and b are numeric), and it must return a
numeric value.  (Note that this expression can only be used in a context where the
compiler can deduce which functional interface applies.)





Question 8:


Suppose that SupplyInt is a functional interface that
defines the method public int get().   Write a lambda expression of
type SupplyInt that gets a random integer in the range
1 to 6 inclusive.  Write another lambda expression of type
SupplyInt that gets an int by asking the user
to enter an integer and then returning the user's response. 




Answer:


A lambda expression of type SupplyInt has no parameters
and must compute and return a value of type int.  For the first
expression, the int value can be given as (int)(1+Math.random()*6), so the
lambda expression takes the form

() ->  (int)(1+Math.random()*6)

For the second lambda expression, at least two statements are needed, one to ask the
user for an integer and one to read the response.  The two statements must
be enclosed between braces, and a return is needed to
return the integer:

() -> {
    System.out.print( "Please enter an integer: " );
    return TextIO.getlnInt();  // Read an integer and return it.
}

(This assumes that TextIO is available to the program.)




Question 9:


Write a subroutine named
"stars" that will output a line of stars to standard output. (A star is the
character "*".) The number of stars should be given as a parameter to the
subroutine. Use a for loop. For example, the command "stars(20)" would
output

********************




Answer:


The subroutine could be written as follows:

static void stars(int numberOfStars) {
     // output a line containing the specified number of stars
   for (int i = 0; i < numberOfStars; i++) {
       System.out.print('*');
   }
   System.out.println();  // output carriage return after the *'s
}




Question 10:


Write a main()
routine that uses the subroutine that you wrote for Question 7 to output 10
lines of stars with 1 star in the first line, 2 stars in the second line, and
so on, as shown below.

*
**
***
****
*****
******
*******
********
*********
**********




Answer:


The main() routine can
use a for loop that calls the stars() subroutine ten times,
once to produce each line of output. (An occasional beginner's mistake in this
problem is to rewrite the body of the subroutine inside the main()
routine, instead of just calling it by name.) Here is the main routine—which
would, of course, have to be put together with the subroutine in a class in
order to be used.

public static void main(String[] args) {
    int line;  // Line number, and also the number of stars on that line.
    for ( line = 1;  line <= 10;  line++ ) {
        stars( line );
    }
}




Question 11:


Write a function named
countChars that has a String and a char as
parameters. The function should count the number of times the character occurs
in the string, and it should return the result as the value of the
function.




Answer:


The returned value will be of
type int. The function simply uses a for loop to look at each
character in the string. When the character in the string matches the parameter
value, it is counted.

static int countChars( String str, char searchChar ) {
      // Count the number of times searchChar occurs in
      // str and return the result.
    int i;     // A position in the string, str.
    char ch;   // A character in the string.
    int count; // Number of times searchChar has been found in str.
    count = 0;
    for ( i = 0;  i < str.length();  i++ ) {
        ch = str.charAt(i);  // Get the i-th character in str.
        if ( ch == searchChar )
           count++;
    }
    return count;
}




Question 12:


Write a subroutine with
three parameters of type int. The subroutine should determine which of
its parameters is smallest. The value of the smallest parameter should be
returned as the value of the subroutine.




Answer:


I'll call the subroutine
smallest and the three parameters x, y, and
z. The value returned by the subroutine has to be either x or
y or z. The answer will be x if x is less
than or equal to both y and z. The correct syntax for
checking this is "if (x <= y && x <= z)". Similarly for
y. The only other remaining possibility is z, so there is no
necessity for making any further test before returning z.  (In fact, doing so would
be an error in Java, since with no "else" clause in the if statement, 
the compiler cannot determine that the function definitely returns a value in all possible
cases.)

static int smallest(int x, int y, int z) {
   if (x <= y && x <= z) {
      return x;
   }
   else if (y <= x && y <= z) {
      return y;
   }
   else
      return z;
}

Note: Since a return statement causes the computer to terminate the
execution of a subroutine anyway, this could also be written as follows,
without the elses:

static int smallest(int x, int y, int z) {
   if (x <= y && x <= z) {
      return x;
   }
   if (y <= x && y <= z) {
      return y;
   }
   return z;
}




Question 13:


Write a function that finds the average of the first N elements of
an array of type double.  The array and N are parameters to the
subroutine.





Answer:


Note that the array must be passed as a parameter of type double[],
and that the value returned by the function will be a double.
For the value of N to make sense, it should be in the range
1 up to the length of the array.  My answer throws an IllegalArgumentException
if N is not in this range:

static double average( double[] numbers, int N ) {
    if ( N < 1 ) {
        throw new IllegalArgumentException("Can't find an average of " +
                       N + " numbers.");
    }
    if ( N > numbers.length ) {
        throw new IllegalArgumentsExcpetion( N + 
                      " is more than the length of the array." );
    }
    double sum = 0;  // the sum of the N numbers
    for ( int i = 0; i < N; i++ ) {
        sum = sum + numbers[i];  // add the i-th number to the sum
    }
    return sum/N;  // Return the average as the value of the function.
}




Question 14:


Explain the purpose of the following function, and explain how it works:

static int[] stripZeros( int[] list ) {
    int count = 0;
    for (int i = 0; i < list.length; i++) {
        if ( list[i] != 0 )
            count++;
    }
    int[] newList;
    newList = new int[count];
    int j = 0;
    for (int i = 0; i < list.length; i++) {
        if ( list[i] != 0 ) {
            newList[j] = list[i];
            j++;
        }
    }
    return newList;
}




Answer:


This function makes a copy of its parameter, except that it leaves out all the
elements of list that are equal to zero.  It builds a new array that contains
all the non-zero elements of list, and it returns that array as the value
of the function. 
(Note that this is an example of using an array type as the return type of a function.)

The function creates a new array to be the return value.  But to do that, it must
know how long to make the array.  The first five lines of the function definition
count the number of non-zero elements in list.  This is how many spaces
we need in the new array, so count is used as the length when the new
array is created.  The remainder of the function goes through the original list
and copies elements into newList.  An element is copied only if it is non-zero.
We have to keep track of how many spaces in newList have been filled so far.
That's what j is for.  This is the "partially filled array" pattern
from Subsection 3.8.4.








Answers for Quiz on Chapter 8


Question 1:


Why do programming languages
require that variables be declared before they are used? What does this have to
do with correctness and robustness?




Answer:


It's a little inconvenient to
have to declare every variable before it is used, but it's much safer. If the
compiler would accept undeclared variables, then it would also accept
misspelled names and treat them as valid variables. This can easily lead to
incorrect programs. When variables must be declared, the unintentional creation
of a variable is simply impossible, and a whole class of possible bugs is
avoided.




Question 2:


What is a precondition? Give an example.




Answer:


A precondition is a condition
that has to hold at a given point in the execution of a program, if the execution
of the program is to continue correctly. For example, the statement 
"x = A[i];" has two preconditions: that A is not null and
that 0 <= i < A.length. If either of these
preconditions is violated, then the execution of the statement will generate an
error.

Also, a precondition of a subroutine is a condition that has to be true when
the subroutine is called in order for the subroutine to work correctly.




Question 3:


Explain how preconditions
can be used as an aid in writing correct programs.




Answer:


Suppose that a programmer
recognizes a precondition at some point in a program. This is a signal to the
programmer that an error might occur if the precondition is not met. In order to
have a correct and robust program, the programmer must deal with the possible
error. There are several approaches that the programmer can take. One approach
is to use an if statement to test whether the precondition is
satisfied. If not, the programmer can take some other action such as printing
an error message and terminating the program. Another approach is to use a
try statement to catch and respond to the error. This is really just a
cleaner way of accomplishing the same thing as the first approach. The best
approach, when it is possible, is to ensure that the precondition is satisfied
as a result of what has already been done in the program. For example, if the
precondition is that x >= 0, and the preceding statement
is "x = Math.abs(y);", then we know that the precondition is
satisfied, since the absolute value of any number is greater than or equal to
zero.




Question 4:


Find a useful loop invariant for the while loop in
the binary search algorithm (Subsection 7.5.1).




Answer:


The binarySearch() method searches for an integer
N in a sorted array of integers A[].  The
loop invariant is implicit in the discussion of the method in
Subsection 7.5.1: "If N is in the array,
then N  is in at one of the indices in the range
lowestPossibleLoc and highestPossibleLoc."

This statement is true before the loop is started, since at that
point, the range of indices from lowestPossibleLoc to 
highestPossibleLoc includes the entire array.  In the loop,
when A[mid] is compared to N, the fact that
A is sorted means that half of the range of possible
indices can be discarded.  After the value of lowestPossibleLoc or 
highestPossibleLoc is modified to take that into account,
the loop invariant remains true.

If at any point N is found, the loop ends and the
method returns the correct value.  If N is never found,
the loop will end when lowestPossibleLoc is larger
than highestPossibleLoc.  At that point, the truth
of the loop invariant implies that N is not in the
array.




Question 5:


Java has a predefined class
called Throwable. What does this class represent? Why does it
exist?




Answer:


The class Throwable
represents all possible objects that can be thrown by a throw
statement and caught by a catch clause in a try..catch
statement. That is, the thrown object must belong to the class
Throwable or to one of its (many) subclasses such as
Exception and RuntimeException. The object carries
information about an exception from the point where the exception occurs to the
point where it is caught and handled.




Question 6:


Write a method that
prints out a 3N+1 sequence starting from a given integer, N.
The starting value should be a parameter to the method. If the parameter is
less than or equal to zero, throw an IllegalArgumentException. If the
number in the sequence becomes too large to be represented as a value of type
int, throw an ArithmeticException.




Answer:


The problem of large values in a
3N+1 sequence was discussed in Section 8.1. In
that section, it is pointed out that the test "if (N > 2147483646/3)" 
can be used to test whether the value of N has
become too large. This test is used in the following method.


/** Print the 3N+1 sequence starting from N.  If N
 * is not greater than 0 or if the value of N exceeds
 * the maximum legal value for ints, than an
 * exception will be thrown.
 */
static void printThreeNSequence(int N) {
   if (N < 1) {
      throw new IllegalArgumentException(
                  "Starting value for 3N+1 sequence must be > 0.");
   }
   System.out.println("3N+1 sequence starting from " + N + " is: ");
   System.out.println(N);
   while (N > 1) {
      if (N % 2 == 0) {  // N is even.  Divide by 2.
          N = N / 2;
      }
      else {  // N is odd.  Multiply by 3 and add 1.
          if (N > 2147483646/3) {
             throw new ArithmeticException("Value has exceeded the largest int.");
          }
          N = 3 * N + 1;
      }
      System.out.println(N);
   }
}


(Note that it would be possible to declare that this routine can throw
exceptions by adding a "throws" clause to the heading:


static void printThreeNSequence(int N)
           throws IllegalArgumentException, ArithmeticException {


However, this is not required since IllegalArgumentExceptions and
ArithmeticExceptions are not checked exceptions.)




Question 7:


Rewrite the method from the previous question, using assert
statements instead of exceptions to check for errors.  What is the difference between
the two versions of the method when the program is run?




Answer:


We can replace the if statements that check for errors with
assert statements that give the same error messages:


/** Print the 3N+1 sequence starting from N.
  * Precondition:  N > 0 and the 3N+1 sequence for N does not contain
  * any numbers that are too big to be represented as 32-bit ints.
  */
static void printThreeNSequence(int N) {
   
   assert  N > 0 : "Starting value for 3N+1 sequence must be > 0.";

   System.out.println("3N+1 sequence starting from " + N + " is: ");
   
   System.out.println(N);
   while (N > 1) {
      if (N % 2 == 0) {  // N is even.  Divide by 2.
          N = N / 2;
      }
      else {  // N is odd.  Multiply by 3 and add 1.
          assert  N <= 2147483646/3 : "Value has exceeded the largest int.";
          N = 3 * N + 1;
      }
      System.out.println(N);
   }
   
}

   
The first version of the method will always check for errors when the program
is run.  The second version, on the other hand, does not actually do any error checking
when the program is run in the ordinary way.  In order for assert statements
to be executed, the program must be run with assertions enabled.  The assert
statements are really there only to do error-checking during debugging and testing.
(In this particular case, I would say that an exception should definitely be thrown when
N exceeds the maximum legal value, but that it's reasonable to use
an assert to check whether N > 0.)




Question 8:


Some classes of exceptions are checked exceptions that
require mandatory exception handling. Explain what this means.




Answer:


Subclasses of the class
Exception which are not subclasses of RuntimeException
are checked exceptions. This has two consequences: First, if a
method can throw such an exception, then it must declare this fact by
adding a throws clause to the method heading. Second, if a routine
includes any code that can generate such an exception, then the routine must
deal with the exception. It can do this by including the code in a try
statement that has a catch clause to handle the exception. Or it can
add a throws clause to the method definition to declare that calling 
the method might throw the exception.




Question 9:


Consider a subroutine processData() that has the header


static void processData() throws IOException


Write a try..catch statement that calls this subroutine and prints
an error message if an IOException occurs.




Answer:


try {
   processData();
}
catch (IOException e) {
   System.out.println("An IOException occurred while processing the data.");
}




Question 10:


Why should a subroutine
throw an exception when it encounters an error? Why not just terminate the
program?




Answer:


Terminating the program is too
drastic, and this tactic certainly doesn't lead to robust programs! It's likely
that the subroutine doesn't know what to do with the error, but that doesn't
mean that it should abort the whole program. When the subroutine throws an
exception, the subroutine is terminated, but the program that called the
subroutine still has a chance to catch the exception and handle it. In effect,
the subroutine is saying "Alright, I'm giving up. Let's hope someone else can
deal with the problem."




Question 11:


Suppose that you have a choice of two algorithms that perform
the same task.  One has average-case run time that is Θ(n2) while the run time
of the second algorithm has an average-case run time that is Θ(n*log(n)).  Suppose that
you need to process an input of size n = 100.  Which algorithm would
you choose?  Can you be certain that you are choosing the fastest algorithm for the
input that you intend to process?





Answer:


In the absence of other information, the second algorithm, with run time
Θ(n*log(n)), is the better choice, since n*log(n) is much smaller than n2,
for most values of n.
However, it's not completely certain that the second algorithm is the better choice in
a particular case.  First of all, although the n*log(n) algorithm is certainly better
than the n2 algorithm for large enough values of n, that is not necessarily
true for n = 100.  Second, there is the issue of "average-case" run time.
Even if the n*log(n) algorithm is better for most inputs of size 100, it might not 
be better for all such inputs.





Question 12:


Analyze the run time of the following algorithm.  That is, find a function
f(n) such that the run time of the algorithm is O(f(n)) or, better, Θ(f(n)).
Assume that A is an array of integers, and use the length of the array
as the input size, n.



int total = 0;
for (int i = 0; i < A.length; i++) {
   if (A[i] > 0)
      total = total + A[i];
}





Answer:


The run time of this algorithm is Θ(n).  There are several things in the
code that are evaluated n times:  the test "i < A.length", the increment
"i++", and the test in the if statement.  The initialization is done once, and
nothing is executed more than n times.  It follows that both the worst-case and
the average case run times are Θ(n).







Answers for Quiz on Chapter 9


Question 1:


Explain what is meant by a recursive subroutine.




Answer:


A recursive subroutine is simply
one that calls itself either directly or through a chain of calls involving
other subroutines.




Question 2:


Consider the following subroutine:

static void printStuff(int level) {
    if (level == 0) {
       System.out.print("*");
    }
    else {
       System.out.print("[");
       printStuff(level - 1);
       System.out.print(",");
       printStuff(level - 1);
       System.out.print("]");
    }
}

Show the output that would be produced by the subroutine calls
printStuff(0), printStuff(1), printStuff(2), and
printStuff(3).




Answer:


The outputs are:

printStuff(0) outputs:   *
printStuff(1) outputs:   [*,*]
printStuff(2) outputs:   [[*,*],[*,*]]
printStuff(3) outputs:   [[[*,*],[*,*]],[[*,*],[*,*]]]

(Explanation: For printStuff(0), the value of the parameter is 0,
so the first clause of the if is executed, and the output is just *.
For printStuff(1), the else clause is executed. This else clause
contains two recursive calls to printStuff(level-1). Since
level is 1, level-1 is 0, so each call to printStuff(0)
outputs a *. The overall output from printStuff(1) is [*,*]. In a
similar way, printStuff(2) includes two recursive calls to
printStuff(1). Each call to printStuff(1) outputs [*,*]. And
printStuff(2) just takes two copies of this and puts them between [
and ] separated by a comma: [[*,*],[*,*]]. Finally, the output from
printStuff(3) outputs two copies of [[*,*],[*,*]] separated by a comma
and enclosed between brackets. Once you recognize the pattern, you can do
printStuff(N) for any N without trying to follow the
execution of the subroutine in detail.)




Question 3:


Suppose that a linked list
is formed from objects that belong to the class

class ListNode {
   int item;       // An item in the list.
   ListNode next;  // Pointer to next item in the list.
}

Write a subroutine that will count the number of zeros that occur in a given
linked list of ints. The subroutine should have a parameter of type ListNode
and should return a value of type int.




Answer:


I'll give both a non-recursive
solution and a recursive solution. For a linked list, the recursion is not
really necessary, but it does nicely reflect the recursive definition of
ListNode



static int countZeros( ListNode head ) {
   int count;        // The number of zeros in the list.
   ListNode runner;  // For running along the list.
   count = 0;
   runner = head;    // Start at the beginning of the list.
   while (runner != null) {
      if ( runner.item == 0)
         count++;  // Count the zero found in the current node.
      runner = runner.next;  // Advance to the next node.
   }
   return count;
}

static int countZerosRecursively( ListNode head ) {
   if ( head == null) {
          // An empty list does not contain any zeros.
       return 0;
   }
   else {
       int count = countZerosRecursively( head.next );  // Count zeros in tail.
       if ( head.item == 0 )
           count++;  // Add 1 to account for the zero in the head node.
       return count;
   }
}




Question 4:


Let ListNode be defined as in the previous
problem.  Suppose that head is a variable of type
ListNode that points to the first node in a
linked list.  Write a code segment that will add the number 42 in a new
node at the end of the list.  Assume that the list is not empty.
(There is no "tail pointer" for the list.)




Answer:


ListNode tail;  // Since no tail pointer is given, we need to make one
tail = head;  // We are assuming that this is not null.
while (tail.next != null) {
    tail = tail.next;
}
// At this point, tail points to the last node in the list
ListNode node42;
node42 = new ListNode();  // create a new node
node42.item = 42;    // the item in the new node is 42
tail.next = node42;  // attach the new node to the list


(Explanation: To add a list node at the end of the list, we need a pointer to
the last node in the list.  Since no such pointer is given, we have to
make one.  Start with a pointer that is equal to head, and
move it down the list until it points to the last node in the list.
We know that  tail is pointing to the last node in the list if
tail.next is null.  Use a while
loop to move tail down the list until that is true.
Then we can make a new node and attach it to the list by setting
tail.next to point to it.  The value of node42.next
is null, and that null marks the new end of the list.)




Question 5:


List nodes can be used to build linked data structures that do not have
the form of linked lists.  Consider the list node class shown on the left and
the code shown on the right:


class ListNode {                        ListNode one = new ListNode(10);
    int item;                           ListNode two = new ListNode(20);
    ListNode next;                      ListNode three = new ListNode(30);
    Listnode(int i) {                   ListNode four = new ListNode(40);
        item = i;                       one.next = two;
        next = null;                    two.next = three;
    }                                   three.next = four;
}                                       four.next = two;


Draw the data structure that is constructed by the code.  What happens if
you try to print the items in the data structure using the usual code for
traversing a linked list:

ListNode runner = one;
while (runner != null) {
    System.out.println(runner.item);
    runner = runner.next();
}




Answer:


Node one links to node two, node two links to node three, and node three
links to node four.  If four.next were null, the
result would be a normal, four-node linked list.  However, node four links back
to node two:


[image: a linked data structure with a loop]


When the while loop is executed, runner will never become null.  After the
values in the four nodes (10, 20, 30, 40) are printed, the assignment runner = runner.next
will set the runner to point to node two again, so the next number printed is 20.
The program goes into an infinite loop in which the numbers 20, 30, 40 are printed
over and over forever.




Question 6:


What are the three operations on a stack?





Answer:


The three stack operations are
push, pop, and isEmpty. The definitions of these operations are:
push(item) adds the specified item to the top of the stack;
pop() removes the top item of the stack and returns it; and
isEmpty() is a boolean-valued function that returns true if there are
no items on the stack.




Question 7:


What is the basic difference
between a stack and a queue?




Answer:


In a stack, items are added to
the stack and removed from the stack on the same end (called the "top" of the
stack). In a queue, items are added at one end (the "back") and removed at the
other end (the "front"). Because of this difference, a queue is a FIFO
structure (items are removed in the same order in which they were added), and a
stack is a LIFO structure (the item that is popped from a stack is the one that
was added most recently).




Question 8:


What is an activation
record? What role does a stack of activation records play in a
computer?




Answer:


When a subroutine is called, an
activation record is created to hold the information that is needed for the
execution of the subroutine, such as the values of the parameters and local
variables. This activation record is stored on a stack of activation records. A
stack is used since one subroutine can call another, which can then call a
third, and so on. Because of this, many activation records can be in use at the
same time. The data structure is a stack because an activation record has to
continue to exist while all the subroutines that are called by the subroutine
are executed. While they are being executed, the stack of activation records
can grow and shrink as subroutines are called and return.




Question 9:


Suppose that a binary tree of integers
is formed from objects belonging to the class

class TreeNode {
   int item;       // One item in the tree.
   TreeNode left;  // Pointer to the left subtree.
   TreeNode right; // Pointer to the right subtree.
}

Write a recursive subroutine that will find the sum of all the nodes in the
tree. Your subroutine should have a parameter of type TreeNode, and it
should return a value of type int.




Answer:


static int treeSum( TreeNode root ) {
       // Find the sum of all the nodes in the tree to which root points.
    if ( root == null ) {
          // The sum of the nodes in an empty tree is zero.
       return 0;
    }
    else {
          // Add the item in the root to the sum of the
          // items in the left subtree and the sum of the
          // items in the right subtree.
       int total = root.item;
       total += treeSum( root.left );
       total += treeSum( root.right );
       return total;
    }
 }




Question 10:


Let TreeNode be the same class as in the previous
problem.  Write a recursive subroutine that makes a copy of a binary tree.
The subroutine has a parameter that points to the root of the tree that is
to be copied.  The return type is TreeNode,
and the return value should be a pointer to the root of the copy.
The copy should consist of newly created nodes, and it should have exactly
the same structure as the original tree.





Answer:


static TreeNode copyTree( TreeNode root ){
        // Make a copy of the tree that root points to.
    if (root == null) {
        return null;  // The copy of an empty tree is an empty tree
    }
    else {
            // The tree is not empty.  We need to make a new node
            // to be the root of the copy, and then we need to copy
            // the left and right subtrees.
         TreeNode rootOfCopy = new TreeNode();
         rootOfCopy.item = root.item;
         rootOfCopy.left = copyTree( root.left );
         rootOfCopy.right = copyTree( root.right );
         return rootOfCopy;
    }
}

(The essential point here is that the subtrees of the original tree
can be copied using recursive calls to copyTree().  For example,
copyTree(root.left) will make a complete copy of the left
subtree of the original tree, and that can become the left subtree of
the new root node.  This works even if root.left is null.)




Question 11:


What is a postorder traversal of a binary tree?




Answer:


In a traversal of a binary tree,
all the nodes are processed in some way. (For example, they might be printed.)
In a postorder traversal, the order of processing is defined by the rule: For
each node, the nodes in the left subtree of that node are processed first. Then
the nodes in the right subtree are processed. Finally, the node itself is
processed.  This rule is applied at all levels of the tree.




Question 12:


Suppose that a binary sort tree of integers is initially empty and
that the following integers are inserted into the tree in the order shown:

5   7   1   3   4   2   6

Draw the binary sort tree that results.  Then list the integers in the
order that is produced by a post-order traversal of the tree.




Answer:


This picture shows the tree that results after each integer
has been inserted, using the treeInsert() method from
Subsection 9.4.2:


[image: inserting integers into a binary sort tree]


In a post-order traversal, the nodes in the left subtree are processed first, then
the nodes in the right subtree, then the root node.  For this tree, the nodes are processed
in the order:

2   4   3   1   6   7   5

(Of course, an in-order traversal would process the nodes in sorted order: 1, 2, 3, 4, 5, 6, 7.)




Question 13:


Suppose that a <multilist> is defined by the BNF rule

<multilist>  ::=  <word>  |  "(" [ <multilist> ]... ")"

where a <word> can be any sequence of letters. Give five
different <multilist>'s that can be generated by this rule.
(This rule, by the way, is almost the entire syntax of the programming language
LISP! LISP is known for its simple syntax and its elegant and
powerful semantics.)




Answer:


Here are five possibilities (out
of an infinite number of possibilities), with some explanation:

fred — A <multilist> can just be a word, such as "fred".
          
( )  — The [ ]... around <multilist> means that there can be
          any number of nested <multilist>'s, including zero.  If
          there are zero, then all that's left is the empty
          parentheses.
          
( fred mary chicago )—A <multilist> consisting of three
                         <multilist>'s—"fred", "mary", and
                         "chicago"—inside parentheses
                         
( ( able ) ( baker charlie ) )—A <multilist> containing two
                                  <multilist>'s.
                                  
( ( a ( b ) ) ( c ( d e ) g ) ) —Even more nesting.




Question 14:


Explain what is meant by parsing a computer program.




Answer:


To parse a computer program
means to determine its syntactic structure, that is, to figure out how it can
be constructed using the rules of a grammar (such as a BNF grammar).







Solution for Programming Exercise 3.1



Exercise 3.1:

How many times do you have
to roll a pair of dice before they come up snake eyes? You could do the
experiment by rolling the dice by hand. Write a computer program that simulates
the experiment. The program should report the number of rolls that it makes
before the dice come up snake eyes. (Note: "Snake eyes" means that both dice
show a value of 1.) Exercise 2.2 explained how to simulate rolling a pair of dice.





Discussion





Since we want to roll the dice at least once, a do..while is
appropriate. A pseudocode algorithm for the program is


Let countRolls = 0
do:
    roll the dice
    count this roll by adding 1 to countRolls
while the roll is not snake eyes
Output the value of countRolls


As in Exercise 2.2, we can simulate
rolling one die by computing (int)(Math.random()*6) + 1.


We want to stop rolling the dice when the roll is a double
1. We want to continue rolling the dice while the roll is
not a double 1. If die1 and die2 are
variables representing the values of the dice, the condition for continuing to
roll can be expressed as


while ( ! (die1 == 1 && die2 == 1) )


The exclamation point means "not", so the condition says that it is not the
case that (both die1 is 1 and die2 is 1). That is, it is not
the case that the dice came up snake eyes. Another way to express the same
condition is that at least one of the dice is not 1, that is, that either
die1 is not 1 or die2 is not 1. In Java
code, this is written:


while ( die1 != 1  ||  die2 != 1 )


This is the test that I use in my program. Students often get the
&& and || operators mixed up, especially when
negation is involved. (In this case, we could have avoided the problem by
testing while (die1+die2 != 2).)


Filling in some details gives an algorithm that can be easily converted into
a program, which is shown below:


Let countRolls = 0
do:
    die1 = (int)(Math.random()*6) + 1
    die2 = (int)(Math.random()*6) + 1
    count this roll by adding 1 to countRolls
while die1 is not 1 or die2 is not 1
Output the value of countRolls


You could of course write the program using a regular while loop
instead of do..while.  But if you move the test to the start of the
loop, you have to make sure that the variables are given values before you try to
test those values.  You need to "prime" the loop that exist only to ensure that it runs the
first time.  The pseudocode then becomes

Let countRolls = 0
Let die1 = 0 // Prime the loop with any value except 1
Let die2 = 0
while die1 is not 1 or die2 is not 1:
    die1 = (int)(Math.random()*6) + 1
    die2 = (int)(Math.random()*6) + 1
    count this roll by adding 1 to countRolls
Output the value of countRolls

Another option would be to use a "while(true)" loop.  In that case, the test that
is needed is the condition for stopping the loop, which is often easier to come up with
than the test for continuing the loop, and no priming is necessary:

Let countRolls = 0
while true:
    die1 = (int)(Math.random()*6) + 1
    die2 = (int)(Math.random()*6) + 1
    count this roll by adding 1 to countRolls
    if die1 is 1 and die2 is 1
        break
Output the value of countRolls






The Solution





/**  
 * This program simulates rolling a pair of dice until they
 * come up snake eyes.  It reports how many rolls were needed.
 */

public class SnakeEyes {
  
   public static void main(String[] args) {
   
       int die1, die2;   // The values rolled on the two dice.
       
       int countRolls;   // Used to count the number of rolls.
       
       countRolls = 0;
       
       do {
          die1 = (int)(Math.random()*6) + 1;   // roll the dice
          die2 = (int)(Math.random()*6) + 1;
          countRolls++;                        // and count this roll
       } while ( die1 != 1 || die2 != 1 );
       
       System.out.println("It took " + countRolls + " rolls to get snake eyes.");
   
   }  // end main()

}  // end class





Solution for Programming Exercise 3.2



Exercise 3.2:

Which integer between 1
and 10000 has the largest number of divisors, and how many divisors does it
have? Write a program to find the answers and print out the results. It is
possible that several integers in this range have the same, maximum number of
divisors. Your program only has to print out one of them.  An example in
Subsection 3.4.2 discussed divisors. The source code for
that example is CountDivisors.java.


You might need some hints about how to find a maximum value. The basic idea
is to go through all the integers, keeping track of the largest number of
divisors that you've seen so far. Also, keep track of the integer that
had that number of divisors.





Discussion





Let's use a variable named maxDivisors to keep track of the largest
number of divisors we have seen so far and use numWithMax to store the
number that had that many divisors. We have to compute the number of divisors
of each integer from 1 to 10000. Whenever we find a larger number of divisors
than maxDivisors, we have to make note of that fact by changing the
values of maxDivisors and numWithMax. At the end of the
process, maxDivisors will be the absolute maximum number of divisors
and numWithMax will be a number that had that many divisors. These are
the values we want to print out. We can express this with a pseudocode
algorithm


for each integer N from 1 to 10000:
   Count the number of divisors of N
   If that number is greater than maxDivisors:
       Let maxDivisors = the number of divisors of N
       Let numWithMax = N
Output maxDivisors and numWithMax


However, there is a problem here: The very first time maxDivisors
is used in the test "If that number is greater than maxDivisors," the variable
maxDivisors hasn't yet been assigned a value. The computer will report
this as an error. This can be fixed by assigning a value to
maxDivisors before the beginning of the for loop. One way to
do this is to handle N=1 as a special case before the loop and then to
let N go from 2 to 10000 in the for loop. We know that N=1
has just 1 divisor:


Let maxDivisors = 1  // number of divisors of 1
Let numWithMax = 1
for each integer N from 2 to 10000:
   Count the number of divisors of N
   If that number is greater than maxDivisors:
       Let maxDivisors = the number of divisors of N
       Let numWithMax = N
Output maxDivisors and numWithMax


Here's a curious thing: If you leave out the line "numWithMax = 1"
from the program, the computer will report a syntax error where you try to
output the value of numWithMax. It will say that the variable
numWithMax might not have been initialized. That is, it might never
have been assigned a value. Now, you know that it will be
assigned a value (since when N=2 is processed, numWithMax
will become 2). However, when the computer compiles the program,
it doesn't know whether the body of the if statement
will ever be executed, so it doesn't know whether numWithMax will ever
be assigned a value. The syntax rule is that every variable must be "definitely
assigned" before its value is used. This means that it is assigned a value on
every possible execution path through the program.  Definite assignment was
discussed in Subsection 3.1.5.


We still have to expand the step "Count the number of divisors of N." This
was already done in Subsection 3.4.2 for the example program
CountDivisors.java. This step requires another for loop, so
we have here an example of one for loop nested inside another. Here is
a complete algorithm, which can be translated into a program:


Let maxDivisors = 1  // number of divisors of 1
Let numWithMax = 1
for each integer N from 2 to 10000:
    Let divisorCount = 0
    for each D from 1 to N:
        if D is a divisor of N:
            add 1 to divisorCount
    If divisorCount is greater than maxDivisors:
        Let maxDivisors = the number of divisors of N
        Let numWithMax = N
Output maxDivisors and numWithMax


This can be translated pretty much directly into a program. By the way, the
maximum number of divisors is 64. There are two numbers between 1 and 10000
that have 64 divisors, 7560 and 9240. The program will output the first of
these. (It would output the second if the test "if (divisorCount >
maxDivisors)" were changed to "if (divisorCount >=
maxDivisors)". Do you see why?)





The Solution





/**
 * This program finds an integer between 1 and 10000 that has
 * the largest number of divisors.  It prints out the maximum
 * number of divisors and an integer that has that many divisors.
 */

public class MostDivisors {

   public static void main(String[] args) {
   
       int N;            // One of the integers whose divisors we have to count.
       int maxDivisors;  // Maximum number of divisors seen so far.
       int numWithMax;   // A value of N that had the given number of divisors.
       
       maxDivisors = 1;  // Start with the fact that 1 has 1 divisor.
       numWithMax = 1;

       /* Process all the remaining values of N from 2 to 10000, and
          update the values of maxDivisors and numWithMax whenever we
          find a value of N that has more divisors than the current value
          of maxDivisors.
       */
       
       for ( N = 2;  N <= 10000;  N++ ) {
       
           int D;  // A number to be tested to see if it's a divisor of N.
           int divisorCount;  // Number of divisors of N.
           
           divisorCount = 0;
           
           for ( D = 1;  D <= N;  D++ ) {  // Count the divisors of N.
              if ( N % D == 0 )
                 divisorCount++;
           }
           
           if (divisorCount > maxDivisors) {
              maxDivisors = divisorCount;
              numWithMax = N;
           }
       
       }
       
       System.out.println("Among integers between 1 and 10000,");
       System.out.println("The maximum number of divisors is " + maxDivisors);
       System.out.println("A number with " + maxDivisors + " divisors is " + numWithMax);
   
   } // end main()

}





Solution for Programming Exercise 3.3



Exercise 3.3:

Write a program that will
evaluate simple expressions such as 17 + 3 and 3.14159 * 4.7. The expressions
are to be typed in by the user. The input always consists of a number, followed
by an operator, followed by another number. The operators that are allowed are
+, -, *, and /. You can read the numbers with TextIO.getDouble() and
the operator with TextIO.getChar(). Your program should read an
expression, print its value, read another expression, print its value, and so
on. The program should end when the user enters 0 as the first number on the
line.





Discussion





We need a loop to read and evaluate expressions. It's easiest to use a
break statement to end the loop at the appropriate time:


Repeat indefinitely:
    Get the user's input.
    if the first number is 0:
        Break out of the loop
    Find the value of the expression
    Display the value.


Getting the user's input involves reading three data values. We need three
variables to store these values. It's best to test whether the first number is
0 right after we read it, so the user will just have to type a 0 to end the
program, not a complete expression such as 0 + 0. "Repeat indefinitely" can be
written as "while (true)":


while (true):
    Let firstNum = TextIO.getDouble()
    if firstNum is 0:
        Break out of the loop
    Let operator = TextIO.getChar()
    Let secondNum = TextIO.getlnDouble()
    Find the value of the expression
    Display the value.


To evaluate the user's expression, we have to test the operator to
find out which operation to compute. We can do this with either a multiway
if statement or with a switch statement. In the program
below, I use a switch. The if statement would be:


if ( operator == '+' )
   value = firstNum + secondNum;
else if ( operator == '-' )
   value = firstNum - secondNum;
else if ( operator == '*' )
   value = firstNum * secondNum;
else if ( operator == '/' )
   value = firstNum / secondNum;
else {
   System.out.println("Unknown operator: " + operator);
   continue;  // back to start of loop
}


The computer won't let you get away without the else part of the
if statement or the default case in the switch,
since that would leave a possibility that the variable, value, is not
assigned a value before it is printed out, which violates the definite assignment rule.  
Note that char values are
tested for equality using the == operator.  Chars are not Strings!
Strings would have to be compared using the equals() method from
the String class; chars however are primitive
type values, and they don't even include any methods.


This program could be improved by having it print out an error message if
the user tries to divide by zero.


(This program could use a Scanner instead of TextIO
for input, replacing TextIO.getDouble() with stdin.nextDouble()
and TextIO.getChar() with stdin.next(), where stdin
is the Scanner.  (See Subsection 2.4.6)  One difference between the
behavior of the two versions of the program would be that the TextIO version
would accept expressions that have no spaces, such as 17+42, whereas the
Scanner version would give an error for such an expression.  Another is that
scanner.next() returns a String rather than
a char, and the character that you want would be the first, and only,
character in that string.)






The Solution





import textio.TextIO;

/**
 *  This program evaluates simple expressions such as 2 + 2
 *  and 34.2 * 7.81, consisting of a number, an operator,
 *  and another number.  The operators +, -, *, / are allowed.
 *  The program will read and evaluate expressions until
 *  the user inputs a line that starts with the number 0.
 */

public class SimpleCalculator {

   public static void main(String[] args) {
   
      double firstNum;    // First number in the expression.
      double secondNum;   // Second number in the expression.
      char operator;      // The operator in the expression.
      double value;       // The value of the expression.
      
      System.out.println("Enter expressions such as  2 + 2  or  34.2 * 7.81");
      System.out.println("using any of the operators +, -, *, /.");
      System.out.println("To end, enter a 0.");
      System.out.println();
      
      while (true) {
          
          /* Get user's input, ending program if first number is 0. */
      
          System.out.print("? ");
          firstNum = TextIO.getDouble();
          if (firstNum == 0)
             break;
          operator = TextIO.getChar();
          secondNum = TextIO.getlnDouble();
          
          /* Compute the value of the expression. */
          
          switch (operator) {
              case '+' -> value = firstNum + secondNum;
              case '-' -> value = firstNum - secondNum;
              case '*' -> value = firstNum * secondNum;
              case '/' -> value = firstNum / secondNum;
              default -> {
                 System.out.println("Unknown operator: " + operator);
                 continue;  // Back to start of loop!
              }
          } // end switch
          
          /* Display the value. */
          
          System.out.println("Value is " + value);
          System.out.println();
                    
      } // end while
      
      System.out.println("Good bye");
   
   }  // end main()

}  // end class SimpleCalculator





Solution for Programming Exercise 3.4



Exercise 3.4:

Write a program that reads
one line of input text and breaks it up into words. The words should be output
one per line. A word is defined to be a sequence of letters. Any characters in
the input that are not letters should be discarded. For example, if the user
inputs the line


He said, "That's not a good idea."


then the output of the program should be


He
said
That
s
not
a
good
idea


An improved version of the program would list "that's" as a single word. An
apostrophe can be considered to be part of a word if there is a letter on each
side of the apostrophe.


To test whether a character is a letter, you might use (ch >= 'a'
&& ch <= 'z') || (ch >= 'A' && ch <= 'Z').
However, this only works in English and similar languages. A better choice is
to call the standard function Character.isLetter(ch), which returns a
boolean value of true if ch is a letter and false if
it is not. This works for any Unicode character.





Discussion





There are many ways to approach this problem, and probably all of them are
sort of tricky to get right. Here's a simple idea that almost works: Go through
all the characters in the string. If the character is a letter, write it out.
If it's not a letter, write a carriage return instead. If line is a
String variable representing the line of text, this algorithm can be
coded as


for ( i = 0;  i < line.length(); i++ ) {
   ch = line.charAt(i);
   if ( Character.isLetter(ch) )
      System.out.print(ch);
   else
      System.out.println();   
}


This prints all the letters in a word on the same line of output. Since
words in the string are separated by non-letter characters, and the computer
prints a carriage return when it finds a non-letter, words in the output are
separated by carriage returns. But there is a problem with this: If two
words in the string are separated by several non-letters, then
there will be one or more blank lines between the words in the output. We don't
want to output two carriage returns in a row. To avoid this, we can keep track
of whether the previous output was a letter or a carriage return. When we find
a non-letter, we will output a carriage return only if the previous output was
not a carriage return. To keep track of the necessary
information, I'll use a boolean variable named didCR. The
value of this variable will be true if the previous output was a carriage
return. I have to remember to set the value of didCR each time I
output something. With this modification, the code becomes:


for ( i = 0;  i < line.length(); i++ ) {
   ch = line.charAt(i);
   if ( Character.isLetter(ch) ) {
      System.out.print(ch);
      didCR = false;  // previous output was not a CR
   }
   else {
      if ( didCR == false ) {  // output CR, if previous output was NOT a CR
         System.out.println();
         didCR = true;  // previous output was a CR
      }
   }
}


The program requires an initial value for didCR. In the program
below, I output a carriage return before the for loop and set
didCR to true. You should be able to follow the rest of the
program.


An entirely different approach to this problem is given by the algorithm,
"while there are more words in the string, get the next word and print it."
This turns out to be even harder to implement than the above.





The Solution





import textio.TextIO;

/**  
 *  This program will read one line of input typed by the user.
 *  It will print the words from the input, one word to a line.
 *  A word is defined to be a sequence of letters.  All non-letters
 *  in the input are discarded.
 */

public class ListWordsInString {

   public static void main(String[] args) {
   
       String line;    // A line of text, typed in by the user.
       int i;          // Position in line, from 0 to line.length() - 1.
       char ch;        // One of the characters in line.
       boolean didCR;  // Set to true if the previous output was a carriage return.
       
       System.out.println("Enter a line of text.");
       System.out.print("? ");
       line = TextIO.getln();
       
       System.out.println();
       didCR = true;
       
       for ( i = 0;  i < line.length();  i++ ) {
          ch = line.charAt(i);
          if ( Character.isLetter(ch) ) {
             System.out.print(ch);
             didCR = false;
          }
          else {
             if ( didCR == false ) {
                System.out.println();
                didCR = true;
             }
          }
       }
       
       System.out.println();  // Make sure there's at least one carriage return at the end.
         
   }  // end main()

}  // end class ListWordsInString





Solution for Programming Exercise 3.5



Exercise 3.5:

Suppose that a file contains information about sales 
figures for a company in various cities.
Each line of the file contains a city name, followed by a colon (:) followed by the data for that
city.  The data is a number of type double.
However, for some cities, no data was available.  In these lines, the data is replaced by
a comment explaining why the data is missing.  For example, several lines from the file might
look like:

San Francisco:  19887.32
Chicago:  no report received
New York: 298734.12

Write a program that will compute and print the total sales from all the cities together. The
program should also report the number of cities for which data was not available.  The name of the
file is "sales.dat".

To complete this program, you'll need one fact about file input with TextIO
that was not covered in Subsection 2.4.4.  Since you don't know in advance how many
lines there are in the file, you need a way to tell when you have gotten to the end of the file.
When TextIO is reading from a file, the function TextIO.eof()
can be used to test for end of file.  This boolean-valued
function returns true if the file has been entirely read and returns false
if there is more data to read in the file.  This means that you can read the lines of the
file in a loop while (TextIO.eof() == false).... The loop will end
when all the lines of the file have been read.

Suggestion:  For each line, read and ignore characters up to the colon.  Then read the rest
of the line into a variable of type String.  Try to convert the string
into a number, and use try..catch to test whether the conversion succeeds.





Discussion





The statement TextIO.readFile("sales.dat") can be used at the beginning of
the program to make TextIO read from the file instead of from the user's input.
This statement throws an IllegalArgumentException if the file can't be
found.  Although it's not required by the statement of the problem, it would be nice to detect
the exception and print an error message about the missing file.  This can be done as follows,
using System.exit to end the program if the error occurs:

   
try {
   TextIO.readFile("sales.dat");
}
catch (IllegalArgumentException e) {
   System.out.println("Can't open file \"sales.dat\" for reading!");
   System.out.println("Please make sure the file is present before");
   System.out.println("running the program.");
   System.exit(1);  // Terminates the program.
}

   
We have two main quantities to keep track of in the program:  The total amount of sales and
the number of cities for which data is missing.  These quantities can be represented by
two variables, salesTotal of type double and missingCount
of type int.  These variables are initialized to zero before processing any data
from the file, and their values are output at the end of the program, after reading the
entire file.

   
The main processing loop of the program is the while loop mentioned in the
statement of the exercise, which begins while (TextIO.eof() == false).  
(In my program, I've chosen to use the equivalent but more elegant test
while ( ! TextIO.eof() ); you should try to understand why
this is equivalent—and why it is more elegant!)  In pseudocode form, we want a loop
that does the following:


while there are more lines in the file:
   read the name of the city and the colon that follows it
   read the rest of the line into a string
   try to convert the string into a number
      if the conversion succeeds, add the number to the total sales
      otherwise add 1 to the count of missing data

   
To read past the name of the city, we can simply read characters using
TextIO.getChar() until we get to the colon:

   
do {  // Read past characters up to the ':'.
   ch = TextIO.getChar();
} while (ch != ':');

   
where ch is a variable of type char.  We can read the rest
of the line using TextIO.getln().  (As a side note, it's important here
that we read the entire line, including the carriage return at the end.  TextIO.getln()
does this.  If we neglected to read the carriage return at the end of the line,
TextIO.eof() would not detect the end of the file correctly.  After the
data from the last line is read, the carriage return character would still be there in
the file waiting to be read; since there is still something left to read in the file,
TextIO.eof() would be false and the while loop would
continue, even though all the cities have already been processed.  In fact, the program
would crash while looking for the next ':', which is not there.  Text processing
can be surprisingly subtle!)

   
Once we have the information in the form of a String, we can try to
convert the string into a number with Double.parseDouble.  If the string is
not a number, this will throw an exception of type NumberFormatException.
We can catch the error in a try..catch statement.  The "missing data"
processing is done in the catch part of this statement.  In the program,
this takes the form:

try {
   sales = Double.parseDouble(dataString);
   salesTotal += sales;  // This is skipped if the conversion fails.
}
catch (NumberFormatException e) {
       // The dataString is not a number, so it counts as
       // missing data.  Add 1 to the missing data count.
   missingCount++;
}

   
(Note that my solution assumes that the data file (if it exists at all) has exactly the
format that is specified in the problem.  The problem would be more difficult if we had
to check the format of the file, to see whether it conforms to the specification.)





The Solution





import textio.TextIO;

/**
 * This program reads from a file named "sales.dat".  Each line of the
 * file contains the name of a city, followed by a colon, followed by
 * either a number giving the amount of sales in that city or by a
 * message saying why the sales figure is not available.  The program
 * prints the total sales for all cities and the number of cites for
 * which the figure was not available.
 */
   
public class SalesFigures {
   
   public static void main( String[] args ) {
      
      /* Open file for reading; if it can't be opened, end the program */
      
      try {
         TextIO.readFile("sales.dat");
      }
      catch (IllegalArgumentException e) {
         System.out.println("Can't open file \"sales.dat\" for reading!");
         System.out.println("Please make sure the file is present before");
         System.out.println("running the program.");
         System.exit(1);  // Terminates the program.
      }
      
      /* Read the file, keeping track of total sales and missing data. */
      
      double salesTotal;  // Total of all sales figures seen so far.
      int missingCount;   // Number of cities for which data is missing.
      
      salesTotal = 0;
      missingCount = 0;
      
      while ( ! TextIO.eof() ) {  // process one line of data.
         
         char ch;  // For reading past the name of the city.
         String dataString;  // Contents of line, after the city name.
         double sales;  // The sales figure for the city.
         
         do {  // Read past characters up to the ':'.
            ch = TextIO.getChar();
         } while (ch != ':');
         
         dataString = TextIO.getln();  // Get the rest of the line.
         
         try {
            sales = Double.parseDouble(dataString);
            salesTotal += sales;  // This is skipped if the conversion fails.
         }
         catch (NumberFormatException e) {
                // The dataString is not a number, so it counts as
                // missing data.  Add 1 to the missing data count.
            missingCount++;
         }
   
      } // end while
      
      /* Report the results. */
      
      System.out.printf("Total sales recorded from all cities: $%1.2f\n\n", salesTotal);
      if (missingCount == 0)
         System.out.println("Data was received from all cities.");
      else if (missingCount == 1)
         System.out.println("Data was missing from 1 city.");
      else
         System.out.printf("Data was missing from %d cities.\n", missingCount);
      
   } // end main()
   
} // end class SalesFigures






Solution for Programming Exercise 3.6



Exercise 3.6:


Exercise 3.2 asked you to find the
number in the range 1 to 10000 that has the largest number of divisors.  You
only had to print out one such number.  Revise the program so that it will
print out all numbers that have the maximum number of divisors.  Use an
array as follows:  As you count the divisors for each number, store each
count in an array.  Then at the end of the program, 
you can go through the array and print out all the numbers
that have the maximum count.  The output from the program should look
something like this:

Among integers between 1 and 10000,
The maximum number of divisors was 64
Numbers with that many divisors include:
   7560
   9240





Discussion





This is a fairly straightforward exercise in using arrays. We need to save 10000
numbers in an array.  The numbers are the divisor counts for the numbers 1 through 10000.
The numbers that we want to store in the array are of type int,
so int is the base type of the array.
In the program, I use an array named saveCount of type int[]
to store the data.  It seems natural to store the divisor count for N in
array element saveCount[N], but note that in that case, we don't use
array element number 0, and we need an array element number 10000.  Ignoring element
0 is fine, but for saveCount[10000] to exist, the length of the array
must be at least 10001.  I use an array of length 10001:

saveCount = new int[10001];

(An alternative would be to store the advisor count for N in
saveCount[N-1].  In that case, we wouldn't need the extra array element,
and the length of the array would be 10000.)

After computing each divisor count, we store the count in the array.  At the same
time, we are keeping track of the maximum number of divisors.  After the end of the for
loop that does the counting, we know the divisor count for each number and we know the
maximum number of divisors.  We just have to go through the array and print out
every integer N for which the divisor count is equal to the maximum:

System.out.println("Numbers with that many divisors include:");
for ( N = 1; N <= 10000; N++ ) {
    if ( saveCount[N] == maxDivisors ) {
        System.out.println( "   " + N );
    }
}

Note that this code checks whether the number in the array, saveCount[N],
is equal to the maximum, but it prints the array index, N, which is the
integer that has that many divisors.





The Solution





New code that involves the array is shown in red italic.

import textio.TextIO;

/**
 * This program counts the number of divisors for integers in the range
 * 1 to 10000.  It finds the maximum divisor count.  It outputs the
 * maximum divisor count and a list of all integers in the range that 
 * have the maximum number of divisors.
 */

public class MostDivisorsWithArray {

   public static void main(String[] args) {
   
       int N;            // One of the integers whose divisors we have to count.
       int maxDivisors;  // Maximum number of divisors seen so far.
       
       int[] saveCount;  // Store the number of divisors for each number
       
       saveCount = new int[10001];
       
       maxDivisors = 1;  // Start with the fact that 1 has 1 divisor.
       saveCount[1] = 1;

       /* Process all the remaining values of N from 2 to 10000, and store
          all the divisor counts in the array.  Update the value of maxDivisor
          whenever we find a value of N that has more divisors than the current
          value.
       */
       
       for ( N = 2;  N <= 10000;  N++ ) {
       
           int D;  // A number to be tested to see if it's a divisor of N.
           int divisorCount;  // Number of divisors of N.
           
           divisorCount = 0;
           
           for ( D = 1;  D <= N;  D++ ) {  // Count the divisors of N.
              if ( N % D == 0 )
                 divisorCount++;
           }
           
           saveCount[N] = divisorCount;  // Record the count for N in the array
           
           if (divisorCount > maxDivisors) {
              maxDivisors = divisorCount;
           }
       
       }
       
       System.out.println("Among integers between 1 and 10000,");
       System.out.println("The maximum number of divisors was " + maxDivisors);
       System.out.println("Numbers with that many divisors include:");
       for ( N = 1; N <= 10000; N++ ) {
           if ( saveCount[N] == maxDivisors ) {
               System.out.println( "   " + N );
           }
       }
   
   } // end main()

}





Solution for Programming Exercise 3.7



Exercise 3.7:

An example in Subsection 3.8.3
tried to answer the question, How many random people
do you have to select before you find a duplicate birthday? The source code for
that program can be found in the file
BirthdayProblem.java. Here are
some related questions:


	How many random people do you have to select before you find three
people who share the same birthday? (That is, all three people were born on the
same day in the same month, but not necessarily in the same year.)

	Suppose you choose 365 people at random. How many different birthdays will
they have? (The number could theoretically be anywhere from 1 to 365).

	How many different people do you have to check before you've found at least
one person with a birthday on each of the 365 days of the year?



Write three programs to answer these questions. Each of your programs should simulate
choosing people at random and checking their birthdays. (In each case, ignore
the possibility of leap years.)





Discussion





The original program and the three programs for this exercise have some similarities,
and we will use ideas from the original program.  However, each part of this exercise
presents its own problem.

The first question asks how many people you have to choose at random before
finding three who share the same birthday. This is similar to the original
program, but instead of just checking whether or not a given birthday has
already been found, we need to keep track of how many people have been found
with each birthday. Where the original program used an array of
booleans, here we need an array of ints. We still want to
count the number of people we check and output that count at the end. An
algorithm for the simulation is:


Let count = 0
Repeat:
   Select a birthday at random
   Add one to count
   If this is the third time that birthday has occurred:
       break out of the loop
   Add one to the number of times that birthday has been found
Output the count


The original program used a boolean array to keep track of whether
or not each day had been seen.  For this proble, we need to know how many times
each day has been seen.  That means that instead of one boolean value for each day,
we need one integer value for each day.  So,
to do the counting, we need an array "int[] numFound", where
numFound[i] will be the number of times the i-th day of the
year has occurred as a birthday. Since numFound[i] can be used in any
way that any int variable can be used, we can add one to the number
stored in numFound[i] by saying "numFound[i]++"
or "numFound[i] = numFound[i] + 1". When we
create the array with the command "numFound = new int[365]", all the
elements of the array are automatically initialized to zero. This is the
initial value that we want. (This is an important thing to remember! In some
programming languages, arrays are not automatically filled with zeros, so it
would be necessary to use a for loop to store a zero into each place
in the array. Even in Java, if you reuse
the same array rather than creating a new one for each use, you would
have to remember to set initialize each element of the array before reusing it.)


Given all this, we can translate the algorithm into Java as follows:



int[] numFound;  // numFound[i] will be the number of people
                 // who have been found who have a birthday
                 // on the i-th day of the year

int count;       // The number of people who have been checked.

numFound = new int[365];  // Initially, all entries are 0.

count = 0;

while (true) {
       // Select a birthday at random, from 0 to 364.
       // If the same birthday was already seen twice
       // before, then quit.  Otherwise, add one to
       // the corresponding entry in the numFound array
       // to record that a person with that birthday
       // has been found.
   int birthday;  // The selected birthday.
   birthday = (int)(Math.random()*365);
   count++;
   if ( numFound[birthday] == 2 )
       break;  // It's the third time we've found this birthday.
   numFound[birthday]++;
}

System.out.println("It took " + count + 
        " tries to find three people with the same birthday.");


The lines shown in red italic are the ones that differ significantly from the
original program. This becomes the body of the main()
subroutine in the first program.






For the second program, we know exactly how many people we want to check:
365. This calls for using a for loop. The information we need for each birthday
is whether or not that birthday has occurred. For that, we can use an array of
booleans.  After the for loop,
value stored in position i of the array will
true if the i-th day of the year has occurred as a birthday
and is false if not. After checking 365 people, we have to go through
the boolean array and count the number of entries in the array that are true.
This is the number of different birthdays that have been found. The algorithm
can be expressed as:


Let used = new boolean[365]
Repeat 365 times:
   Select a birthday at random
   Store true into the corresponding location in the array, used
Let count = 0
for day = 0 to 364:
   If used[day] is true:
      Add 1 to count
Output the value of count


This translates easily into Java code:


boolean used[];  // used[i] will be true if a person is found
                 // whose birthday is the i-th day of the year.

used = new boolean[365];  // Initially, all entries are false!

for (i = 0; i < 365; i++) {
      // Select a random birthday and record it.
   int birthday;  // The selected birthday.
   birthday = (int)(Math.random()*365);
   used[birthday] = true;
}

int count = 0;

for (day = 0; day < 365; day++) {
       // If this day occurred as a birthday, count it.
   if (used[day] == true)
      count++;
}

System.out.println("Among 365 people, there were " + count
                                + " different birthdays.");


It might be worth noting that the test "if (used[day] == true)" can
be written more simply—and elegantly—as 
"if (used[day])". Also, the three lines in
the first for loop could be reduced to the single command
"used[(int)(Math.random()*365)] = true;". Of course, this one-line
version is harder to understand.





The third program is just a little bit trickier. We have to continue
selecting people at random until we have found 365 different birthdays. We can
use a counter to keep track of how many different birthdays we have found. We
have to continue until this counter reaches 365. We need a second counter to
keep track of how many different people we have checked. It's the second
counter whose value we want to output at the end. Now, we have to be able to
recognize whether a birthday we've just found is new, or whether we've
encountered it previously. For this, we can again use an array of
booleans. An algorithm for the simulation is:


Let used = new boolean[365]
Let count = 0   // The number of people checked
Let birthdaysFound = 0   // The number of different birthdays found
while birthdaysFound < 365:
   Add one to count
   Select a birthday at random
   if used[birthday] is false:
       Add one to birthdaysFound  // since this is a new birthday
   Let used[birthday] = true   // so we don't count it again
Output the value of count


In Java, this algorithm becomes:


boolean[] used;  // For recording the possible birthdays
                 //   that have been seen so far.
int count;       // The number of people who have been checked.
int birthdaysFound;   // The number of different birthdays that
                      // have been found.

used = new boolean[365];  // Initially, all entries are false.
count = 0;
birthdaysFound = 0;

while (birthdaysFound < 365) {
       // Select a birthday at random, from 0 to 364.
       // If the birthday has not already been used,
       // add 1 to birthdaysFound.
   int birthday;  // The selected birthday.
   birthday = (int)(Math.random()*365);
   count++;
   if ( used[birthday] == false )
      birthdaysFound++;
   used[birthday] = true;
}

System.out.println( count + " people were checked." );





The Solution






Finding three people with the same birthday:



/**
 *  How many random people do you have to select before you find
 *  THREE with the same birthday (that is, three people who were born 
 *  on the same day of the same month, but not necessarily in the 
 *  same year).  This program simulates the process.  (It ignores the
 *  possibility of people born on leap day.)
 */

public class BirthdayProblem2 {

   /**
    * Simulate choosing people at random and checking the
    * day of the year they were born on.  If the person is
    * the third who was born on that day of the year, stop,
    * and output the number of people who were checked.
    */
   public static void main(String[] args) {

      int[] numFound;  // numFound[i] will be the number of people
                       // who have been found who have a birthday
                       // on the i-th day of the year
      
      int count;       // The number of people who have been checked.

      numFound = new int[365];  // Initially, all entries are 0.
      
      count = 0;

      while (true) {
             // Select a birthday at random, from 0 to 364.
             // If the same birthday was already seen twice
             // before, then quit.  Otherwise, add one to
             // the corresponding entry in the numFound array 
             // to record that a person with that birthday
             // has been found.
         int birthday;  // The selected birthday.
         birthday = (int)(Math.random()*365);
         count++;
         if ( numFound[birthday] == 2 )
            break;
         numFound[birthday]++;
      }

      System.out.println("It took " + count + 
               " tries to find three people with the same birthday.");

   }
 
   
} // end class BirthdayProblem2
   




How many different birthdays do 365 people have?



/**
 * This program simulates selecting 365 people at random and finding
 * how many different birthdays they have among them.
 */

public class BirthdayProblem3 {

   /**
    * Simulate choosing people at random and checking the
    * day of the year they were born on.  The number of
    * different days found among 365 people is counted
    * and output.
    */
   public static void main(String[] args) {
      
      boolean used[];  // used[i] will be true if a person is found
                       // whose birthday is on the i-th day of the year.
      
      used = new boolean[365];  // Initially, all entries are false.
      
      /* Choose 365 days at random, and mark each day by
         setting the corresponding entry in the array, used,
         to true.  (If the value is already true, it doesn't 
         matter.  We are only interested in whether or not
         the birthday occurs, not how many times it occurs.)
      */
      
      int i;
      for (i = 0; i < 365; i++) {
         int birthday;  // The selected birthday.
         birthday = (int)(Math.random()*365);
         used[birthday] = true;
      }
      
      /* Now, count how many entries in the used array are true.
         This is how many different birthdays were found.
      */
      
      int count = 0;
      int day;
      
      for (day = 0; day < 365; day++) {
             // If this day occurred as a birthday, count it.
         if (used[day] == true)
            count++;
      }

      System.out.println("Among 365 people, there were " + count
                                      + " different birthdays.");

   } 
 
   
} // end class BirthdayProblem3






Finding 365 different birthdays:



/**
 * How many random people do you have to select before you 
 *  have found someone with every possible birthday (ignoring
 *  leap years)?  This program simulates the process.
 */
 
public class BirthdayProblem4 {
 
    /**
     * Simulate choosing people at random and checking the
     * day of the year they were born on.  People are chosen
     * until all 365 possible birthdays (ignoring leap years)
     * have been found.  Then the number of people surveyed
     * is output.
     */
   public static void main(String[] args) {
 
       boolean[] used;  // For recording the possible birthdays
                        //   that have been seen so far.  A value
                        //   of true in used[i] means that a person
                        //   whose birthday is the i-th day of the
                        //   year has been found.
 
       int count;       // The number of people who have been checked.
       
       int birthdaysFound;   // The number of different birthdays that
                             // have been found.
 
       used = new boolean[365];  // Initially, all entries are false.
       
       count = 0;
       
       birthdaysFound = 0;
 
       while (birthdaysFound < 365) {
              // Select a birthday at random, from 0 to 364.
              // If the birthday has not already been used,
              // add 1 to birthdaysFound.
          int birthday;  // The selected birthday.
          birthday = (int)(Math.random()*365);
          count++;
          if ( used[birthday] == false )
             birthdaysFound++;
          used[birthday] = true;
       }
 
       System.out.println( count + " people were checked." );
 
    }
  
    
} // end class BirthdayProblem4






Solution for Programming Exercise 3.8



Exercise 3.8:

Write a GUI program that draws
a checkerboard.  Base your solution on the sample program
SimpleGraphicsStarter.java  You will draw
the checkerboard in the drawPicture() subroutine, after
erasing the code that it already contains.


The checkerboard should be 400-by-400  pixels.  You can change the size of
the drawing area in SimpleGraphicsStarter.java by modifying the
first two lines of the start() subroutine to set width
and height to 400 
instead of 800 and 600.  A checkerboard
contains 8 rows and 8 columns of squares.  If the size of the drawing area is 400,
that means that each square should be 50-by-50 pixels.  
The squares are red and black (or whatever other colors you choose). Here is a tricky way
to determine whether a given square should be red or black: The rows and columns can be
thought of as numbered from 0 to 7.  If the row number of the square and the
column number of the square are either both even or both odd, then the square is red.
Otherwise, it is black. Note that a square is just a rectangle in which the
height is equal to the width, so you can use the subroutine
g.fillRect() to draw the squares. Here is a reduced-size image of the
checkerboard that you want to draw:



[image: checkerboard]







Discussion





The basic algorithm is obvious:


for each row of the checkerboard:
    Draw all the squares in that row


Since any given row contains eight squares, one in each column of the
checkerboard, we can expand the body of the for loop into another for loop:


for each of the eight rows of the checkerboard:
    for each of the eight columns:
        Draw the square in that row and column


Each square is a rectangle with height 50 and width 50, so it can be drawn
with the command g.fillRect(x,y,50,50), where x and
y are the coordinates of the top-left corner of the square. Before
drawing the square, we have to determine whether it should be red or black, and
we have to set the correct color with g.setFill. So, the algorithm
becomes


for each row on the checkerboard:
    for each of the eight columns:
        Compute x,y for the top-left corner of the square
        if it's a red square:
           g.setFill(Color.RED)
        else
           g.setFill(Color.BLACK)
        g.fillRect(x,y,50,50)


The top of the first row of squares is at y=0. Since each square is
50 pixels high, the top of the second row is at y=50, followed by 100
for the third row, then 150, 200, 250, 300, and 350. If we assume that the rows
are numbered 0, 1, 2, ..., 7, then the tops are given by y = row*50,
where row is the row number. (If you number the rows 1, 2, ..., 8, the
formula would be (row-1)*20. The simpler formula in this and in many
similar cases is one reason why computer scientists like to start counting with
0 instead of 1.) Similarly, the left edge of the squares in column col
is given by x = col*50, where again the columns are numbered 0, 1, 2,
..., 7. I'll use "for (row=0; row<8; row++)" to count off the rows,
rather than the equivalent "for (row=0; row<=7; row++)". The 8
reminds me that I am counting off the eight numbers 0, 1, 2,
..., 7. Again, this is typical computer science style.


The only problem remaining is how to determine whether the square is red. As
noted in the exercise, a square is red if row and col are
either both even or both odd. Since an integer N is even if
N%2 is 0, the test could be expressed as


if ((row%2 == 0 && col%2 == 0) || (row%2 == 1 && col%2 == 1))


However,
note that this is the same as asking whether row%2 and col%2
have the same value. So the test can be written more simply as 
"if (row%2 == col%2)". Putting this all together into syntactically correct Java
code, the algorithm becomes


for ( row = 0;  row < 8;  row++ ) {
   for ( col = 0;  col < 8;  col++ ) {
       x = 50*col;
       y = 50*row;
       if ( (row % 2) == (col % 2) )
          g.setFill(Color.RED);
       else
          g.setFill(Color.BLACK);
       g.fillRect(x,y,50,50);
   }
}


Of course, the variables row, col, x, and
y have to be declared to be of type int. Then, the code goes
into the body of the drawPicture()subroutine.


The complete program is shown below.  In the original program, the size of the
drawing area was 800-by-600.  I changed this to 400-by-400, as noted in the exercise.  
And I changed the title of the window to "Checkerboard" in another
line in start().


I also changed the name of the class from
SimpleGraphicsStarter to Checkerboard.
Remember that this also requires changing the name of the file from
SimpleGraphicsStarter.java to Checkerboard.java.






The Solution






import javafx.application.Application;
import javafx.scene.layout.BorderPane;
import javafx.scene.Scene;
import javafx.stage.Stage;
import javafx.scene.canvas.Canvas;
import javafx.scene.canvas.GraphicsContext;
import javafx.scene.paint.Color;

/**
 *  This program draws a checkerboard
 */
public class Checkerboard extends Application {

    /**
     * Draws a picture.  The parameters width and height give the size 
     * of the drawing area, in pixels.  
     */
    public void drawPicture(GraphicsContext g, int width, int height) {

          int row;   // Row number, from 0 to 7
          int col;   // Column number, from 0 to 7
          int x,y;   // Top-left corner of square

          for ( row = 0;  row < 8;  row++ ) {

             for ( col = 0;  col < 8;  col++) {
                x = col * 50;
                y = row * 50;
                if ( (row % 2) == (col % 2) )
                   g.setFill(Color.RED);
                else
                   g.setFill(Color.BLACK);
                g.fillRect(x, y, 50, 50);
             } 

          }

    } // end drawPicture()

    //------ Implementation details: DO NOT EXPECT TO UNDERSTAND THIS ------


    public void start(Stage stage) {
        int width = 400;   // The width of the image.  You can modify this value!
        int height = 400;  // The height of the image. You can modify this value!
        Canvas canvas = new Canvas(width,height);
        drawPicture(canvas.getGraphicsContext2D(), width, height);
        BorderPane root = new BorderPane(canvas);
        root.setStyle("-fx-border-width: 4px; -fx-border-color: #444");
        Scene scene = new Scene(root);
        stage.setScene(scene);
        stage.setTitle("Checkerboard"); // STRING APPEARS IN WINDOW TITLEBAR!
        stage.show();
        stage.setResizable(false);
    } 

    public static void main(String[] args) {
        launch();
    }

} // end Checkerboard








Solution for Programming Exercise 3.9



Exercise 3.9:

Often, some element of an animation repeats over and over, every so many frames.
Sometimes, the repetition is "cyclic,"  meaning that at the end it jumps back to the start.
Sometimes the repetition is "oscillating," like a back-and-forth motion where the second
half is the same as the first half played in reverse.

Write an animation that demonstrates both cyclic and oscillating motions at various speeds.
For cyclic motion, you can use a square that moves across the drawing area, then jumps back to
the start, and then repeats the same motion over and over.  For oscillating motion, you can do something
similar, but the square should move back and forth between the two edges of the drawing area; that is,
it moves left-to-right during the first half of the animation and then backwards from right-to-left
during the second half.  To write the program, you can start with a copy of
the sample program SimpleAnimationStarter.java.

A cyclic motion has to repeat every N frames for some value of N.  What you draw in some
frame of the animation depends on the frameNumber.  The frameNumber just keeps
increasing forever.  To implement cyclic motion, what you really want is a "cyclic frame number" that
takes on the values 0, 1, 2, ..., (N-1), 0, 1, 2, ..., (N-1), 0, 1, 2, ....  You can derive
the value that you need from frameNumber simply by saying

cyclicFrameNumber = frameNumber % N;

Then, you just have to base what you draw on cyclicFrameNumber instead of on
frameNumber.  Similarly, for an oscillating animation, you need an
"oscillation frame number" that takes on the values  0, 1, 2, ... (N-1), N, (N-1), (N-2), ... 2, 1, 0, 1, 2, 
and so on, repeating the back and forth motion forever.  You can compute the value that you need with

oscilationFrameNumber = frameNumber % (2*N);
if (oscillationFrameNumber > N)
   oscillationFrameNumber = (2*N) - oscillationFrameNumber;

Here is a screen shot from my version of the program.  I use
six squares.  The top three do cyclic motion at various speeds, while the bottom three do
oscillating motion.  I drew black lines across the drawing area to separate the squares and to give
them "channels" to move in.



[image: screenshot from CyclicAndOscillatingMotionDemo]






Discussion





This exercise exists mostly to introduce you to cyclic and oscillating motion and the formulas
that are used to implement them.  But it's also a good exercise in designing an animation
and working with coordinates.

Some decisions have to be made before you can start writing code.  I decided to use
rather small squares.  (Actually, I tried it with big squares and didn't like the appearance
as much.)  The size of my squares is 20-by-20 pixels.  For my first cyclic motion, I decided 
to make the length of the animation 300 frames, or about 5 seconds.  This means that 
cyclicFrameNumber can be computed as frameNumber % 300.
And I decided to move the
square at one pixel per frame; that lets me use cyclicFrameNumber as
the x-coordinate for the square.  The top square moves along the top edge of the
window, so its y-coordinate is 0.  The code for the first square is:

cyclicFrameNum = frameNumber % 300;  // Repeats every 300 frames
g.setFill(Color.RED);
g.fillRect( cyclicFrameNum, 0, 20, 20 );

The exercise asks for cyclic motion at different speeds.  If the second square
is to be faster than the first, it should cross the drawing area in a smaller
number of frames.  If it is twice as fast, it will only need half as many frames to
make it across the drawing area.  For the second square, I use a cycle length of 150
instead of 300.  To cross the entire area, the x-coordinate of the square must
get to 300 after just 150 frames.  We can accomplish that by using
2*cyclicFrameNumber as the x-coord.  (Another way to think about it:
A square with x-coord 2*cyclicFrameNumber moves twice as fast as
one with x-coord cyclicFrameNumber.  And it will finish the journey after
150 frames instead of 300, so the length of the cycle should be 150 frames.)  The
code for the second square is

cyclicFrameNum = frameNumber % 150;  // Repeats every 150 frames
g.setFill(Color.GREEN);
g.fillRect( 2*cyclicFrameNum, 20, 20, 20 );

The y-coord is 20, since the top square occupies 20 pixels at top of the window.
The third square moves three times as fast as the first, and its code is similar.

For the fourth square, I want an oscillating motion.  Like the first square, it takes
300 frames to move across the window from left to right.  But then it takes another
300 frames to move back from right to left.  The total length of the motion is 600.
(In the formula given in the exercise, N is 300 and 2*N is 600.)  The formula for the
oscillation frame number is

oscilationFrameNum = frameNumber % 600;
if (oscilationFrameNum > 300)
    oscilationFrameNum = 600 - oscilationFrameNum;

You should study how this works.  When oscilationFrameNumber is between
300 and 600, the formula 600-oscilationFrameNumber gives an answer between
0 and 300.  And as oscilationFrameNumber gets bigger, 
600-oscilationFrameNumber gets smaller (which will mean that the x-coord
of the square is decreasing).  From there, you should be able to figure out the
rest of the program.

One more small issue is the size of the drawing area.  Since there are 6 squares,
and each is 20 pixels high, the height of the drawing area must be 120.
You might think at first that the width should be 300, since the x-coordinate of
the square goes up to 300.  But that x-coordinate is actually where the left edge
of the square is.  When the left edge is at 300, the right edge is at 320.  So for the
entire square to be visible, we have to make the width 320.


For drawing the horizontal black lines, the program uses the statement

g.strokeLine(0,y+0.5,320,y+0.5);

(I should explain the "+ 0.5".  The coordinates in g.strokeLine() give
the position of the centers of the endpoints of the line.  Without the "+ "0.5", 
the top half of the line drawn here would lie in one row of pixels, and the bottom half
would lie in the next row.  The pixels in each row are only half covered by the line!
The computer might, depending on the environment, color a partially covered pixel by blending the drawing color with the
color of the background, so in this case, we would actually get a two pixel wide gray 
line instead of a one pixel wide black line.  This is an example of something called
"antialiasing," which you will encounter again later in the text.  By moving the line down 0.5 pixels, it
will exactly cover one row of pixels, which will be filled with solid black.)







The Solution






import javafx.animation.AnimationTimer;
import javafx.application.Application;
import javafx.scene.layout.BorderPane;
import javafx.scene.Scene;
import javafx.stage.Stage;
import javafx.scene.canvas.Canvas;
import javafx.scene.canvas.GraphicsContext;
import javafx.scene.paint.Color;

/**
 *  This file can be used to create very simple animations.  Just fill in
 *  the definition of drawFrame with the code to draw one frame of the 
 *  animation, and possibly change a few of the values in the rest of
 *  the program as noted below.
 */
public class CyclicAndOscillatingMotionDemo extends Application {

    /**
     * Draws one frame of an animation. This subroutine should be called
     * about 60 times per second.  It is responsible for redrawing the
     * entire drawing area. The parameter g is used for drawing. The frameNumber 
     * starts at zero and increases by 1 each time this subroutine is called.  
     * The parameter elapsedSeconds gives the number of seconds since the animation
     * was started.  By using frameNumber and/or elapsedSeconds in the drawing
     * code, you can make a picture that changes over time.  That's an animation.
     * The parameters width and height give the size of the drawing area, in pixels.  
     */
    public void drawFrame(GraphicsContext g, int frameNumber, double elapsedSeconds, int width, int height) {

        g.setFill(Color.WHITE);
        g.fillRect(0, 0, width, height); // First, fill the entire image with a background color!

        /* Show cyclic motion at three speeds.  In each case, a square 
         * moves across the drawing area from left to right, then jumps
         * back to the start.
         */

        int cyclicFrameNum;
        
        cyclicFrameNum = frameNumber % 300;  // Repeats every 300 frames
        g.setFill(Color.RED);
        g.fillRect( cyclicFrameNum, 0, 20, 20 );
        
        cyclicFrameNum = frameNumber % 150;  // Repeats every 150 frames
        g.setFill(Color.GREEN);
        g.fillRect( 2*cyclicFrameNum, 20, 20, 20 );
        
        cyclicFrameNum = frameNumber % 100;  // Repeats every 100 frames
        g.setFill(Color.BLUE);
        g.fillRect( 3*cyclicFrameNum, 40, 20, 20 );
        

        /* Show oscillating motion at three speeds.  In each case, a square 
         * moves across the drawing area from left to right, then reverses
         * direction to move from right to left back to its starting point.
         */
        
        int oscillationFrameNum;
        
        oscillationFrameNum = frameNumber % 600;  // repeats every 600 frames
        if (oscillationFrameNum > 300)
            oscillationFrameNum = 600 - oscillationFrameNum; // after 300, the values go backwards back to 0
        g.setFill(Color.CYAN);
        g.fillRect( oscillationFrameNum, 60, 20, 20 );
        
        oscillationFrameNum = frameNumber % 300; // repeats every 300 frames
        if (oscillationFrameNum > 150)
            oscillationFrameNum = 300 - oscillationFrameNum; // after 150, the values go backwards back to 0
        g.setFill(Color.MAGENTA);
        g.fillRect( 2*oscillationFrameNum, 80, 20, 20 );
        
        oscillationFrameNum = frameNumber % 200; // repeats every 200 frames
        if (oscillationFrameNum > 100)
            oscillationFrameNum = 200 - oscillationFrameNum; // after 100, the values go backwards back to 0
        g.setFill(Color.YELLOW);
        g.fillRect( 3*oscillationFrameNum, 100, 20, 20 );
        
        
        /* Draw horizontal black lines across the window to separate the
         * regions used by the six squares.  Also draw a box around the outside,
         * mostly for the picture that I need for the web page!
         */
        
        int y;
        g.setStroke(Color.BLACK);
        for ( y = 20; y < 120; y = y + 20 )
            g.strokeLine(0,y+0.5,320,y+0.5);
     }

    //------ Implementation details: DO NOT EXPECT TO UNDERSTAND THIS ------


    public void start(Stage stage) {
        int width = 320;   // The width of the image.  You can modify this value!
        int height = 120;  // The height of the image. You can modify this value!
        Canvas canvas = new Canvas(width,height);
        drawFrame(canvas.getGraphicsContext2D(), 0, 0, width, height);
        BorderPane root = new BorderPane(canvas);
        root.setStyle("-fx-border-width: 4px; -fx-border-color: #444");
        Scene scene = new Scene(root);
        stage.setScene(scene);
        stage.setTitle("Motion demo"); // STRING APPEARS IN WINDOW TITLEBAR!
        stage.show();
        stage.setResizable(false);
        AnimationTimer anim = new AnimationTimer() {
            private int frameNum;
            private long startTime = -1;
            private long previousTime;
            public void handle(long now) {
                if (startTime < 0) {
                    startTime = previousTime = now;
                    drawFrame(canvas.getGraphicsContext2D(), 0, 0, width, height);
                }
                else if (now - previousTime > 0.95e9/60) {
                       // The test in the else-if is to guard against a bug that has shown
                       // up in some versions of JavaFX on some computers.  The bug allows
                       // the handle() method to be called many times more than the 60 times
                       // per second that is specified in the JavaFX documentation.
                    frameNum++;
                    drawFrame(canvas.getGraphicsContext2D(), frameNum, (now-startTime)/1e9, width, height);
                    previousTime = now;
                }
            }
        };
        anim.start();
    } 

    public static void main(String[] args) {
        launch();
    }

} // end CyclicAndOscillatingMotionDemo








Solution for Programming Exercise 4.1



Exercise 4.1:

To "capitalize" a string
means to change the first letter of each word in the string to upper case (if
it is not already upper case). For example, a capitalized version of "Now is
the time to act!" is "Now Is The Time To Act!". Write a subroutine named
printCapitalized that will print a capitalized version of a string to
standard output. The string to be printed should be a parameter to the
subroutine. Test your subroutine with a main() routine that gets a
line of input from the user and applies the subroutine to it.

Note that a letter is the first letter of a word if it is not immediately
preceded in the string by another letter. Recall 
from Exercise 3.4 that there is a standard
boolean-valued function Character.isLetter(char) that can be
used to test whether its parameter is a letter. There is another standard
char-valued function, Character.toUpperCase(char), that
returns a capitalized version of the single character passed to it as a
parameter. That is, if the parameter is a letter, it returns the upper-case
version. If the parameter is not a letter, it just returns a copy of the
parameter.





Discussion





We are told the name of the subroutine and that it has one parameter of type
String. The name of the parameter is not specified. I will use
str. The return type is void because the subroutine does not
return a value. (It displays a value to the user, but to return a value means
to return it to the line in the program where the function is called. The value
returned by a function is generally not displayed to the user
by the function.) The first line of the subroutine definition will be:


static  void  printCapitalized( String str )


Adding a public or private access modifer
at the beginning of the line is optional.  Note that static
is not optional, since this subroutine will be used in the static
subroutine main(), and it is not legal for a static
routine to use a non-static subroutine.


As for the code inside the subroutine definition, it
must look at each character in str and decide
whether to capitalize it or not. An algorithm for the subroutine is


for each character in str:
    if the character is the first letter of a word:
        Print a capitalized version of the character
    else:
        Print the character
Print a carriage return to end the line of output


The test as to whether a character is the first letter of a word is
surprisingly complicated. A test that almost works is: "If the character is a
letter and the preceding character is not a letter." The problem is that if the
character is the first character is the string, then there is no preceding
character! If the character is str.charAt(i), then the preceding
character would be str.charAt(i-1), but str.charAt(i-1)
doesn't exist if i is 0. You should notice the
problem when you look at str.charAt(i-1) and remember that
the charAt() method has the precondition that its parameter
must be greater than or equal to zero.  When i is zero in
str.charAt(i-1), that precondition is not satisfied.



Let's look at Java code that suffers
from this bug. Recall that the operator "!" stands for "not."


for ( i = 0;  i < str.length();  i++ ) {        // BUGGY CODE!
    ch = str.charAt( i );
    if ( Character.isLetter(ch) && ! Character.isLetter(str.charAt(i-1)) )
        System.out.print( Character.toUpperCase(ch) );
    else
        System.out.print( ch );
}
System.out.println();


This will crash when i is zero, if the first character in the string
is indeed a letter. There are several ways to work
around the problem, and all of them are techniques that are worth knowing. The
first is to use a more complicated test in the if statement: "if the
character is a letter and either it's the first character in the string or the
previous character is not a letter". In Java, this is:


if (Character.isLetter(ch) && (i==0 || ! Character.isLetter(str.charAt(i-1))))

   
This avoids testing str.charAt(i-1) in the case when i is zero.
But it can be difficult to get
such a complicated test right. Another possibility is a bit sneaky: Add an
extra character onto the beginning of str, and then start the
for loop with i=1. Any character will do, as long as it's not
a letter. For example, you could say "str = "." + str;" Since the
for loop starts at i=1, the "." is not copied to output, and
the problem of i == 0 doesn't arise. The method that I will use is
similar, but it doesn't require any modification of str. I'll use
another variable to represent the preceding character in the string, except
that at the beginning of the string, I'll set it to the arbitrary value, '.'.
At the end of the loop, the character that we have just processed becomes the
"previous character" in the next iteration of the loop. Here is the complete
subroutine, using this method:


static void printCapitalized( String str ) {
   char ch;       // One of the characters in str.
   char prevCh;   // The character that comes before ch in the string.
   int i;         // A position in str, from 0 to str.length()-1.
   prevCh = '.';  // Prime the loop with any non-letter character.
   for ( i = 0;  i < str.length();  i++ ) {
      ch = str.charAt(i);
      if ( Character.isLetter(ch)  &&  ! Character.isLetter(prevCh) )
          System.out.print( Character.toUpperCase(ch) );
      else
          System.out.print( ch );
      prevCh = ch;  // prevCh for next iteration is ch.
   }
   System.out.println();
}


Keeping track of a previous value in a loop is a very common programming pattern.
This doesn't exhaust the possibilities. Another idea, for example, would be
to use a boolean variable to keep track of whether the previous character was a
letter.


Finally, we should add a Javadoc comment 
to document the subroutine.
Writing a main() routine to test this subroutine on a line of input
is easy.





The Solution






import textio.TextIO;

/**
 * This program will get a line of input from the user and will print a copy
 * of the line in which the first character of each word has been changed to 
 * upper case.  The program was written to test the printCapitalized
 * subroutine.  It depends on the non-standard TextIO class.
 */

public class CapitalizeOneString {
  
   public static void main(String[] args) {
      String line;  // Line of text entered by user.
      System.out.println("Enter a line of text.");
      line = TextIO.getln();
      System.out.println();
      System.out.println("Capitalized version:");
      printCapitalized( line );
   }
   
   /**
    *  Print a copy of a string to standard output, with the first letter
    *  of each word in the string changed to upper case.
    *  @param str the string that is to be output in capitalized form
    */
   static void printCapitalized( String str ) {
      char ch;       // One of the characters in str.
      char prevCh;   // The character that comes before ch in the string.
      int i;         // A position in str, from 0 to str.length()-1.
      prevCh = '.';  // Prime the loop with any non-letter character.
      for ( i = 0;  i < str.length();  i++ ) {
         ch = str.charAt(i);
         if ( Character.isLetter(ch)  &&  ! Character.isLetter(prevCh) )
            System.out.print( Character.toUpperCase(ch) );
         else
            System.out.print( ch );
         prevCh = ch;  // prevCh for next iteration is ch.
      }
      System.out.println();
   }
 
} // end CapitalizeOneString






Solution for Programming Exercise 4.2



Exercise 4.2:

The hexadecimal digits are
the ordinary, base-10 digits '0' through '9' plus the letters 'A' through 'F'.
In the hexadecimal system, these digits represent the values 0 through 15,
respectively. Write a function named hexValue that uses a
switch statement to find the hexadecimal value of a given character.
The character is a parameter to the function, and its hexadecimal value is the
return value of the function. You should count lower case letters 'a' through
'f' as having the same value as the corresponding upper case letters. If the
parameter is not one of the legal hexadecimal digits, return -1 as the value of
the function.


A hexadecimal integer is a sequence of hexadecimal digits, such as 34A7,
ff8, 174204, or FADE. If str is a string containing a hexadecimal
integer, then the corresponding base-10 integer can be computed as follows:


value = 0;
for ( i = 0; i < str.length();  i++ )
   value = value*16 + hexValue( str.charAt(i) );


Of course, this is not valid if str contains any characters that
are not hexadecimal digits. Write a program that reads a string from the user.
If all the characters in the string are hexadecimal digits, print out the
corresponding base-10 value. If not, print out an error message.





Discussion





The subroutine has a parameter of type char and a return value of
type int. It's easy to write the switch statement, although
it's tedious because of the number of cases. A little creative cut-and-paste
can help. The switch statement has a default case that covers
all the characters that are not hexadecimal digits. For such characters, a
value of -1 is returned.  Note that the action in each case of the switch
is to return a value.  A return statement is not allowed after the ->
in a case (only subroutine call statements, throw statements, and block statements are allowed).
So the return statements in the example are enclosed between braces
to make it into a block statement.  For example,


case 0 -> { return 0; }


The complete subroutine is shown in the program below.  It would actually make more sense
in this program to use a switch expression (Subsection 3.6.5) to
compute the return value.  Then the suboutine could be written:


public static int hexValue(char ch) {
    return  switch(ch) {
       case '0' -> 0;
       case '1' -> 1;
       case '2' -> 2;
       case '3' -> 3;
       case '4' -> 4;
       case '5' -> 5;
       case '6' -> 6;
       case '7' -> 7;
       case '8' -> 8;
       case '9' -> 9;
       case 'A', 'a' -> 10;
       case 'B', 'b' -> 11;
       case 'C', 'c' -> 12;
       case 'D', 'd' -> 13;
       case 'E', 'e' -> 14;
       case 'F', 'f' -> 15;
       default  -> -1;
    };
}


In the main program, I will use TextIO.getlnWord() to read the
user's input, rather than TextIO.getln(). This has the advantage that
it will return a non-empty string that is guaranteed not to contain any blanks.
We still have the problem of checking whether the user's input contains only
valid hexadecimal digits. One approach is to check all the characters first and
use a boolean variable to record whether they are all valid. We can test
whether an individual character, ch, is valid by checking whether
hexValue(ch) is -1.  Let
hex be a String holding the user's input. Then we have:


boolean valid; // Flag variable for testing whether the string is valid.
valid = true;  // Assume that the input is valid, and change our
               // mind if we find an invalid character.
for ( i = 0; i < hex.length(); i++ ) {
    if ( hexValue(hex.charAt(i)) == -1 ) {  // Character number i is bad.
       valid = false;
       break; // Leave the for loop, since we are now sure of the answer.
    }
}

// At the point, valid is true if and only if we have examined all the
// characters in the string and found that each one is a hex digit.

if ( valid ) {  // If the input is valid, compute and print base-10 value
   dec = 0;
   for ( i = 0; i < hex.length(); i++ )
      dec = 16*dec + hexValue( hex.charAt(i) );
   System.out.println("Base-10 value is:  " + dec);
}
else {  // Input is not valid, print an error message
   System.out.println("Error:  Input is not a hexadecimal number.");
}


This works, but we have to process the string twice. We can avoid this by
checking the input at the same time that we do the conversion. If the input is
illegal, I want to end the program. I use the fact that a return
statement in the main() routine will end the program, since it returns
control back to the system:


dec = 0;
for ( i = 0; i < hex.length(); i++) {
   int digit = hexValue( hex.charAt(i) );
   if (digit == -1) {
       System.out.println("Error:  Input is not a hexadecimal number.");
       return;  // Ends the main() routine.
   }
   dec = 16*dec + digit;
}
System.out.println("Base-10 value:  " + dec);


This is the code that is used in the main() routine of the program
to do the conversion. Note that I declared dec to be of type
long to allow bigger values than would fit in a variable of type
int. The program still has a problem if the user enters too many
characters. (It gets the wrong answer.)


It would probably be better to write a function to do the conversion of a
string to base-10. It could return a -1 if the string is not a legal
hexadecimal number. The main() routine could then call the function
and check its return value to find out whether there was an error.

   



In this exercise, a special value, -1, is returned by a subroutine
to indicate that its parameter value is not valid.  An alternative approach would be
to throw an exception if the parameter value is
not legal.  Instead of saying "return -1", the default case of
the switch statement in the subroutine could read:

   
default:
   throw new IllegalArgumentException("Not a legal hexadecimal digit: '" + ch + "'.");

   
The main program would then do the conversion from string to hexadecimal
in a try..catch statement.  If an exception occurs, the catch part
of the statement can print an error message:

   
try {    // IF WE WERE USING AN EXCEPTION-THROWING VERSION OF hexValue
    dec = 0;
    for ( i = 0; i < hex.length(); i++ ) {
       int digit = hexValue( hex.charAt(i) );  // Might throw an exception.
       dec = 16*dec + digit;
    }
    // We get here only if no exception occurred.
    System.out.println("Base-10 value:  " + dec);  
}
catch ( IllegalArgumentException e ) {
   System.out.println("Error:  Input is not a hexadecimal number.");
}


I think that this approach is much neater!





The Solution






import textio.TextIO;

/**
 * This program reads a hexadecimal number input by the user and prints the 
 * base-10 equivalent.  If the input contains characters that are not 
 * hexadecimal numbers, then an error message is printed.
 */

public class Hex2Dec {
 
    public static void main(String[] args) {
       String hex;  // Input from user, containing a hexadecimal number.
       long dec;    // Decimal (base-10) equivalent of hexadecimal number.
       int i;       // A position in hex, from 0 to hex.length()-1.
       System.out.print("Enter a hexadecimal number: ");
       hex = TextIO.getlnWord();
       dec = 0;
       for ( i = 0; i < hex.length(); i++ ) {
          int digit = hexValue( hex.charAt(i) );
          if (digit == -1) {
              System.out.println("Error:  Input is not a hexadecimal number.");
              return;  // Ends the main() routine.
          }
          dec = 16*dec + digit;
       }
       System.out.println("Base-10 value:  " + dec);
    }  // end main
    
    /**
     * Returns the hexadecimal value of a given character, or -1 if it is not
     * a valid hexadecimal digit.
     * @param ch the character that is to be converted into a hexadecimal digit
     * @return the hexadecimal value of ch, or -1 if ch is not 
     *     a legal hexadecimal digit
     */
    public static int hexValue(char ch) {
       switch (ch) {
          case '0' -> { return 0; }
          case '1' -> { return 1; }
          case '2' -> { return 2; }
          case '3' -> { return 3; }
          case '4' -> { return 4; }
          case '5' -> { return 5; }
          case '6' -> { return 6; }
          case '7' -> { return 7; }
          case '8' -> { return 8; }
          case '9' -> { return 9; }
          case 'A', 'a' -> { return 10; } // Note: Handle both upper and lower case.
          case 'B', 'b' -> { return 11; }
          case 'C', 'c' -> { return 12; }
          case 'D', 'd' -> { return 13; }
          case 'E', 'e' -> { return 14; }
          case 'F', 'f' -> { return 15; }
          default  -> { return -1; }
       }
    }  // end hexValue

} // end class Hex2Dec





Solution for Programming Exercise 4.3



Exercise 4.3:

Write a function that
simulates rolling a pair of dice until the total on the dice comes up to be a
given number. The number that you are rolling for is a parameter to the
function. The number of times you have to roll the dice is the return value of
the function. The parameter should be one of the possible totals:
2, 3, ..., 12.  The function should throw an IllegalArgumentException
if this is not the case.  Use your function in a program that computes and prints the
number of rolls it takes to get snake eyes. (Snake eyes means that the total
showing on the dice is 2.)





Discussion





The subroutine we have to write is very similar to the program from
Exercise 3.1. The main difference is that
instead of rolling until both dice come up 1, we roll until the total showing
on the dice is equal to some specified value.    That value is given by the
parameter to the function.  Of course, the first thing that the subroutine
should do is check that the value of the parameter is in the range of
possible rolls of a pair of dice; if not, it should throw an exception.
Note that without this check, the subroutine would go into an infinite loop
when the parameter is outside the range of possible values.
I named the function rollFor:


public static int rollFor( int N ) {
    if ( N < 2 || N > 12 )
       throw new IllegalArgumentException("Impossible total for a pair of dice.");
    int die1, die2;  // Numbers between 1 and 6 representing the dice.
    int roll;        // Total showing on dice.
    int rollCt;      // Number of rolls made.
    rollCt = 0;
    do {
       die1 = (int)(Math.random()*6) + 1;
       die2 = (int)(Math.random()*6) + 1;
       roll = die1 + die2;
       rollCt++;
    } while ( roll != N );
    return rollCt;
}

   
In the actual program, I've added an appropriate Javadoc comment.

   
You should understand the contract of this subroutine. The parameter, 
N, is supposed to be one of the numbers that could possibly come up on a
pair of dice. That is, N must be one of 2, 3, ..., or 12. 
The condition that N have a valid value is a precondition for the subroutine.  If the caller of
the function violates this precondition, the subroutine can't give any sort of
correct answer, so it responds by throwing an exception.


The main() routine for this program is trivial. In fact, it could
even be shortened to:


public static void main(String[] args) {
   System.out.println("It took " + rollFor(2) + " rolls to get snake eyes.");
}  // end main()





The Solution





/**
 * This program simulates rolling a pair of dice over and over until the
 * total showing on the two dice is 2.  It reports the number of rolls 
 * it took to get a 2.  (This was written to test the subroutine, rollFor.)
 */
public class RollFor2 {
  
   public static void main(String[] args) {
      int numberOfRolls;  // Number of rolls to get a 2.
      numberOfRolls = rollFor(2);
      System.out.println("It took " + numberOfRolls + " rolls to get snake eyes.");
   }  // end main()
   
   /**
    * Simulates rolling a pair of dice until a given total comes up.
    * Precondition:  The desired total is between 2 and 12, inclusive.
    * @param N the total that we want to get on the dice
    * @return the number of times the dice are rolled before the
    *    desired total occurs
    * @throws IllegalArgumentException if the parameter, N, is not a number
    *    that could possibly come up on a pair of dice
    */
   public static int rollFor( int N ) {
       if ( N < 2 || N > 12 )
          throw new IllegalArgumentException("Impossible total for a pair of dice.");
       int die1, die2;  // Numbers between 1 and 6 representing the dice.
       int roll;        // Total showing on dice.
       int rollCt;      // Number of rolls made.
       rollCt = 0;
       do {
          die1 = (int)(Math.random()*6) + 1;
          die2 = (int)(Math.random()*6) + 1;
          roll = die1 + die2;
          rollCt++;
       } while ( roll != N );
       return rollCt;
   }

}  // end class RollFor2





Solution for Programming Exercise 4.4



Exercise 4.4:

This exercise builds on Exercise 4.3.
Every time you roll the dice repeatedly, trying to get a given
total, the number of rolls it takes can be different. The question naturally
arises, what's the average number of rolls to get a given total? Write a function that performs the
experiment of rolling to get a given total 10000 times. The desired total is a
parameter to the subroutine. The average number of rolls is the return value.
Each individual experiment should be done by calling the function you wrote for
Exercise 4.3. Now, write a main program that will call your function once for
each of the possible totals (2, 3, ..., 12). It should make a table of the
results, something like:


Total On Dice     Average Number of Rolls
-------------     -----------------------
       2               35.8382
       3               18.0607
       .                .
       .                .





Discussion





The solution uses the subroutine, rollFor, from
Exercise 4.3.  That subroutine will throw an exception if
its parameter is not valid.  However, in my program, I know that the values
that I pass to the rollFor subroutine are valid and that no
exception will occur.  So, there is no need to use a try..catch statement
to handle the exception.


The main() program simply prints a heading for the output, then
uses a for loop to compute and print the data for each of the possible
rolls from 2 to 12. It is not difficult to write it, with a little care to get
the formatting right (using formatted output).


The only thing left is to write a function to find the average number of
rolls to get a given total on the dice. The average will be a real number, so
the return type of the function is double. The subroutine has a
parameter of type int that specifies the number we are rolling for.
I'll call the parameter "roll". An algorithm for the subroutine is


Let totalRolls = 0
Repeat 10000 times:
   Call rollFor(roll) to run the experiment once
   Add the returned value to totalRolls
Compute the average by dividing totalRolls by 10000
Return the average


In my program, I use a named constant, 
NUMBER_OF_EXPERIMENTS, to
specify the number of experiments to be performed. This constant replaces the
value 10000, making it easier to read the program and easier to change the
number of experiments if I decide I want to do more experiments or fewer. This
gives the subroutine:


public static double getAverageRollCount( int roll ) {
    int rollCountThisExperiment;  // Number of rolls in one experiment.
    int rollTotal;  // Total number of rolls in all the experiments.
    double averageRollCount;  // Average number of rolls per experiment.
    rollTotal = 0;
    for ( int i = 0;  i < NUMBER_OF_EXPERIMENTS;  i++ ) {
       rollCountThisExperiment = rollFor( roll );
       rollTotal += rollCountThisExperiment;
    }
    averageRollCount = ((double)rollTotal) / NUMBER_OF_EXPERIMENTS;
    return averageRollCount;
}


Note that when the average is computed, a type-cast is used to convert
rollTotal to type double. This is necessary since
rollCount and NUMBER_OF_EXPERIMENTS are integers, and the
computer would evaluate the quotient rollCount / NUMBER_OF_EXPERIMENTS
as an integer.


By the way, this subroutine could be substantially abbreviated at the
expense of being somewhat less easy to understand:


public static double getAverageRollCount( int roll ) {
    int rollTotal = 0;  // Total number of rolls in all the experiments.
    for ( int i = 0;  i < NUMBER_OF_EXPERIMENTS;  i++ )
       rollTotal += rollFor( roll );
    return ((double)rollTotal) / NUMBER_OF_EXPERIMENTS;
}





The Solution





/**
 * This program performs the following type of experiment:  Given a desired 
 * total roll, such as 7, roll a pair of dice until the given total comes up, 
 * and count how many rolls are necessary.  Now do that over and over, and
 * find the average number of rolls.  The number of times the experiment is 
 * repeated is given by the constant, NUMBER_OF_EXPERIMENTS.  The average is
 * computed and printed out for each possible roll = 2, 3, ..., 12. 
 */

public class DiceRollStats {

   /**
    * The number of times that the experiment "roll for a given total"
    * is to be repeated.  The program performs this many experiments, and
    * prints the average of the result, for each possible roll value, 
    */
   public static final int NUMBER_OF_EXPERIMENTS = 10000;

   public static void main(String[] args) {
       double average;  // The average number of rolls to get a given total.
       System.out.println("Total On Dice     Average Number of Rolls");
       System.out.println("-------------     -----------------------");
       for ( int dice = 2;  dice <= 12;  dice++ ) {
          average = getAverageRollCount( dice );
          System.out.printf("%10d%22.4f\n", dice, average);
             // Use 10 spaces to output dice, and use 22 spaces to output
             // average, with 4 digits after the decimal.
       }
   } 
   
   /**
    * Find the average number of times a pair of dice must be rolled to get
    * a given total.  The experiment of rolling for the given total is
    * repeated NUMBER_OF_EXPERIMENTS times and the average number of rolls
    * over all the experiments is computed.
    * Precondition:  The given total must be between 2 and 12, inclusive.
    * @param roll the total that we want to get on the dice
    * @return the average number of rolls that it takes to get the specified
    *    total
    */
   public static double getAverageRollCount( int roll ) {
       int rollCountThisExperiment;  // Number of rolls in one experiment.
       int rollTotal;  // Total number of rolls in all the experiments.
       double averageRollCount;  // Average number of rolls per experiment.
       rollTotal = 0;
       for ( int i = 0;  i < NUMBER_OF_EXPERIMENTS;  i++ ) {
          rollCountThisExperiment = rollFor( roll );
          rollTotal += rollCountThisExperiment;
       }
       averageRollCount = ((double)rollTotal) / NUMBER_OF_EXPERIMENTS;
       return averageRollCount;
   }
   
   /**
    * Simulates rolling a pair of dice until a given total comes up.
    * Precondition:  The desired total is between 2 and 12, inclusive.
    * @param N the total that we want to get on the dice
    * @return the number of times the dice are rolled before the
    *    desired total occurs
    * @throws IllegalArgumentException if the parameter, N, is not a number
    *    that could possibly come up on a pair of dice
    */
   public static int rollFor( int N ) {
       if ( N < 2 || N > 12 )
          throw new IllegalArgumentException("Impossible total for a pair of dice.");
       int die1, die2;  // Numbers between 1 and 6 representing the dice.
       int roll;        // Total showing on dice.
       int rollCt;      // Number of rolls made.
       rollCt = 0;
       do {
          die1 = (int)(Math.random()*6) + 1;
          die2 = (int)(Math.random()*6) + 1;
          roll = die1 + die2;
          rollCt++;
       } while ( roll != N );
       return rollCt;
   }
   
}  // end DiceRollStats





Solution for Programming Exercise 4.5



Exercise 4.5:

This exercise asks you to write a few lambda expressions
and a function that returns a lambda expression as its value.  Suppose that
a function interface ArrayProcessor is defined as

public interface ArrayProcessor {
    double apply( double[] array );
}

Write a class that defines four public static final variables
of type ArrayProcessor that process an array in the
following ways: find the maximum value in the array, find the minimum
value in an array, find the sum of the values in the array, and find the
average of the values in the array.  In each case, the value of the variable
should be given by a lambda expression.  The class should also define a
function

public static ArrayProcessor counter( double value ) { ...

This function should return an ArrayProcessor that
counts the number of times that value occurs in an array.  The return
value should be given as a lambda expression.

The class should have a main() routine that tests your work.
The program that you write for this exercise will need access to the
file ArrayProcessor.java, which defines the functional
interface.





Discussion





The interface ArrayProcessor defines a
function apply(array) that takes an array of type double[] and
that returns a double.   A lambda expression of type ArrayList
will typically take the form

array -> {
    statements-to-compute-value
    return a-double-value;
}

(Of course, the name of the parameter, array, could be anything.)
For example, a lambda expression for finding the sum of the numbers in the array
could be written

array -> {
    double total = 0;
    for (int i = 0; i < array.length; i++) {
        total = total + array[i];
    }
    return total;
}

This lambda expression is a value of type ArrayProcessor.
For this exercise, we are supposed to assign this lambda expression to a
public static final member variable of type ArrayProcessor.
Calling that variable sumer, this takes the form:

public static final ArrayProcessor sumer = array -> {
    double total = 0;
    for (int i = 0; i < array.length; i++) {
        total += array[i];
    }
    return total;
};

Note the semicolon at the end.  The semicolon is not part of the lambda expression;
it marks the end of the assignment statement.

Lambda expressions for the minimum and maximum of an array can be handled in a
similar way.  So could the average, but the average of an array is just the sum
of the array divided by its length.  Since we already have the ArrayProcessor
sumer for computing the sum of an array, we might as well use it for computing
the average.  To apply sumer to an array, A, of type double[],
we have to call the apply() function that is defined by the ArrayProcessor
interface:  sumer.apply(A).  So, we can define an ArrayProcessor
for computing the average of an array by:

public static final ArrayProcessor averager = 
            array -> sumer.apply(array) / array.length;

When counting the number of times that a value appears in array, the answer depends on
which value is being counted.  That is, an ArrayProcessor that
counts the number of times a value appears in an array is a function of the value that
is being counted.  The counter function that we are asked to write can simply
return an appropriate lambda expression:

public static ArrayProcessor counter( double value ) {
    return array -> {
        int count = 0;
        for (int i = 0; i < array.length; i++) {
            if ( array[i] == value )
                count++;
        }
        return count;
    };
}

Note that the parameter, value, is used in the definition of the array.
So, for example, counter(17.0) will return an ArrayProcessor
whose apply() method will count the number of times 17.0 occurs in an array.
In my solution, I use that apply method in an expression of the form
counter(17.0).apply(secondList), where secondList is a variable
of type double[].  Take a look at the main() routine in the
program below to see how the other ArrayProcessors
are used.





The Solution






/**
 * This class defines several public static member variables of
 * type ArrayProcessor that process arrays in various ways.  It
 * also defines a function that can create ArrayProcessors for
 * counting occurrences of values in an array.  (Note that this
 * program depends on interface ArrayProcessor.)
 */
public class LambdaTest {
    
    /**
     * This function returns an ArrayProcessor that counts
     * the number of times a certain value occurs in an array
     * of doubles.  The parameter specifies the value that is
     * to be counted.
     */
    public static ArrayProcessor counter( double value ) {
        return array -> {
            int count = 0;
            for (int i = 0; i < array.length; i++) {
                if ( array[i] == value )
                    count++;
            }
            return count;
        };
    }
    
    
    /**
     * An ArrayProcessor that computes and returns the maximum
     * value of an array.  (The array must have length at least 1.)
     */
    public static final ArrayProcessor maxer = array -> {
        double max = array[0];
        for (int i = 0; i < array.length; i++) {
            if ( array[i] > max)
                max = array[i];
        }
        return max;
    };
    
    
    /**
     * An ArrayProcessor that computes and returns the minimum
     * value of an array.  (The array must have length at least 1.)
     */
    public static final ArrayProcessor miner = array -> {
        double min = array[0];
        for (int i = 0; i < array.length; i++) {
            if ( array[i] < min)
                min = array[i];
        }
        return min;
    };
    
    
    /**
     * An ArrayProcessor that computes and returns the sum of the
     * values in an array.  (The array must have length at least 1.)
     */
    public static final ArrayProcessor sumer = array -> {
        double total = 0;
        for (int i = 0; i < array.length; i++) {
            total += array[i];
        }
        return total;
    };
    
    
    /**
     * An ArrayProcessor that computes and returns the average of the
     * values in an array.  (The array must have length at least 1.)
     */
    public static final ArrayProcessor averager = 
            array -> sumer.apply(array) / array.length;
    
            
            
    //---------------------------------------------------------------------------------------------------
            
    /**
     * A main() routine to test the (other) public members of this class.
     */
    public static void main(String[] args) {
        
        double[] firstList = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
        double[] secondList = { 17.0, 3.14, 17.0, -3.4, 17.0, 42.0, 29.2, 3.14 };
        
        System.out.println("Sum of first list (should be 55): " 
                                                 + sumer.apply(firstList) );
        System.out.println("Average of first list (should be 5.5): " 
                                                 + averager.apply(firstList) );
        System.out.println("Minimum of second list (should be -3.4): " 
                                                 + miner.apply(secondList) );
        System.out.println("Maximum of second list (should be 42.0): " 
                                                 + maxer.apply(secondList) );
        
        System.out.println();
        
        System.out.println("Count of 17.0 in second list (should be 3): " 
                                                 + counter(17.0).apply(secondList) );
        System.out.println("Count of 20.0 in second list (should be 0): " 
                                                 + counter(20.0).apply(secondList) );
        System.out.println("Count of 5.0 in first list (should be 1): " 
                                                 + counter(5.0).apply(firstList) );
        
    }
    
    
} // end class LambdaTest






Solution for Programming Exercise 4.6



Exercise 4.6:

The sample program
RandomMosaicWalk.java from
Section 4.7 shows a "disturbance" that wanders around a
grid of colored squares. When the disturbance visits a square, the color of
that square is changed.  Here's an idea for a variation on that program.
In the new version, all the squares start
out with the default color, black. Every time the disturbance visits a square,
a small amount is added to the green component of the color of that square.
The result will be a visually interesting effect, as the path followed by the
disturbance gradually turns a brighter and brighter green.

Write a subroutine that will add 25 to the green component of one of the squares in the
mosaic.  (But don't let the green component go over 255, since that's the largest
legal value for a color component.)
The row and column numbers of the square should be given as parameters
to the subroutine. Recall that you can discover the current green component of
the square in row r and column c with the function call
Mosaic.getGreen(r,c). Use your subroutine as a substitute for the
changeToRandomColor() subroutine in the program RandomMosaicWalk2.java.
(This is the improved version of the program from Section 4.8 that uses named constants for
the number of rows, number of columns, and square size.) Set the number of rows
and the number of columns to 80. Set the square size to 5.

By default, the rectangles in the mosaic have a "3D" appearance and a gray border that makes
them look nicer in the random walk program.  But for this program, you want to turn off that
effect.  To do so, call Mosaic.setUse3DEffect(false) in the main program.

Don't forget that you will need Mosaic.java and MosaicCanvas.java
to compile and run your program, since they define non-standard classes that are required by the program.






Discussion





This is an exercise in making a rather small modification to a relatively
complicated existing program.


The only real problem is to write a new subroutine, which I will call
brightenSquare. Much of the program comes directly from
RandomMosaicWalk2.java. The
randomMove() routine is unchanged. The important changes in the
main() routine are to substitute a call to brightenSquare for
the call to changeToRandomColor and to add the line calling Mosaic.setUse3DEffect. 
I also set the delay to 1 in the call to Mosaic.delay() to speed up the program.
The subroutines
fillWithRandomColors and changeToRandomColor in the
RandomMosaicWalk2 program are not needed in the new program and should be removed. In the
three lines that define the constants, the values are changed according the
instructions in the exercise:


final static int ROWS = 80;        // Number of rows in the mosaic.
final static int COLUMNS = 80;     // Number of columns in the mosaic.
final static int SQUARE_SIZE = 5;  // Size of each square in the mosaic.


With these values, the program is interesting to watch for a while.   You
might want to try using shades of red, blue, or gray, instead of green.  Or even
use three disturbances, one incrementing the red component of the color, one incrementing
the green component, and one incrementing the blue.


An outline for the brightenSquare routine is clear, remembering that
the green component can't be more than 255:


Let g be the current green component of the square
Add 25 to g
If g is greater than 255
    set g = 255
Set the color components of the square to  0, g, 0


The red and blue components of the color will always be zero. However,
they must be specified in the Mosaic.setColor() routine. Written in
Java, the body of the routine is just three lines long:


static void brightenSquare(int row, int col) {
    int g = Mosaic.getGreen(row,col);
    g += 25;
    if (g > 255)
        g = 255;
    Mosaic.setColor(row,col,0,g,0);
}










The Solution





/**
 * This program opens a Mosaic window that is initially filled with black.
 * A "disturbance" moves randomly around in the window.  Each time it visits
 * a square, the green component of the color of that square is increased
 * until, after about ten visits, it has reached the maximum possible level.
 * The animation continues until the user closes the window.
 */

public class RandomBrighten {
   
   final static int ROWS = 80;        // Number of rows in the mosaic.
   final static int COLUMNS = 80;     // Number of columns in the mosaic.
   final static int SQUARE_SIZE = 5;  // Size of each square in the mosaic.
   
   static int currentRow;    // Row currently containing the disturbance.
   static int currentColumn; // Column currently containing disturbance.
   
   /**
    * The main program creates the window, fills it with random colors,
    * and then moves the disturbance in a random walk around the window
    * as long as the window is open.
    */
   public static void main(String[] args) {
      Mosaic.open( ROWS, COLUMNS, SQUARE_SIZE, SQUARE_SIZE );
      currentRow = ROWS / 2;   // start at center of window
      currentColumn = COLUMNS / 2;
      Mosaic.setUse3DEffect(false);
      while ( true ) {
         brightenSquare(currentRow, currentColumn);
         randomMove();
         Mosaic.delay(1);
      }
   }  // end main
   
   /**
    * Add a bit of green to the rectangle in a given row and column.
    * Precondition:   The specified rowNum and colNum are in the valid range
    *                 of row and column numbers.
    * Postcondition:  The green component of the color of the square has
    *                 been increased by 25, except that it does not go
    *                 over its maximum possible value, 255.
    */
   static void brightenSquare(int row, int col) {
      int g = Mosaic.getGreen(row,col);
      g += 25;
      if (g > 255)
          g = 255;
      Mosaic.setColor(row,col,0,g,0);
   }
   
   /**
    * Move the disturbance.
    * Precondition:   The global variables currentRow and currentColumn
    *                 are within the legal range of row and column numbers.
    * Postcondition:  currentRow or currentColumn is changed to one of the
    *                 neighboring positions in the grid -- up, down, left, or
    *                 right from the current position.  If this moves the
    *                 position outside of the grid, then it is moved to the
    *                 opposite edge of the grid.
    */
   static void randomMove() {
      int directionNum; // Randomly set to 0, 1, 2, or 3 to choose direction.
      directionNum = (int)(4*Math.random());
      switch (directionNum) {
          case 0 -> {  // move up 
             currentRow--;
             if (currentRow < 0)
                currentRow = ROWS - 1;
          }
          case 1 -> {  // move right
             currentColumn++;
             if (currentColumn >= COLUMNS)
                currentColumn = 0;
          }
          case 2 -> {  // move down
             currentRow ++;
             if (currentRow >= ROWS)
                currentRow = 0;
          }
          case 3 -> {  // move left  
             currentColumn--;
             if (currentColumn < 0)
                currentColumn = COLUMNS - 1;
          }
      }
   }  // end randomMove
   
} // end class RandomBrighten





Solution for Programming Exercise 4.7



Exercise 4.7:

For this exercise, you will do something even more interesting
with the Mosaic class that was discussed in Section 4.7.
(Again, don't forget that you will need Mosaic.java and MosaicCanvas.java
to compile and run your program.)


The program that you write for this exercise should start by filling a mosaic with
random colors.  Then repeat the following until the user closes the mosaic window:
Select one of the rectangles in the mosaic at random.  Then select one of the
neighboring rectangles—above it, below it, to the left of it, or to the right of it.
Copy the color of the originally selected rectangle to the selected neighbor, so that
the two rectangles now have the same color.

 
As this process is repeated over and over, it becomes more and more likely that neighboring
 squares will have the same color.  The result is to build up larger color patches.  On the other
 hand, once the last square of a given color disappears, there is no way for that color to
 ever reappear. (Extinction is forever!)  If you let the program run long enough, eventually
 the entire mosaic will be one uniform color.





Discussion





I will call the program RandomConvert, since the basic operation
is to convert one square to be the same color as a neighboring square.  An outline for the
main program is easy:

Open a mosaic window
Fill the mosaic with random colors
while the window is open:
   Select one of the rectangles at random
   Convert the color of one of that rectangle's neighbors
   Short delay

   
We have already seen a subroutine for filling the mosaic with random color, in
Subsection 4.7.2.  I will also write a subroutine to do the second
step in the while loop.  There is some question about what it means to "select one
of the rectangles at random."  A rectangle in the mosaic is specified by a 
row number and a column number.  We can select a random rectangle by choosing a
row number and a column number at random.  Assuming that ROWS and
COLUMNS are constants that give the number of rows and the number of
columns, we can do that by saying


int randomRow = (int)(ROWS * Math.random());
int randomColumn = (int)(COLUMNS * Math.random());


where I have declared each variable and initialized it in one step, as
discussed in Subsection 4.8.1.  For the "convert" subroutine
to do its work, we will have to tell it which rectangle has been selected, so
randomRow and randomColumn will be parameters to 
that subroutine.  The code for the program's main() routine
becomes:


Mosaic.open(ROWS, COLUMNS, SQUARE_SIZE, SQUARE_SIZE);
fillWithRandomColors();
while ( true ) {
   int randomRow = (int)(ROWS * Math.random());
   int randomColumn = (int)(COLUMNS * Math.random());
   convertRandomNeighbor(randomRow, randomColumn); 
   Mosaic.delay(1);
}


All that remains is to write the convertRandomNeighbor() subroutine.
This routine should pick a random neighbor of a given rectangle and change its color.
A rectangle in the mosaic has four neighbors, above, below, to the left, and to the right.
We can pick one at random by selecting a random integer less than four and using that
integer to decide which neighbor to select.
We have a problem, though, if the rectangle is on the edge of the mosaic.  For example,
if the rectangle is in the top row, then there is no neighbor above
that rectangle in the mosaic.  One solution to this problem is to wrap around to the
bottom of the mosaic and use a square from the bottom row as the neighbor.  Essentially,
we think of the top of the mosaic as connected to the bottom and the left edge as
connected to the right.  We have seen something like this in Subsection 4.7.3,
in the randomMove() subroutine.  The convertRandomNeighbor() code
can use some basic ideas from randomMove().  
Here is a version of convertRandomNeighbor()
that would work:



static void convertRandomNeighbor(int row, int col) {

   /* Choose a random direction, and get the row and column
    * numbers of the neighbor that lies in that direction. */

   int neighborRow;       // row number of selected neighbor
   int neighborColumn;    // column number of selected neighbor

   int directionNum = (int)(4*Math.random());  // random direction;

   switch (directionNum) {
       case 0 -> {   // Choose neighbor above.
          neighborColumn = col;        // Neighbor is in the same column.
          neighborRow = row - 1;       // Subtract 1 to get neighbor's row number.
          if (neighborRow < 0)         // Neighbor's row number is outside the mosaic.
             neighborRow = ROWS - 1;  // So wrap around to bottom of the mosaic.
       }
       case 1 -> {    // Choose neighbor to the right.
          neighborRow = row;               // Same row.
          neighborColumn = col + 1;        // Column to the right.
          if (neighborColumn >= COLUMNS)   // Outside the mosaic?
             neighborColumn = 0;          // Wrap around to the left edge
       }
       case 2 -> {    // Choose neighbor below.
          neighborColumn = col;
          neighborRow = row + 1;
          if (neighborRow >= ROWS)
             neighborRow = 0;
       }
       default -> {    // Choose neighbor to the left.
          neighborRow = row;
          neighborColumn = col - 1;
          if (neighborColumn < 0)
             neighborColumn = COLUMNS - 1;
       }
   }
       
   /* Get the color components for position (row,col) */
   
   int red = Mosaic.getRed(row,col);
   int green = Mosaic.getGreen(row,col);
   int blue = Mosaic.getBlue(row,col);
   
   /* Change the color of the neighbor to color of the original square. */
       
   Mosaic.setColor(neighborRow,neighborColumn,red,green,blue);
    
}


Note the use of a default case at the end of the switch
statement.  Saying "case 3" will not work here, because the computer would
not be able to verify that values have definitely been assigned to neighborRow
and neighborColumn.


In my program, I actually used a different algorithm that requires somewhat less code.
My algorithm goes like this:


Get the color components for the rectangle at position (row,col).
Modify the value of row or col to point to a neighboring rectangle.
Set the color of position (row,col).


This is a little tricky, since the variables row and col are 
used both for getting the color and for setting it.  But by the time row
and col are used for setting the color, they are referring to a different
rectangle.  You can see my version of convertRandomNeighbor in the full
source code listing below.








The Solution





 /**
 * This program fills a mosaic with random colors.  It then enters
 * a loop in which it randomly selects one of the squares in the
 * mosaic, then randomly selects one of the four neighbors of that
 * square and converts the selected neighbor to the color of the
 * originally selected square.  The effect is to gradually build
 * up larger patches of uniform color.  The animation continues 
 * until the user closes the window.  This program depends on
 * the non-standard classes Mosaic and MosaicCanvas.
 */

public class RandomConvert {

    final static int ROWS = 40;        // Number of rows in the mosaic. 
    final static int COLUMNS = 40;     // Number of columns in the mosaic.
    final static int SQUARE_SIZE = 10; // Size of each square in the mosaic.


    /**
     * The main() routine opens the mosaic window, then enters into
     * a loop in which it repeatedly converts the color of one square.
     * The loop ends when the user closes the mosaic window.
     */
    public static void main(String[] args) {
        Mosaic.setUse3DEffect(false);
        Mosaic.open(ROWS, COLUMNS, SQUARE_SIZE, SQUARE_SIZE);
        fillWithRandomColors();
        while ( true ) {
            int randomRow = (int)(ROWS * Math.random());
            int randomColumn = (int)(COLUMNS * Math.random());
            convertRandomNeighbor(randomRow, randomColumn);
            Mosaic.delay(1);
        }
    }


    /**
     * Set each square in the mosaic to be a randomly selected color.
     */
    static void fillWithRandomColors() {
        for (int row = 0; row < ROWS; row++) {
            for (int col = 0; col < COLUMNS; col++) {
                int r = (int)(256*Math.random());
                int g = (int)(256*Math.random());
                int b = (int)(256*Math.random());
                Mosaic.setColor(row,col,r,g,b);
            }
        }
    }


    /**
     * Select one of the neighbors of the square at position (row,column) in
     * the mosaic.  Change the color at position (row, column) to match the
     * color of the selected neighbor.   The neighbors of a square are the
     * squares above, below, to the left, and to the right of the square.
     * For squares on the edge of the mosaic, wrap around to the opposite
     * edge.
     */
    static void convertRandomNeighbor(int row, int col) {

        /* Get the color components for position (row,col) */

        int red = Mosaic.getRed(row,col);
        int green = Mosaic.getGreen(row,col);
        int blue = Mosaic.getBlue(row,col);

        /* Choose a random direction, and change the value of row
         * or col to refer to the neighbor that lies in that direction. */

        int directionNum = (int)(4*Math.random());
        switch (directionNum) {
            case 0 -> {    // Choose neighbor above.
                row--;  // Move row number one row up.
                if (row < 0)  // row number is outside the mosaic.
                    row = ROWS - 1;  // Wrap around to bottom of the mosaic.
            }
            case 1 -> {    // Choose neighbor to the right.
                col++;
                if (col >= COLUMNS)
                    col = 0;
            }
            case 2 -> {    // Choose neighbor below.
                row++;
                if (row >= ROWS)
                    row = 0;
            }
            case 3 -> {    // Choose neighbor to the left.
                col--;
                if (col < 0)
                    col = COLUMNS - 1;
            }
        }

        /* Change the color of the neighbor to color of the original square. */

        Mosaic.setColor(row,col,red,green,blue);
    }

} // end class RandomConvert


 



Solution for Programming Exercise 4.8



Exercise 4.8:

Write a program that administers a basic addition quiz to the user.
There should be ten questions.  Each question is a simple addition problem such as
17 + 42, where the numbers in the problem are chosen at random
(and are not too big).  The program should ask the user all ten questions and get
the user's answers.  After asking all the questions, the user should print each question
again, with the user's answer.  If the user got the answer right, the program should
say so; if not, the program should give the correct answer.  At the end, tell the user
their score on the quiz, where each correct answer counts for ten points.

The program should use three subroutines, one to create the quiz, one to administer
the quiz, and one to grade the quiz.  It can use three arrays, with three global variables of type
int[], to refer to the arrays.  The first array holds the first number from every
question, the second holds the second number from every questions, and the third holds
the user's answers.





Discussion





The statement of the problem has already made a lot of decisions for us.  We are told
to use three global variables of type int[].  The variables must be static,
and I have chosen to make them private, so the declarations become:


private static int[] firstNumbers;  // The first numbers in all ten questions.
private static int[] secondNumbers; // The second numbers in all ten questions.
private static int[] userAnswers;   // The user's answers to the ten questions.


Note that these declarations are not in any subroutine.  These statements only create variables, not
arrays. We still need to create three arrays of length 10.  The arrays can be created using 
the new operator.  This initialization could in fact be combined with the
declaration of the variables:

private static int[] firstNumbers = new int[10];
private static int[] secondNumbers = new int[10];
private static int[] userAnswers = new int[10];

Another possibility would be to create the three arrays at the beginning of the
main() routine.  In fact, I chose to create them in the subroutines where
they are first used.

The program has three stages—create the problems, administer the quiz, and grade the
quiz—and we are told to write a subroutine to do each stage.  The main program simply
has to call the subroutines:

public static void main(String[] args) {
    createQuiz();
    administerQuiz();
    gradeQuiz();
}

(However, I added a couple of output statements at the start.)  
This is an example of using subroutines to break up a large task into several simpler
subtasks, so that programming each subtask becomes a separate problem.  The subroutines
are short and not too hard to write.  Looking at administerQuiz() as an example,
note that the user's answers have to be stored in the array, userAnswers,
so that they can be used when grading the quiz.  I create the array itself before asking
any questions, and then store the user's responses into the array as they are read
from the user.  On the other hand, the arrays that hold the numbers that occur in the
questions have already been created and filled before administerQuiz() is called.
Here's the subroutine:


private static void administerQuiz() {
    userAnswers = new int[10];
    for (int i = 0; i < 10; i++) {
        int questionNum = i + 1;
        System.out.printf("Question %2d:  What is %2d + %2d  ? ",
                      questionNum, firstNumbers[i], secondNumbers[i]);
        userAnswers[i] = TextIO.getlnInt();
    }
}


A couple notes about the output:  I wanted to number the questions
1, 2, ..., 10, but the elements of the arrays are numbered 0, 1, ..., 9.
This means that the question number that I output has to be one more than the
array index.  Also, all the numbers that occur in my program are either one or
two digits.  By allowing exactly two digits for each number in the output, I can
get everything to line up neatly.  Here's the I/O for a sample run of the
program:

Welcome to the addition quiz!

Question  1:  What is 40 + 14  ? 54
Question  2:  What is 18 + 38  ? 46
Question  3:  What is 21 + 31  ? 52
Question  4:  What is 18 + 36  ? 54
Question  5:  What is 43 + 12  ? 55
Question  6:  What is 21 + 17  ? 38
Question  7:  What is 33 + 25  ? 58
Question  8:  What is 39 + 21  ? 70
Question  9:  What is  1 + 25  ? 26
Question 10:  What is 39 + 26  ? 65

Here are the correct answers:
   Question  1:  40 + 14  =  54.  You were CORRECT.
   Question  2:  18 + 38  =  56.  You said 46, which is INCORRECT.
   Question  3:  21 + 31  =  52.  You were CORRECT.
   Question  4:  18 + 36  =  54.  You were CORRECT.
   Question  5:  43 + 12  =  55.  You were CORRECT.
   Question  6:  21 + 17  =  38.  You were CORRECT.
   Question  7:  33 + 25  =  58.  You were CORRECT.
   Question  8:  39 + 21  =  60.  You said 70, which is INCORRECT.
   Question  9:   1 + 25  =  26.  You were CORRECT.
   Question 10:  39 + 26  =  65.  You were CORRECT.

You got 8 questions correct.
Your grade on the quiz is 80



I noted in Subsection 4.3.8 that it's considered bad style to use global
variables where parameters could be used instead, and that some people are quite hostile
to unnecessary global variables.  You might ask, how bad was it to use global variables in
this case?  To some extent this is a matter of opinion.  You could argue that the whole
program revolves around the three arrays, so it makes sense for them to be global in the
program.  On the other hand, it is possible to avoid using globals in this case.
The three array variables can be declared in main() and the three arrays
can be created there and passed as parameters to the subroutines.  Here is a main
routine that does that:


public static void main(String[] args) {
    int[] firstNums = new int[10];  // The first numbers in the ten problems
    int[] secondNums = new int[10]; // The second numbers in the ten problems
    int[] answers = new int[10];    // The user's answers.
    System.out.println();
    System.out.println("Welcome to the addition quiz!");
    System.out.println();
    createQuiz(firstNums,secondNums);
    administerQuiz(firstNums,secondNums,answers);
    gradeQuiz(firstNums,secondNums,answers);
}

A complete second version of the program, with no global variables, is given below.
One reason that I asked you to use global variables is that understanding exactly how
arrays work as parameters requires an understanding of objects and how they are
passed as parameters.  Without that understanding, it's hard to get the global-less
version correct.  You will learn about passing objects as parameters in the
next chapter.





The Solution






Here is the original program, using global variables:


import textio.TextIO;

/**
 * This program administers a ten-question addition quiz to the user.  The numbers
 * for the problem are chosen at random.  The numbers and the answers are one or
 * two digits.  After asking the user the ten questions, the computer grades the
 * quiz, telling the user the correct answer for any problem they got wrong.
 */
public class AdditionQuiz {
    
    private static int[] firstNumbers;  // The first numbers in all ten questions.
    private static int[] secondNumbers; // The second numbers in all ten questions.
    private static int[] userAnswers;   // The user's answers to the ten questions.
    
    
    public static void main(String[] args) {
        System.out.println();
        System.out.println("Welcome to the addition quiz!");
        System.out.println();
        createQuiz();
        administerQuiz();
        gradeQuiz();
    }
    
    
    /**
     * Creates the arrays that hold the numbers for the questions and fills
     * them with random numbers.  
     */
    private static void createQuiz() {
        firstNumbers = new int[10];
        secondNumbers = new int[10];
        for ( int i = 0; i < 10; i++ ) {
            firstNumbers[i] = (int)(Math.random() * 50 + 1);  // in the range 1 to 50
            secondNumbers[i] = (int)(Math.random() * 50); // in the range 0 to 49
        }
    }
    
    
    /**
     * Asks the user each of the ten quiz questions and gets the user's answers.
     * The answers are stored in an array, which is created in this subroutine.
     */
    private static void administerQuiz() {
        userAnswers = new int[10];
        for (int i = 0; i < 10; i++) {
            int questionNum = i + 1;
            System.out.printf("Question %2d:  What is %2d + %2d  ? ",
                          questionNum, firstNumbers[i], secondNumbers[i]);
            userAnswers[i] = TextIO.getlnInt();
        }
    }
    
    
    /**
     * Shows all the questions, with their correct answers, and computes a grade
     * for the quiz.  For each question, the user is told whether they got
     * it right.
     */
    private static void gradeQuiz() {
        System.out.println();
        System.out.println("Here are the correct answers:");
        int numberCorrect = 0;
        int grade;
        for (int i = 0; i < 10; i++) {
            int questionNum = i + 1;
            int correctAnswer = firstNumbers[i] + secondNumbers[i];
            System.out.printf("   Question %2d:  %2d + %2d  =  %2d.  ",
                questionNum, firstNumbers[i], secondNumbers[i], correctAnswer);
            if ( userAnswers[i] == correctAnswer ) {
                System.out.println("You were CORRECT.");
                numberCorrect++;
            }
            else {
                System.out.println("You said " + userAnswers[i] + ", which is INCORRECT.");
            }
        }
        grade = numberCorrect * 10;
        System.out.println();
        System.out.println("You got " + numberCorrect + " questions correct.");
        System.out.println("Your grade on the quiz is " + grade);
        System.out.println();
    }

} // end class AdditionQuiz


Here is a version that uses parameters and no global variables:


import textio.TextIO;

/**
 * This program administers a ten-question addition quiz to the user.  The numbers
 * for the problem are chosen at random.  The numbers and the answers are one or
 * two digits.  After asking the user the ten questions, the computer grades the
 * quiz, telling the user the correct answer for any problem they got wrong.
 */
public class AdditionQuizNoGlobals {
        
    
    public static void main(String[] args) {
        int[] firstNums = new int[10];  // The first numbers in the ten problems
        int[] secondNums = new int[10]; // The second numbers in the ten problems
        int[] answers = new int[10];    // The user's answers.
        System.out.println();
        System.out.println("Welcome to the addition quiz!");
        System.out.println();
        createQuiz(firstNums,secondNums);
        administerQuiz(firstNums,secondNums,answers);
        gradeQuiz(firstNums,secondNums,answers);
    }
    
    
    /**
     * Creates the arrays that hold the numbers for the questions and fills
     * them with random numbers.  The parameters are arrays that will hold
     * the random numbers for the first and second operands of each addition
     * problem.  The arrays must have already been created when this subroutine
     * is called!
     */
    private static void createQuiz(int[] firstNumbers, int[] secondNumbers) {
        for ( int i = 0; i < 10; i++ ) {
            firstNumbers[i] = (int)(Math.random() * 50 + 1);  // in the range 1 to 50
            secondNumbers[i] = (int)(Math.random() * 50); // in the range 0 to 49
        }
    }
    
    
    /**
     * Asks the user each of the ten quiz questions and gets the user's answers.
     * The first two parameters hold the operands for the quiz questions.  The user's
     * answers to the ten problems will be stored in the third array.  All arrays
     * exist before this subroutine is called, and the first two arrays have
     * already been filled with values.
     */
    private static void administerQuiz(int[] firstNumbers, int[] secondNumbers, int[] userAnswers) {
        for (int i = 0; i < 10; i++) {
            int questionNum = i + 1;
            System.out.printf("Question %2d:  What is %2d + %2d  ? ",
                          questionNum, firstNumbers[i], secondNumbers[i]);
            userAnswers[i] = TextIO.getlnInt();
        }
    }
    
    
    /**
     * Shows all the questions, with their correct answers, and computes a grade
     * for the quiz.  For each question, the user is told whether they got
     * it right.  The first two parameters hold the operands for the quiz questions,
     * and the third parameter holds the answers that the user gave to the quiz.
     */
    private static void gradeQuiz(int[] firstNumbers, int[] secondNumbers, int[] userAnswers) {
        System.out.println();
        System.out.println("Here are the correct answers:");
        int numberCorrect = 0;
        int grade;
        for (int i = 0; i < 10; i++) {
            int questionNum = i + 1;
            int correctAnswer = firstNumbers[i] + secondNumbers[i];
            System.out.printf("   Question %2d:  %2d + %2d  =  %2d.  ",
                questionNum, firstNumbers[i], secondNumbers[i], correctAnswer);
            if ( userAnswers[i] == correctAnswer ) {
                System.out.println("You were CORRECT.");
                numberCorrect++;
            }
            else {
                System.out.println("You said " + userAnswers[i] + ", which is INCORRECT.");
            }
        }
        grade = numberCorrect * 10;
        System.out.println();
        System.out.println("You got " + numberCorrect + " questions correct.");
        System.out.println("Your grade on the quiz is " + grade);
        System.out.println();
    }

}  // end class AdditionQuizNoGlobals








Solution for Programming Exercise 8.1



Exercise 8.1:

Write a program that uses
the following subroutine, from Subsection 8.3.3, to solve
equations specified by the user.

/**
 * Returns the larger of the two roots of the quadratic equation
 * A*x*x + B*x + C = 0, provided it has any roots.  If A == 0 or
 * if the discriminant, B*B - 4*A*C, is negative, then an exception
 * of type IllegalArgumentException is thrown.
 */
static public double root( double A, double B, double C ) 
                              throws IllegalArgumentException {
    if (A == 0) {
      throw new IllegalArgumentException("A can't be zero.");
    }
    else {
       double disc = B*B - 4*A*C;
       if (disc < 0)
          throw new IllegalArgumentException("Discriminant < zero.");
       return  (-B + Math.sqrt(disc)) / (2*A);
    }
}

Your program should allow the user to specify values for A,
B, and C. It should call the subroutine to compute a solution
of the equation. If no error occurs, it should print the root. However, if an
error occurs, your program should catch that error and print an error message.
After processing one equation, the program should ask whether the user wants to
enter another equation. The program should continue until the user answers
no.





Discussion





This is really just a fairly easy exercise in using exceptions. The
root() subroutine must be called in a try..catch statement. There
must be a catch clause to handle the IllegalArgumentException
that might be thrown by the routine. The catch clause can simply print an error
message:


try {
   solution = root(A,B,C);
   System.out.println("A solution of the equation is " + solution);
}
catch (IllegalArgumentException e) {
   System.out.println("Sorry, I can't find a solution.");
   System.out.println(e.getMessage());
}


Note that I've put the output statement that prints the solution inside the
try statement. If an IllegalArgumentException is thrown by
the subroutine, then this output statement will not be executed since the
computer will jump immediately to the catch clause. You have to be
careful about things like this. It wouldn't do to have the output statement
after the try..catch statement, since then the computer would still
try to execute the output statement after handling an
IllegalArgumentException. There are other ways to deal with this
problem. For example, since the try..catch statement occurs in a
while loop, we could put a continue statement in the
catch clause to abort further processing when an exception occurs:

try {
   solution = root(A,B,C);
}
catch (IllegalArgumentException e) {
   System.out.println("Sorry, I can't find a solution.");
   System.out.println(e.getMessage());
   continue;  // jump back to start of the while loop.
}

/* We only get to this point if NO exception was thrown.
   So we know that the solution was computed successfully. */

System.out.println("A solution of the equation is " + solution);

The rest of the main program is pretty standard. A complete solution is
shown below.





The Solution





import textio.TextIO;

/**   
 * This program will compute and print one of the solutions
 * to an equation of the form A*X*X + B*X + C = 0, where
 * A, B, and C are numbers entered by the user.  It depends
 * on the non-standard class TextIO for doing input.
 */
public class Quadratic {

   public static void main(String[] args) {
      
      double A, B, C;   // Coefficients in the equation.
      double solution;  // The solution computed for the equation.
      boolean goAgain;  // Set to true if the user wants to
                        //   solve another equation.
                        
      System.out.println("This program will print a solution of an equation");
      System.out.println("of the form A*X*X + B*X + C = 0, where A, B, and");
      System.out.println("C are values that you enter.");
      
      do {
         
         /* Get the coefficients from the user. */

         System.out.println();
         System.out.println("Enter values for A, B, and C:");
         System.out.print("A = ");
         A = TextIO.getlnDouble();
         System.out.print("B = ");
         B = TextIO.getlnDouble();
         System.out.print("C = ");
         C = TextIO.getlnDouble();
         System.out.println();
         
         /* Print the solution, or an error message, if
            there is no solution. */

         try {
            solution = root(A,B,C);
            System.out.println("A solution of the equation is " + solution);  
         }
         catch (IllegalArgumentException e) {
            System.out.println("Sorry, I can't find a solution.");
            System.out.println(e.getMessage());
         }
          
         /* Find out whether the user wants to go again. */

         System.out.println();
         System.out.print("Do you want to solve another equation? ");
         goAgain = TextIO.getlnBoolean();

      } while (goAgain);
   
   } // end main
   
 
   /**
    * Returns the larger of the two roots of the quadratic equation
    * A*x*x + B*x + C = 0, provided it has any roots.  If A == 0 or
    * if the discriminant, B*B - 4*A*C, is negative, then an exception
    * of type IllegalArgumentException is thrown.
    */
   static public double root( double A, double B, double C ) 
                                 throws IllegalArgumentException {
       if (A == 0) {
         throw new IllegalArgumentException("A can't be zero.");
       }
       else {
          double disc = B*B - 4*A*C;
          if (disc < 0)
             throw new IllegalArgumentException("Discriminant < zero.");
          return  (-B + Math.sqrt(disc)) / (2*A);
       }
   }   

}  // end class Quadratic






Solution for Programming Exercise 8.2



Exercise 8.2:

As discussed in Section 8.1,
values of type int are limited to 32 bits.
Integers that are too large to be represented in 32 bits cannot be stored in an
int variable. Java has a standard class,
java.math.BigInteger, that addresses this problem. An object of type
BigInteger is an integer that can be arbitrarily large. (The maximum
size is limited only by the amount of memory available to the Java Virtual Machine.) Since
BigIntegers are objects, they must be manipulated using instance
methods from the BigInteger class. For example, you can't add two
BigIntegers with the + operator. Instead, if N and
M are variables that refer to BigIntegers, you can compute
the sum of N and M with the function call N.add(M).
The value returned by this function is a new BigInteger object that is
equal to the sum of N and M.


The BigInteger class has a constructor 
new BigInteger(str), where str is a string.
The string must represent an integer, such as "3" or "39849823783783283733". If
the string does not represent a legal integer, then the constructor throws a
NumberFormatException.


There are many instance methods in the BigInteger class. Here are a
few that you will find useful for this exercise. Assume that N and
M are variables of type BigInteger.



	
N.add(M) — a function that returns a
BigInteger representing the sum of N and M.

	
N.multiply(M) — a function that
returns a BigInteger representing the result of multiplying N
times M.

	
N.divide(M) — a function that returns
a BigInteger representing the result of dividing N by
M, discarding the remainder.

	
N.signum() — a function that returns
an ordinary int. The returned value represents the sign of the integer
N. The returned value is 1 if N is greater than zero. It is
-1 if N is less than zero. And it is 0 if N is zero.

	
N.equals(M) — a function that returns
a boolean value that is true if N and M
have the same integer value.

	
N.toString() — a function that
returns a String representing the value of N.

	
N.testBit(k) — a function that
returns a boolean value. The parameter k is an integer. The
return value is true if the k-th bit in N is 1, and
it is false if the k-th bit is 0. Bits are numbered from
right to left, starting with 0. Testing "if (N.testBit(0))" is an easy
way to check whether N is even or odd. N.testBit(0) is
true if and only if N is an odd number.




For this exercise, you should write a program that prints 3N+1
sequences with starting values specified by the user. In this version of the
program, you should use BigIntegers to represent the terms in the
sequence. You can read the user's input into a String with the
TextIO.getln() function or with the nextLine() function
of a Scanner. Use the input value to create the
BigInteger object that represents the starting point of the
3N+1 sequence. Don't forget to catch and handle the
NumberFormatException that will occur if the user's input is not a
legal integer!  The program should not end when that happens; it should just output
an error message.  You should also check that the input number is greater than
zero.


If the user's input is legal, print out the 3N+1 sequence. Count
the number of terms in the sequence, and print the count at the end of the
sequence. Exit the program when the user inputs an empty line.





Discussion





My solution uses a subroutine, printThreeNSequence(N), to print out
the 3N+1 sequence starting from the BigInteger, N.
The subroutine assumes that N is not null and that it
represents a value that is greater than one.  Given these assumptions, the
subroutine cannot generate any errors. (These preconditions are ensured by
the main program which calls the subroutine, but I use assert
statements to test the assumptions during debugging.)  The only interesting aspect of the
subroutine is that all operations on N must be performed using
instance methods from the BigInteger class. For example, to multiply
N by 2, I use a statement "N = N.multiply(TWO);", where
TWO is a BigInteger that represents the integer 2. My program
defines TWO as a constant, along with several other
BigIntegers that represent values that I need:


static final BigInteger THREE = new BigInteger("3");
static final BigInteger ONE = new BigInteger("1");
static final BigInteger TWO = new BigInteger("2");


With these constants, the code for computing the next term in a
3N+1 sequence becomes:


if (N.testBit(0) == false) {
        // N is even.  Divide N by 2.
    N = N.divide(TWO);
}
else {
        // N is odd.  Multiply N by 3, then add 1.
    N = N.multiply(THREE);
    N = N.add(ONE);
}


You can find the complete subroutine in the solution that is given below.
(Note that the two lines in the else part could be replaced by one line:
N = N.multiply(THREE).add(ONE);)



In the main() routine, the user's input is read into a variable,
line, of type String. The input is used to construct a
BigInteger with the statement "N = new BigInteger(line);".
Since this statement can produce a NumberFormatException, it is placed
in a try statement that can catch and handle the error. The test
"if (N.signum() == 1)" is used to make sure that N >= 1.
The value of N.signum() is 1 if and only if N is a positive
integer. Here is the loop form the main() routine that processes the
user's input (where scanner is a Scanner that
reads from System.in):


while (true) {
   System.out.println();
   System.out.println("Enter the starting value, or press return to end.");
   System.out.print("? ");
   line = scanner.nextLine().trim();
   if (line.length() == 0)
       break;
   try {
       N = new BigInteger(line);
       if (N.signum() == 1)
          printThreeNSequence(N);
       else
          System.out.println("Error:  The starting value cannot be less than or equal to zero.");
   }
   catch (NumberFormatException e) {
       System.out.println("Error:  \"" + line + "\" is not a legal integer.");
   }
}


Note that the user's input is read using "line = scanner.nextLine().trim().
The function trim() that is applied to the input string will remove any spaces
that are at the start or the end of the string.  In the constructor new BigInteger(line),
no spaces are allowed in line, but if the user types a space or two followed by a
legal number, I don't want my program to reject that as an error.  Using the trim()
command will allow spaces before and after an otherwise legal number. Using
scanner.next() instead of scanner.nextLine() would be another
way to ignore spaces, but it would make it impossible to end the program when the user
enters an empty line because scanner.next() just skips empty lines while looking
for the next non-blank token.





The Solution





import java.math.BigInteger;
import java.util.Scanner;

/** 
 * This program prints out 3N+1 sequences for starting values of N that
 * are entered by the user.  Since integers are represented as objects of
 * type BigInteger, it will work for arbitrarily large integers.  The
 * starting value specified by the user must be greater than zero.  The
 * program continues to read input from the user and print 3N+1 sequences
 * until the user inputs an empty line.  If the user's input is illegal,
 * the program will print an error message and continue.
 */
public class BigThreeN {
 
 
    private static final BigInteger THREE = new BigInteger("3");
    private static final BigInteger ONE = new BigInteger("1");
    private static final BigInteger TWO = new BigInteger("2");
    
    
    public static void main(String[] args) {
    
       Scanner scanner = new Scanner( System.in );  // for reading user's input.
    
       String line;   // A line of input from the user.
  
       BigInteger N;  // The starting point for the 3N+1 sequence,
                      //   as specified by the user.
       
       System.out.println("This program will print 3N+1 sequences for positive starting values");
       System.out.println("that you enter.  There is no pre-set limit on the number of");
       System.out.println("digits in the numbers that you enter.  The program will end when");
       System.out.println("you enter an empty line.");
       
       while (true) {
          System.out.println();
          System.out.println("Enter the starting value, or press return to end.");
          System.out.print("? ");
          line = scanner.nextLine().trim();
          if (line.length() == 0)
              break;
          try {
              N = new BigInteger(line);
              if (N.signum() == 1)
                 printThreeNSequence(N);
              else
                 System.out.println("Error:  The starting value cannot be less than or equal to zero.");
          }
          catch (NumberFormatException e) {
              System.out.println("Error:  \"" + line + "\" is not a legal integer.");
          }
       }
       
       System.out.println();
       System.out.println("OK.  Bye for now!");
    
    }  // end main()
    
    
    /**
     * Print the 3N+1 sequence starting from N, and count the number
     * of terms in the sequence.  It is assumed that N is not null and
     * that it is greater than zero.
     */
    private static void printThreeNSequence(BigInteger N) {
 
       assert N != null && N.signum() == 1 : "Illegal parameter value.";
 
       int count;  // The number of terms in the sequence.
       
       System.out.println();
       System.out.println("The 3N+1 sequence starting with " + N + " is:");
       System.out.println();
       
       System.out.println(N.toString());   // Print N as the first term of the sequence
       count = 1;
       
       while ( ! N.equals(ONE) ){   // Compute and print the next term
          if (N.testBit(0) == false) {
                  // N is even.  Divide N by 2.
              N = N.divide(TWO);
          }
          else {
                  // N is odd.  Multiply N by 3, then add 1.
              N = N.multiply(THREE);
              N = N.add(ONE);
          }
          System.out.println(N.toString());
          count++;
       }
 
       System.out.println();
       System.out.println("There were " + count + " terms in the sequence.");
 
    }  // end printThreeNSequence
    
    
} // end BigThreeN






Solution for Programming Exercise 8.3



Exercise 8.3:

A Roman numeral represents
an integer using letters. Examples are XVII to represent 17, MCMLIII for 1953,
and MMMCCCIII for 3303. By contrast, ordinary numbers such as 17 or 1953 are
called Arabic numerals. The following table shows the Arabic equivalent of all
the single-letter Roman numerals:


M    1000            X   10
D     500            V    5
C     100            I    1
L      50


When letters are strung together, the values of the letters are just added
up, with the following exception. When a letter of smaller value is followed by
a letter of larger value, the smaller value is subtracted from the larger
value. For example, IV represents 5 - 1, or 4. And MCMXCV is interpreted as 
M + CM + XC + V, 
or 1000 + (1000 - 100) + (100 - 10) + 5, which is 1995. In
standard Roman numerals, no more than three consecutive copies of the same
letter are used. Following these rules, every number between 1 and 3999 can be
represented as a Roman numeral made up of the following one- and two-letter
combinations:


M    1000            X   10
CM    900            IX   9
D     500            V    5
CD    400            IV   4
C     100            I    1
XC     90
L      50
XL     40


Write a class to represent Roman numerals. The class should have two
constructors. One constructs a Roman numeral from a string such as "XVII" or
"MCMXCV". It should throw a NumberFormatException if the string is not
a legal Roman numeral. The other constructor constructs a Roman numeral from an
int. It should throw a NumberFormatException if the
int is outside the range 1 to 3999.


In addition, the class should have two instance methods. The method
toString() returns the string that represents the Roman numeral. The
method toInt() returns the value of the Roman numeral as an
int.


At some point in your class, you will have to convert an int into
the string that represents the corresponding Roman numeral. One way to approach
this is to gradually "move" value from the Arabic numeral to the Roman numeral.
Here is the beginning of a routine that will do this, where number is
the int that is to be converted:


String roman = "";
int N = number;
while (N >= 1000) {
      // Move 1000 from N to roman.
   roman += "M";
   N -= 1000;
}
while (N >= 900) {
      // Move 900 from N to roman.
   roman += "CM";
   N -= 900;
}
.
.  // Continue with other values from the above table.
.


(You can save yourself a lot of typing in this routine if you use arrays in
a clever way to represent the data in the above table.)


Once you've written your class, use it in a main program that will read both
Arabic numerals and Roman numerals entered by the user. If the user enters an
Arabic numeral, print the corresponding Roman numeral. If the user enters a
Roman numeral, print the corresponding Arabic numeral. (You can tell the
difference by using TextIO.peek() to peek at the first character in
the user's input (see Subsection 8.2.2). 
If the first character is a digit, then the user's input is an
Arabic numeral. Otherwise, it's a Roman numeral.) The program should end when
the user inputs an empty line.





Discussion





My class is called RomanNumeral. An object of type
RomanNumeral has a private instance variable of type
int that stores the integer value of the Roman numeral. When the
toString() method is called, it computes the string that represents
the Roman number based on the value of this int. By contrast, the
toInt() method simply returns the value of the instance variable. This
is not the only way that things could be done. I might have stored the string
representation of the Roman numeral in an instance variable. In that case, the
toString() method would simply return the stored value, while the
toInt() method would have to compute the int value from the
stored String. It would also be possible, and more efficient, to store both the
int and String representations in the object. (The point,
though, is that it's not necessary to do so. The two representations hold
exactly the same information.)


In my version of the class, the constructor which takes a parameter of type
int simply has to store the parameter value in the instance variable,
after checking that it is in the legal range of values.


The constructor that takes a parameter of type String must
interpret the string as a Roman numeral and convert it to the corresponding
int value. This is done by adding up the integer value associated with
each character or pair of characters in the string. The fact that characters
sometimes need to be considered in pairs complicates things a bit. An algorithm
for converting a String, roman, to an int,
arabic, is:


Let arabic = 0
Let i = 0  // representing a position in the string

while i is a legal position in the string:
    Let ch be the character in position i
    Let N be the numeric equivalent of ch
    i++   // to account for the character, ch
    if there are no additional characters in the string:
          // (We need to make this test first, to avoid an error
          // when we try to look at the next character.)
       Add N to arabic
    else:   // Try pairing the ch with the next character
       Let N2 be the numeric equivalent of the NEXT character
       If N < N2:  // Evaluate the characters as a pair
           Add (N2 - N) to arabic
           i++    // to account for the extra character
       else:
           Add N to arabic


This algorithm does not take into account that the string might not be a
legal Roman numeral. If a character in the string is not one of the characters
M, D, C, L, X, V, or I, then a NumberFormatException must be
thrown.  Note that the algorithm allows some unusual two-letter combinations such as
IM to represent 999, and it takes IIIIII to represent 6.
It even allows IIM to represent 1000, which is even stranger. 
It is not clear whether these things should be considered to be errors.
 My program accepts strings
like these as input.  If the input is legal according to the algorithm but is not in 
the usual form, the program outputs the roman numeral in standard form.


The job of converting an int into an equivalent Roman numeral is
handled in my toString() method. The exercise includes code that shows how to write this
method as a long sequence of while loops. Consider the loop


while (N >= 1000) {
   roman += "M";
   N -= 1000;
}


After this loop, all the 1000's in N have been converted to M's in
roman, and we can be sure that N is 999 or less. So what's
left of N can be expressed in terms of the smaller numbers in the
table: 900, 500, 400, and so on. Each of these numbers can be processed by a
while loop (although an if statement would also work in some cases, where
the number that is being tested can only occur once.). 
Note that the numbers in these loops must be in decreasing
order for this to work.


However, all the loops in this algorithm have the same form. They just use
different numbers and letters. In my program, I use two arrays to store the
numbers and letters from the table:


private static int[]    numbers = { 1000,  900,  500,  400,  100,   90,  
                                      50,   40,   10,    9,    5,    4,    1 };
                                   
private static String[] letters = { "M",  "CM",  "D",  "CD", "C",  "XC",
                                    "L",  "XL",  "X",  "IX", "V",  "IV", "I" };


For each index i, numbers[i] is the int
equivalent of the Roman numeral letters[i]. All the processing can
then be done with a for loop that does all the required while
loops one after the other:


public String toString() {
      // Return the standard representation of this Roman numeral.
   String roman = "";  // The Roman numeral.
   int N = num;        // N represents the part of num that still has
                       //   to be converted to Roman numeral representation.
   for (int i = 0; i < numbers.length; i++) {
      while (N >= numbers[i]) {
         roman += letters[i];
         N -= numbers[i];
      }
   }
   return roman;
}





An algorithm for the main program is given by:


while (true):
    Prompt the user for input
    If the first non-blank thing on the line is the end-of-line:
       break
    else if the first character on the line is a digit:
       Let arabic = TextIO.getlnInt()
       Let roman = new RomanNumeral(arabic)
       Print out roman.toString()
    else:
       Let str = TextIO.getln();
       Let roman = new RomanNumeral(str);
       Print out roman.toInt();


This algorithm ignores the possibility that the user's input might be
illegal. If it is, then the RomanNumeral constructor will throw a
NumberFormatException. This exception must be caught and handled. With
this in mind, the algorithm becomes:


while (true):
    Prompt the user for input
    If the first non-blank thing on the line is the end-of-line:
       break
    else if the first character on the line is a digit:
       Let arabic = TextIO.getlnInt()
       try {
          Let roman = new RomanNumeral(arabic)
          Print out roman.toString()
       }
       catch (NumberFormatException e) {
          Print an error message
       }
    else:
       Let str = TextIO.getln();
       try {
          Let roman = new RomanNumeral(str);
          Print out roman.toInt();
       }
       catch (NumberFormatException e) {
          Print an error message
       }


This can be easily coded into Java. By the way, the test as to whether the
first character on the input line is a digit can be performed using the
standard boolean-valued function Character.isDigit(ch), which
returns true if the character ch is a digit.

One final note:  The RomanNumeral class uses a switch
statement to convert individual characters to their numerical equivalent.  The switch
statement uses the older syntax:

private int letterToNumber(char letter) {
   switch (letter) {
      case 'I':  return 1;
      case 'V':  return 5;
      case 'X':  return 10;
      case 'L':  return 50;
      case 'C':  return 100;
      case 'D':  return 500;
      case 'M':  return 1000;
      default:   throw new NumberFormatException(
                   "Illegal character \"" + letter + "\" in Roman numeral");
   }
}

This method could also be written using a switch expression (see Subsection 3.6.5):

private int letterToNumber(char letter) {
   return switch (letter) {
      case 'I' ->  1;
      case 'V' ->  5;
      case 'X' ->  10;
      case 'L' ->  50;
      case 'C' ->  100;
      case 'D' ->  500;
      case 'M' ->  1000;
      default  ->  throw new NumberFormatException(
                   "Illegal character \"" + letter + "\" in Roman numeral");
   };
}





The Solution






The Roman numerals class:




    /**
     * An object of type RomanNumeral is an integer between 1 and 3999.  It can
     * be constructed either from an integer or from a string that represents
     * a Roman numeral in this range.  The function toString() will return a
     * standardized Roman numeral representation of the number.  The function
     * toInt() will return the number as a value of type int.
     */
    public class RomanNumeral {
    
       private final int num;   // The number represented by this Roman numeral.
       
       /* The following arrays are used by the toString() function to construct
        * the standard Roman numeral representation of the number.  For each i,
        * the number numbers[i] is represented by the corresponding string, letters[i].
        */
       
       private static int[]    numbers = { 1000,  900,  500,  400,  100,   90,  
                                             50,   40,   10,    9,    5,    4,    1 };
                                          
       private static String[] letters = { "M",  "CM",  "D",  "CD", "C",  "XC",
                                           "L",  "XL",  "X",  "IX", "V",  "IV", "I" };
          
       /**
        * Constructor.  Creates the Roman number with the int value specified
        * by the parameter.  
        * @throws NumberFormatException if the parameter is not in the range 1 to 3999 inclusive.
        */
       public RomanNumeral(int arabic) {
          if (arabic < 1)
             throw new NumberFormatException("Value of RomanNumeral must be positive.");
          if (arabic > 3999)
             throw new NumberFormatException("Value of RomanNumeral must be 3999 or less.");
          num = arabic;
       }
       
    
       /*
        * Constructor.  Creates the Roman number with the given representation.
        * For example, RomanNumeral("xvii") is 17.  If the parameter is not a
        * legal Roman numeral, a NumberFormatException is thrown.  Both upper and
        * lower case letters are allowed.
        * @throws NumberFormatException if the parameter is not a legal Roman numeral
        */
       public RomanNumeral(String roman) {
             
          if (roman.length() == 0)
             throw new NumberFormatException("An empty string does not define a Roman numeral.");
             
          roman = roman.toUpperCase();  // Convert to upper case letters.
          
          int i = 0;       // A position in the string, roman;
          int arabic = 0;  // Arabic numeral equivalent of the part of the string that has
                           //    been converted so far.
          
          while (i < roman.length()) {
          
             char letter = roman.charAt(i);        // Letter at current position in string.
             int number = letterToNumber(letter);  // Numerical equivalent of letter.
                             
             i++;  // Move on to next position in the string
             
             if (i == roman.length()) {
                   // There is no letter in the string following the one we have just processed.
                   // So just add the number corresponding to the single letter to arabic.
                arabic += number;
             }
             else {
                   // Look at the next letter in the string.  If it has a larger Roman numeral
                   // equivalent than number, then the two letters are counted together as
                   // a Roman numeral with value (nextNumber - number).
                int nextNumber = letterToNumber(roman.charAt(i));
                if (nextNumber > number) {
                     // Combine the two letters to get one value, and move on to next position in string.
                   arabic += (nextNumber - number);
                   i++;
                }
                else {
                     // Don't combine the letters.  Just add the value of the one letter onto the number.
                   arabic += number;
                }
             }
             
          }  // end while
          
          if (arabic > 3999)
             throw new NumberFormatException("Roman numeral must have value 3999 or less.");
             
          num = arabic;
          
       } // end constructor
       
    
       /**
        * Find the integer value of letter considered as a Roman numeral.  Throws
        * NumberFormatException if letter is not a legal Roman numeral.  The letter 
        * must be upper case.
        */
       private int letterToNumber(char letter) {
          switch (letter) {
             case 'I':  return 1;
             case 'V':  return 5;
             case 'X':  return 10;
             case 'L':  return 50;
             case 'C':  return 100;
             case 'D':  return 500;
             case 'M':  return 1000;
             default:   throw new NumberFormatException(
                          "Illegal character \"" + letter + "\" in Roman numeral");
          }
       }
       
    
       /**
        * Return the standard representation of this Roman numeral.
        */
       public String toString() {
          String roman = "";  // The roman numeral.
          int N = num;        // N represents the part of num that still has
                              //   to be converted to Roman numeral representation.
          for (int i = 0; i < numbers.length; i++) {
             while (N >= numbers[i]) {
                roman += letters[i];
                N -= numbers[i];
             }
          }
          return roman;
       }
       
     
       /**
        * Return the value of this Roman numeral as an int.
        */
       public int toInt() {
          return num;
       }
     
       
    } // end class RomanNumeral





The main program class:



import textio.TextIO;

    /** 
     * This program will convert Roman numerals to ordinary arabic numerals
     * and vice versa.  The user can enter a numerals of either type.  Arabic
     * numerals must be in the range from 1 to 3999 inclusive.  The user ends
     * the program by entering an empty line.
     */
    public class RomanConverter {
    
       public static void main(String[] args) {
          
          System.out.println("Enter a Roman numeral and I will convert it to an ordinary");
          System.out.println("arabic integer.  Enter an integer in the range 1 to 3999");
          System.out.println("and I will convert it to a Roman numeral.  Press return when");
          System.out.println("you want to quit.");
          
          while (true) {
    
             System.out.println();
             System.out.print("? ");
             
             /* Skip past any blanks at the beginning of the input line.
                Break out of the loop if there is nothing else on the line. */
             
             while (TextIO.peek() == ' ' || TextIO.peek() == '\t')
                TextIO.getAnyChar();
             if ( TextIO.peek() == '\n' )
                break;
                
             /* If the first non-blank character is a digit, read an arabic
                numeral and convert it to a Roman numeral.  Otherwise, read
                a Roman numeral and convert it to an arabic numeral. */
                
             if ( Character.isDigit(TextIO.peek()) ) {
                int arabic = TextIO.getlnInt();
                try {
                    RomanNumeral N = new RomanNumeral(arabic);
                    System.out.println(N.toInt() + " = " + N.toString());
                }
                catch (NumberFormatException e) {
                    System.out.println("Invalid input.");
                    System.out.println(e.getMessage());
                }
             }
             else {
                String roman = TextIO.getln();
                try {
                    RomanNumeral N = new RomanNumeral(roman);
                    System.out.println(N.toString() + " = " + N.toInt());
                    if ( ! roman.equalsIgnoreCase(N.toString()) ) {
                        System.out.printf("In standard form, %s is written %s.%n", 
                                                roman, N.toString()); 
                    }
                }
                catch (NumberFormatException e) {
                    System.out.println("Invalid input.");
                    System.out.println(e.getMessage());
                }
             }
    
          }  // end while
          
          System.out.println("OK.  Bye for now.");
    
       }  // end main()
       
    } // end class RomanConverter






Solution for Programming Exercise 8.4



Exercise 8.4:

The source code file Expr.java
defines a class, Expr, that can be
used to represent mathematical expressions involving the variable x.
The expression can use the operators +, -, *, /, 
and ^ (where ^ represents the
operation of raising a number to a power). It can use mathematical functions
such as sin, cos, abs, and ln. See the
source code file for full details. The Expr class uses some advanced
techniques which have not yet been covered in this textbook. However, the
interface is easy to understand. It contains only a constructor and two public
methods.


The constructor new Expr(def) creates
an Expr object defined by a given expression. The parameter,
def, is a string that contains the definition. For example, 
new Expr("x^2") or new Expr("sin(x)+3*x"). 
If the parameter in the
constructor call does not represent a legal expression, then the constructor
throws an IllegalArgumentException. The message in the exception
describes the error.


If func is a variable of type Expr and num is of
type double, then func.value(num)
is a function that returns the value
of the expression when the number num is substituted for the variable
x in the expression. For example, if Expr represents the
expression 3*x+1, then func.value(5) is 3*5+1, or
16. If the expression is undefined for the specified value of x, then
the special value Double.NaN is returned; no exception is thrown.


Finally, func.toString() returns
the definition of the expression. This is just the string that was used in the
constructor that created the expression object.


For this exercise, you should write a program that lets the user enter an
expression. If the expression contains an error, print an error message.
Otherwise, let the user enter some numerical values for the variable
x. Print the value of the expression for each number that the user
enters. However, if the expression is undefined for the specified value of
x, print a message to that effect. You can use the
boolean-valued function Double.isNaN(val) to check whether a
number, val, is Double.NaN.


The user should be able to enter as many values of x as desired.
After that, the user should be able to enter a new expression.





Discussion





A pseudocode algorithm for the program is given by:


while (true):
    Get a line of input from the user
    if the line is empty:
       break
    Convert the input line to an Expr
    Read and process the user's numbers


Converting the input line into an object of type Expr involves
calling the constructor from the Expr class. This call might generate
an IllegalArgumentException. The algorithm must be expanded to handle
this exception and print an error message if it occurs. When an error occurs, I
use a continue statement to jump back to the start of the loop without
reading any numbers from the user:


while (true):
    Get a line of input from the user
    if the line is empty:
       break
    try {
       Let expression = new Expr(line)
    }
    catch (IllegalArgumentException e) {
       Print an error message
       continue   // jumps back to start of loop
    }
    Read and process the user's numbers


The last step, reading and processing the user's numbers, expands into a
loop, which is nested inside the main while loop. In this loop, I
could use TextIO.getDouble() to read one of the user's numbers, but
instead I chose to read the user's input into a string and convert that string
into a value of type double. This has two advantages: I can end the
loop when the user presses return. And I can do nicer error handling than the
default error-handling that is provided by TextIO. The conversion from
a string, line, to a double is done using a method
Double.parseDouble(string). The conversion will
generate a NumberFormatException if the user's input is not a legal
number. The algorithm for reading and processing the user's numbers
becomes:


while (true):
    Get a line of input from the user
    if the line is empty:
       break
    try {
       Let x = Double.parseDouble(line)
    }
    catch (NumberFormatException e) {
       Print an error message
       continue
    }
    Let val = expression.value(x)
    if val is Double.NaN:
       Print an error message
    else:
       Output val


All this can be easily translated into the complete solution, which
follows.





The Solution





import textio.TextIO;

public class FunctionEvaluator {

   public static void main(String[] args) {
   
      String line;      // A line of input read from the user.
      Expr expression;  // The definition of the function f(x).
      double x;         // A value of x for which f(x) is to be calculated.
      double val;       // The value of f(x) for the specified value of x.
      
      System.out.println("This program will evaluate a specified function, f(x), at");
      System.out.println("specified values of the variable x.  The definition of f(x)");
      System.out.println("can use the operators +, -, *, /, and ^ as well as mathematical");
      System.out.println("functions such as sin, abs, and ln.");
      
      while (true) {
      
         /* Get the function from the user.  A line of input is read and
            used to construct an object of type Expr.  If the input line is
            empty, then the loop will end, and the program will terminate. */
 
         System.out.println("\n\n\nEnter definition of f(x), or press return to quit.");
         System.out.print("\nf(x) = ");
         line = TextIO.getln().trim();
         if (line.length() == 0)
            break;
            
         try {
            expression = new Expr(line);
         }
         catch (IllegalArgumentException e) {
                // An error was found in the input.  Print an error
                //    message and go back to the beginning of the loop.
            System.out.println("Error!  The definition of f(x) is not valid.");
            System.out.println(e.getMessage());
            continue;
         }
         
         /* Read values of x from the user, until the user presses return.
            If the user's input is not a legal number, print an error message.
            Otherwise, compute f(x) and print the result. */
         
         System.out.println("\nEnter values of x where f(x) is to be evaluated.");
         System.out.println("Press return to end.");
         
         while (true) {
            System.out.print("\nx = ");
            line = TextIO.getln().trim();
            if (line.length() == 0)
               break;
            try {
               x = Double.parseDouble(line);
            }
            catch (NumberFormatException e) {
               System.out.println("\"" + line + "\" is not a legal number.");
               continue;
            }
            val = expression.value(x);
            if (Double.isNaN(val))
               System.out.println("f(" + x + ") is undefined.");
            else
               System.out.println("f(" + x + ") = " + val);
         }  // end while
         
      } // end while
      
      System.out.println("\n\n\nOK.  Bye for now.");
   
   }  // end main();
   
} // end class FunctionEvaluator






Solution for Programming Exercise 8.5



Exercise 8.5:

This exercise uses the
class Expr, which was described in
Exercise 8.4 and which is defined in the source code
file Expr.java.  For this exercise, you
should write a GUI program that can graph a function, f(x), whose
definition is entered by the user. The program should have a text-input box
where the user can enter an expression involving the variable x, such
as x^2 or sin(x-3)/x. This expression is the definition of
the function. When the user clicks an "Enter" button or presses return, the program
should use the contents of the text input box to construct an object of type
Expr. If an error is found in the definition, then the program should
display an error message. Otherwise, it should display a graph of the function.
(Recall: If you make a button into the default button for the window, then pressing
return will be equivalent to clicking the button (see the end of Subsection 6.4.2).)


The program will need a Canvas 
for displaying the graph. To keep
things simple, the canvas should represent a fixed region in the xy-plane,
defined by -5 <= x <= 5 and
-5 <= y <= 5. To draw the graph, compute a
large number of points and connect them with line segments. (This method does
not handle discontinuous functions properly; doing so is very hard, so you
shouldn't try to do it for this exercise.) My program divides the interval
-5 <= x <= 5 into 300 subintervals and uses
the 301 endpoints of these subintervals for drawing the graph. Note that the
function might be undefined at one of these x-values. In that case,
you have to skip that point.


A point on the graph has the form (x,y) where y is
obtained by evaluating the user's expression at the given value of x.
You will have to convert x and y values in the range from -5 to 5 to the
pixel coordinates that you need for drawing on the canvas.
The formulas for the conversion are:



double a  =  ( (x + 5)/10 * width );
double b  =  ( (5 - y)/10 * height );




where a and b are the horizontal and vertical pixel coordinates
on the canvas.  The values of width and height 
give the size of the canvas.






Discussion





I wrote my solution using a nested subclass, GraphCanvas,
of Canvas 
to represent the canvas where the
function is graphed.  The subclass has an instance
variable, func, of type Expr that represents the function to
be drawn, with a setter method that can be called to change the function.
The value of func can be set to null to indicate that no
function is available to be graphed. This will be true in the program
when the user's input has been found to be
illegal. The subclass has a draw() 
method that checks the value of func
to decide what to draw.  If func is null, 
then the draw()
method simply draws a message on the panel stating that no function is
available. Otherwise, it draws a pair of axes and the graph of the
function, and it displays the definition of the function as a string.


The interesting work in class GraphCanvas is done in the
drawFunction() method, which is called by
draw().
This function draws the graph of the function
for -5 <= x <= 5. This interval on the x axis is
divided into 300 subintervals. Since the length of the interval is 10, the
length of each subinterval is given by dx, where dx is
10.0/300. The x values for the points that I want to plot are
given by -5, -5+dx, -5+2*dx, and so on. Each
x-value is obtained by adding dx to the previous value. For
each x value, the y-value of the point on the graph is
computed as func.value(x). As the points on the graph are computed,
line segments are drawn to connect pairs of points (unless the y-value
of either point is undefined). An algorithm for the drawFunction()
method is:


Let dx = 10.0 / 300;
Let x = -5                // Get the first point
Let y = func.value(x)
for i = 1 to 300:
    Let prevx = x         // Save the previous point
    Let prevy = y
    Let x = x + dx        // Get the next point
    Let y = func.value(x)
    if neither y nor prevy is Double.NaN:
       draw a line segment from (prevx,prevy) to (x,y)


The method for drawing the line segment uses the conversion from graphing coordinates 
to pixel coordinates that is given in the exercise. By the
way, more general conversion formulas can be given in the case where x
extends from xmin to xmax and y extends from
ymin to ymax. The general formulas are:


a  =  ( (x - xmin) / (xmax - xmin) * width );
b  =  ( (ymax - y) / (ymax - ymin) * height );


The formulas for a and b are of slightly different form to
reflect the fact that a increases from 0 to width as
x increases from xmin to xmax, while b
decreases from height to 0 as y increases
from ymin to ymax. You could improve the program by adding
text input boxes where the user can enter values for xmin,
xmax, ymin, and ymax.


The constructor for the GraphCanvas takes a parameter
of type Expr that specifies an initial function to be
graphed when the canvas is first created (or the parameter could be null
if no initial function is to be displayed).  I use this feature in my program
to show a sample function when the program starts.


In the start() method, a BorderPane is used
for the root of the scene graph.  The center component is the large canvas
that is used for graphing.  A Label is placed in the
top position; the label is used to display messages to the user, including
error messages when the user's input is not valid.  The bottom component
is an HBox that contains the text input box for the
user's input and the "Enter" button.  I also added a label in front of
the text input box that says "f(x) =". 
The start method also installs an ActionEvent handler for
the button, written as a long lambda expression. I did a great deal of tweaking
of the user interface, using techniques from Chapter 6,
but since this chapter is not about GUI programming, I won't discuss the
tweaks here.  You can check out the source code below to see what I did.
Here is what the program window looks like when it first appears on the
screen:




[image: The SimpleGrapher program window]



The action event handler gets the
string from the textfield. It tries to use this string to construct
an object of type Expr. That constructor throws an
IllegalArgumentException if the string contains an error, so the
constructor is called in a try statement that can catch and handle the
error. If an error occurs, then the error message in the exception object is
displayed in the label at the top of the window, and the graph is
cleared. If no error occurs, the graph is set to display the user's function,
and the label is set to display the generic message, "Enter a
function and click Enter or press return." The code for all this is:


Expr function;  // The user's function.
  
try {
    String def = functionInput.getText();
    function = new Expr(def);
    graph.setFunction(function);
    message.setText(" Enter a function and press return.");
}
catch (IllegalArgumentException e) {
    graph.clearFunction();
    message.setText(e.getMessage());
}



   




The Solution





import javafx.application.Application;
import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.canvas.Canvas;
import javafx.scene.canvas.GraphicsContext;
import javafx.scene.layout.HBox;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.Priority;
import javafx.scene.control.Label;
import javafx.scene.control.Button;
import javafx.scene.control.TextField;
import javafx.scene.paint.Color;


/**
   The SimpleGrapher program can draw graphs of functions input by the
   user.  The user enters the definition of the function in a text
   input box.  When the user presses return or clicks the "Enter" button,
   the function is graphed.  (Unless the definition contains an error.  
   In that case, an error message is displayed.)

   The graph is drawn on a canvas which represents the region of the
   (x,y)-plane given by  -5 <= x <= 5  and  -5 <= y <= 5.  Any part of
   the graph that lies outside this region is not shown.  The graph
   is drawn by plotting 301 points and joining them with lines.  This
   does not handle discontinuous functions properly.
   
   An example function is graphed when the program starts.

   This program requires the class Expr, which is defined in by a 
   separate file, Expr.java.  That file contains a full description 
   of the syntax of legal function definitions, but the program
   understands operators +, -, *, /, and ^ (where ^ represents
   exponentiation), as well as common mathematical functions 
   such as sin(x) and ln(x).
 */

public class SimpleGrapher extends Application {

    public static void main(String[] args) {
        launch(args);
    }

    //---------------------------------------------------------------------------------

    private GraphCanvas graph;  // The Canvas that will display the graph.
                                // GraphCanvas is a subclass of Canvas that
                                // is defined as a static nested class.

    private TextField functionInput;  // A text input box where the user enters
                                      // the definition of the function.

    private Label message;  // A label for displaying messages to the user,
                            // including error messages when the function
                            // definition is illegal.

    /**
     * Set up the GUI with a large canvas in the center where the functions
     * are graphed, a label at the top for displaying messages, and
     * an input box for the function below the canvas.  Also adds an Enter
     * button with an ActionEvent handler that graphs the function.  The
     * button is set to be the default button in the window, so that the
     * user can also graph the function by pressing return.
     */
    public void start(Stage stage) {
        
        /* Create the components and set up event handling.  The
         * canvas is given an initial function to draw, and the
         * textfield is initialized to show the definition of
         * that function. */

        graph = new GraphCanvas( new Expr("sin(x)*3 + cos(5*x)") );
        
        message = new Label(" Enter a function and click Enter or press return");

        functionInput = new TextField("sin(x)*3 + cos(5*x)");
        
        Button graphIt = new Button("Enter");
        graphIt.setDefaultButton(true);

        graphIt.setOnAction( evt -> {
                    // Get the user's function definition from the box and use it
                    // to create a new object of type Expr.  Tell the GraphCanvas to 
                    // graph this function.  If the  definition is illegal, an 
                    // IllegalArgumentException is  thrown by the Expr constructor.
                    // If this happens, the graph is cleared and an error message 
                    // is displayed in the message label.
                Expr function;  // The user's function.
                try {
                    String def = functionInput.getText();
                    function = new Expr(def);
                    graph.setFunction(function);
                    message.setText(" Enter a function and click Enter or press return.");
                }
                catch (IllegalArgumentException e) {
                    graph.clearFunction();
                    message.setText(e.getMessage());
                }
                functionInput.selectAll();
                functionInput.requestFocus();  // Let's user start typing in input box.
            } );
        
        /* Create the layout. */
        
        HBox bottom = new HBox(8, new Label("f(x) ="), functionInput, graphIt);
        
        BorderPane root = new BorderPane();
        root.setCenter(graph);
        root.setTop(message);
        root.setBottom(bottom);
        
        /* Tweak the components to make the program more attractive.  Add borders
         * around the entire root pane and between the canvas and the top and bottom
         * components.  Adding some padding around the components in the bottom HBox. */
        
        root.setStyle("-fx-border-color:gray; -fx-border-width:4px");
        message.setTextFill(Color.RED);  // User red text for the message.
        message.setStyle("-fx-background-color:white; -fx-padding:7px; "
                + "-fx-border-color:gray; -fx-border-width:0 0 4px 0");
        message.setMaxWidth(10000);  // Required to make the label (and its border)
                                     // extend the full width of the window.
        bottom.setStyle("-fx-border-color:gray; -fx-border-width:4px 0 0 0; -fx-padding:8px");
        HBox.setHgrow(functionInput, Priority.ALWAYS); // Allows functionInput to grow
                                                       // to fill the available space.
        
        /* Finish setting up the window and make it visible. */
        
        Scene scene = new Scene(root);
        stage.setScene(scene);
        stage.setResizable(false);
        stage.setTitle("A Simple Function Grapher");
        stage.show();

    }  // end start()


    //   -------------------------- Nested class ----------------------------

    private static class GraphCanvas extends Canvas {

        // A object of this class can display the graph of a function
        // on the region of the (x,y)-plane given by -5 <= x <= 5 and
        // -5 <= y <= 5.  The graph is drawn very simply, by plotting
        // 301 points and connecting them with line segments.  The canvas
        // is 600-by-600 pixels.  The size could be changed by editing
        // the definition in the constructor.

        Expr func;  // The definition of the function that is to be graphed.
                    // If the value is null, no graph is drawn.


        GraphCanvas(Expr firstFunction) {
            super(600,600);  // Calls the constructor from the Canvas class.
            func = firstFunction;
            draw();  // Draw the canvas at startup.
        }


        public void setFunction(Expr exp) {
                // Set the canvas to graph the function whose definition is
                // given by the function exp.
            func = exp;
            draw();
        }


        public void clearFunction() {
                // Set the canvas to draw no graph at all.
            func = null;
            draw();
        }


        public void draw() {
                // Fill the canvas with white, then draw a set of axes
                // and the graph of the function.  Or, if func is null, 
                // display a message that there is no function to be graphed.
            GraphicsContext g = getGraphicsContext2D();
            g.setFill(Color.WHITE);
            g.fillRect(0,0,getWidth(),getHeight());
            
            if (func == null) {
                g.setFill( Color.RED );
                g.fillText("No function is available.", 30, 40);
            }
            else {
                g.setFill( Color.PURPLE );
                g.fillText("y = " + func, 5, 15);
                drawAxes(g);
                drawFunction(g);
            }
        }


        void drawAxes(GraphicsContext g) {
                // Draw horizontal and vertical axes in the middle of the
                // canvas.  A 5-pixel border is left at the ends of the axes.
            double width = getWidth();
            double height = getHeight();
            g.setStroke(Color.BLUE);
            g.setLineWidth(2);
            g.strokeLine(5, height/2, width-5, height/2);
            g.strokeLine(width/2, 5, width/2, height-5);
        }


        void drawFunction(GraphicsContext g) {
                // Draw the graph of the function defined by the instance 
                // variable func.  Just plot 301 points with lines 
                // between them. s

            double x, y;          // A point on the graph.  y is f(x).
            double prevx, prevy;  // The previous point on the graph.

            double dx;  // Difference between the x-values of consecutive 
                        // points on the graph.

            dx  = 10.0 / 300;

            g.setStroke(Color.RED);
            g.setLineWidth(1);

            /* Compute the first point. */

            x = -5;
            y = func.value(x);

            /* Compute each of the other 300 points, and draw a line segment
               between each consecutive pair of points.  Note that if the
               function is undefined at one of the points in a pair, then 
               the line segment is not drawn.  */

            for (int i = 1; i <= 300; i++) {

                prevx = x;           // Save the coords of the previous point.
                prevy = y;

                x += dx;            // Get the coords of the next point.

                y = func.value(x);

                if ( (! Double.isNaN(y)) && (! Double.isNaN(prevy)) ) {
                       // Draw a line segment between the two points.
                    putLine(g, prevx, prevy, x, y);
                }

            }  // end for

        }  // end drawFunction()


        void putLine(GraphicsContext g, double x1, double y1, 
                double x2, double y2) {
                    // Draw a line segment from the point (x1,y1) to (x2,y2).
                    // These values must be scaled to convert from coordinates
                    // that go from -5 to 5 to the coordinates that are needed
                    // for drawing on the canvas, which go from 0 to 600.
                    // coordinates of the corresponding pixels.

            if (Math.abs(y1) > 10000 || Math.abs(y2) > 10000) {
                    // Only draw lines for reasonable y-values.
                    // This should not be necessary, but I'm not sure
                    // how GraphicsContext will handle very large values.
                return;
            }

            double a1, b1;   // Pixel coordinates corresponding to (x1,y1).
            double a2, b2;   // Pixel coordinates corresponding to (x2,y2).

            double width = getWidth();     // Width of the canvas (600).
            double height = getHeight();   // Height of the canvas (600).

            a1 = (int)( (x1 + 5) / 10 * width );
            b1 = (int)( (5 - y1) / 10 * height );
            a2 = (int)( (x2 + 5) / 10 * width );
            b2 = (int)( (5 - y2) / 10 * height );

            g.strokeLine(a1,b1,a2,b2);
            
        }  // end putLine()

    }  // end nested class GraphCanvas


} // end class SimpleGrapher








Solution for Programming Exercise 9.1



Exercise 9.1:

In many textbooks, the first examples of recursion are
the mathematical functions factorial and fibonacci.  These functions
are defined for non-negative integers using the following recursive formulas:

factorial(0)  =  1
factorial(N)  =  N*factorial(N-1)   for N > 0

fibonacci(0)  =  1
fibonacci(1)  =  1
fibonacci(N)  =  fibonacci(N-1) + fibonacci(N-2)   for N > 1

Write recursive functions to compute factorial(N) and
fibonacci(N) for a given non-negative integer N,
and write a main() routine to test your functions. Consider
using the BigInteger class (see Exercise 8.2)

(In fact, factorial and fibonacci are really not very good
examples of recursion, since the most natural way to compute them is to use
simple for loops.  Furthermore, fibonacci is a particularly
bad example, since the natural recursive approach to computing this function
is extremely inefficient.)





Discussion





The recursive definitions of the two functions can be translated
rather easily into Java code.  Note that for factorial(N), the base
case is N=0, while fibonacci(N) has two base cases,
N=0 and N=1.  The obvious recursive function for
computing fibonacci(N) is:

static int fibonacci( int N ) {
    if ( N == 0 || N == 1 ) {
           // Base cases; the answer is 1.
        return 1;
    }
    else {
           // Recursive case; the answer is obtained by applying the function
           // recursively to N-1 and to N-2, and adding the two answers.
        return fibonacci(N-1) + fibonacci(N-2);
    }
}

and for factorial(N) is

static int factorial( int N ) {
   if ( N == 0) {
          // Base case; the answer is 1.
      return 1;
   }
   else {
         // Recursive case; the answer is obtained by applying the function
         // recursively to N-1 and multiplying the answer by N.
      return factorial(N-1) * N;
   }
}

Adding a main() routine that calls these methods for several values
of N would be an acceptable solution to the exercise.  However, when testing
the program, you will quickly notice some problems.  First of all, the recursive algorithm
for fibonacci(N) is so inefficient that it takes an unreasonably long
time for it to run even for values of N as small as 40.  (In fact, the
recursive evaluation of fibonacci(N) calls both fibonacci(N-1)
and fibonacci(N-2) and so takes almost twice as long as the evaluation
of fibonacci(N-1); with the computation time for fibonacci(N)
almost doubling every time N goes up by 1, the computation time
quickly becomes unreasonable.)  Although I include
the recursive version of fibonacci in my solution, my program refuses to
use this function if N is greater than 40.

Another problem occurs because of the limited size of values of type int.
The value of factorial(N) grows very quickly as N increases—so
quickly that by the time N reaches 13, the value of factorial(N)
is already too large to be expressed as a 32-bit integer!  So, the factorial
function as defined above only gives the correct answer for numbers 0 through 12.
Although fibonacci(N) does not grow nearly so fast as factorial(N),
it is still true that by the time N reaches 46, fibonacci(N) is
outside the range of 32-bit integers.

The problem of the limited size of values of type int
was discussed in Subsection 8.1.3.  One approach to dealing with
the problem was presented in Exercise 8.2: The class java.math.BigInteger
represents integer values that can be arbitrarily large (within the limits of the computer's
memory).  In my solution to the exercise, I decided to use BigInteger
values to compute factorial(N) and to compute fibonacci(N) non-recursively.
This allows my program to work even for fairly large values of N, say up to
a few thousand.

You can read my solution below to see how I used the BigInteger class
and how I computed fibonacci(N) non-recursively.





The Solution





import java.util.Scanner;
import java.math.BigInteger;

/**
 * Computes factorial(N) and fibonacci(N) for integers N entered by
 * the user, as a demonstration of recursion.
 */
public class FibonacciAndFactorial {
   
   /**
    * Main routine reads integers N from the user and prints the
    * values of factorial(N) and fibonacci(N), stopping when the 
    * user inputs a zero.
    */
   public static void main( String[] args ) {
      Scanner in = new Scanner( System.in );
      while (true) {
         System.out.print("\n\nEnter a positive integer, or 0 to end:  ");
         int N = in.nextInt();
         if (N == 0)
            break;
         else if (N < 0) {
            System.out.println("Negative numbers are not allowed.");
            continue;
         }
         BigInteger NasBigInteger = BigInteger.valueOf(N);
         System.out.println("\n  factorial(" + N + ") is " + factorial(NasBigInteger));
         if (N > 40) {
            System.out.println("\n  N is too big to compute fibonacci(N) recursively");
         }
         else {
            System.out.println("\n  fibonacci(" + N + ") is " + 
                  fibonacci(N) + "   (recursively)");
         }
         System.out.println("\n  fibonacci(" + N + ") is " + 
                  fibonacci_nonrecursive(N) + "   (non-recursively)");
      }
   }
   
   
   /**
    * Compute fibonacci(N) using recursion.  Because this is so inefficient,
    * even for fairly small values of N, N should be less than or equal to 40.
    * Also, N must be greater than or equal to zero, or an infinite recursion
    * will occur.
    */
   static int fibonacci( int N ) {
       assert N >= 0 : "fibonacci(n) is only defined for non-negative n";
       assert N <= 40 : "n is too large to compute fibonacci(N) recursively";
                // (for assertions, see Subsection 8.4.1)
       if ( N == 0 || N == 1 ) {
                // Base cases; the answer is 1.
           return 1;
       }
       else {
              // Recursive case; the answer is obtained by applying the function
              // recursively to N-1 and to N-2, and adding the two answers.
           return fibonacci(N-1) + fibonacci(N-2);
       }
   }
   
   
   /**
    * Compute fibonacci(N) using a for loop.  The answer is returned as
    * a BigInteger and can be very large even for fairly small values
    * of N.  N must be greater than or equal to zero.
    */
   static BigInteger fibonacci_nonrecursive( int N ) {
      assert N >= 0 : "fibonacci(n) is only defined for non-negative n";
      if (N == 0 || N == 1) {
             // fibonacci(0) = fibonacci(1) = 1;
         return BigInteger.ONE;
      }
      else {
         BigInteger f0 = BigInteger.ONE;  // In the loop, this is fibonacci(i-2)
         BigInteger f1 = BigInteger.ONE;  // In the loop, this is fibonacci(i-1)
         for (int i = 2; i <= N; i++) {
            BigInteger fi = f0.add(f1);  // Computes fibonacci(i)
            f0 = f1;  // Update to account for i++
            f1 = fi;  // Update to account for i++
         }
         return f1;  // Final value of f1 is fibonacci(N)
      }
   }

   
   /**
    * Compute factorial(N) using recursion.  The computation is done using
    * BigIntegers and can be very large even for fairly small values of N.
    * N must be greater than or equal to zero.
    */
   static BigInteger factorial( BigInteger N ) {
      assert N.signum() >= 0 : "factorial(n) is only defined for non-negative n";
       if ( N.equals(BigInteger.ZERO) ) {
              // Base case; the answer is 1.
           return BigInteger.ONE;
       }
       else {
              // Recursive case; the answer is obtained by applying the function
              // recursively to N-1 and multiplying the answer by N.
           BigInteger factorialOfNMinus1 = factorial(N.subtract(BigInteger.ONE));
           return N.multiply(factorialOfNMinus1);
       }
   }

}






Solution for Programming Exercise 9.2



Exercise 9.2:


Exercise 7.6 asked you to read a file, make an 
alphabetical list of all the words that occur in the file, and write the list to another
file.  In that exercise, you were asked to use an ArrayList<String> to
store the words.  Write a new version of the same program that stores the words
in a binary sort tree instead of in an arraylist.  You can use the binary sort tree
routines from SortTreeDemo.java, which was discussed in 
Subsection 9.4.2.





Discussion





In my solution to Exercise 7.6, words are added to an
arraylist in the order in which they are encountered.  After the file has been
completely read, the arraylist is sorted into alphabetical order before the list of
words is printed.   Since a binary sort tree is
designed to store words in alphabetical order at all times, there is no need
for sorting.   At the end of the program, an inorder traversal of the tree can
be used to output the words to the file.   Using an inorder traversal guarantees
that the words will be output in increasing order.


For my solution to this exercise, I copied the routines treeInsert,
treeContains, and countNodes from SortTreeDemo.java.
I also copied the declaration of root as a static member variable, since
that's the variable that represents the tree itself.  (It's unfortunate that root
has to be a global variable rather than a local variable in main(), 
but it's used as a global variable in the treeInsert routine.  A better solution
to the exercise would define a BinarySortTree class to
encapsulate the data and routines needed to represent the tree and to use a variable of type
BinarySortTree in the program.)

   
Only a few changes are needed in the main() routine of the original program. They are
shown in red italic in the solution given below. All-in-all, the substitution of the binary tree 
for the arraylist is very straightforward.





The Solution





import textio.TextIO;

/**
 * Makes an alphabetical list of all the words in a file selected
 * by the user.  The list can be written to a file.  
 * The words are stored in a binary sort tree.
 */
public class ListAllWordsFromFileWithTree {

   private static TreeNode root;  // Pointer to the root node in a binary tree.
                                  // This tree is used in this program as a 
                                  // binary sort tree.  When the tree is empty, 
                                  // root is null (as it is initially).


   
   public static void main(String[] args) {
      
      System.out.println("""
                 This program will ask you to select an input file
              It will read that file and make an alphabetical
              list of all the words in the file.  After reading
              the file, the program asks you to select an output
              file.  If you select a file, the list of words will
              be written to that file; if you cancel, the list
              be written to standard output.  All words are converted
              to lower case, and duplicates are eliminated from the list.
              
              Press return to begin.
              
              """);

      TextIO.getln();  // Wait for user to press return.
      
      try {
         if (TextIO.readUserSelectedFile() == false) {
            System.out.println("No input file selected.  Exiting.");
             System.exit(1);
         }
         // ArrayList<String> wordList = new ArrayList<String>(); DELETED LINE
         String word = readNextWord();
         while (word != null) {
            word = word.toLowerCase();  // convert word to lower case
            if ( treeContains(root,word) == false ) {
                  // This is a new word, so add it to the tree
               treeInsert(word);
            }
            word = readNextWord();
         }
         int wordsInTree = countNodes(root);
         System.out.println("Number of different words found in file:  " 
               + wordsInTree);
         System.out.println();
         if (wordsInTree == 0) {
            System.out.println("No words found in file.");
            System.out.println("Exiting without saving data.");
            System.exit(0);
         }
         // selectionSort(wordList);  DELETED LINE
         TextIO.writeUserSelectedFile(); // If user cancels, output automatically
                                         // goes to standard output.
         System.out.println(wordsInTree + " words found in file:\n");
         treeList(root);
         System.out.println("\n\nDone.\n\n");
      }
      catch (Exception e) {
         System.out.println("Sorry, an error has occurred.");
         System.out.println("Error Message:  " + e.getMessage());
      }
      System.exit(0);  // Might be necessary, because of use of file dialogs.
   }


   /**
    * Read the next word from TextIO, if there is one.  First, skip past
    * any non-letters in the input.  If an end-of-file is encountered before 
    * a word is found, return null.  Otherwise, read and return the word.
    * A word is defined as a sequence of letters.  Also, a word can include
    * an apostrophe if the apostrophe is surrounded by letters on each side.
    * @return the next word from TextIO, or null if an end-of-file is encountered
    */
   private static String readNextWord() {
      char ch = TextIO.peek(); // Look at next character in input.
      while (ch != TextIO.EOF && !Character.isLetter(ch)) {
         TextIO.getAnyChar();  // Read the character.
         ch = TextIO.peek();   // Look at the next character.
      }
      if (ch == TextIO.EOF) // Encountered end-of-file
         return null;
      // At this point, we know that the next character, so read a word.
      String word = "";  // This will be the word that is read.
      while (true) {
         word += TextIO.getAnyChar();  // Append the letter onto word.
         ch = TextIO.peek();  // Look at next character.
         if ( ch == '\'' ) {
               // The next character is an apostrophe.  Read it, and
               // if the following character is a letter, add both the
               // apostrophe and the letter onto the word and continue
               // reading the word.  If the character after the apostrophe
               // is not a letter, the word is done, so break out of the loop.
            TextIO.getAnyChar();   // Read the apostrophe.
            ch = TextIO.peek();    // Look at char that follows apostrophe.
            if (Character.isLetter(ch)) {
               word += "\'" + TextIO.getAnyChar();
               ch = TextIO.peek();  // Look at next char.
            }
            else
               break;
         }
         if ( ! Character.isLetter(ch) ) {
               // If the next character is not a letter, the word is
               // finished, so bread out of the loop.
            break;
         }
         // If we haven't broken out of the loop, next char is a letter.
      }
      return word;  // Return the word that has been read.
   }
   
  
   //------------- Binary Sort Tree data structures and methods ------------------
   //------------- (Copied from SortTreeDemo.java) -------------------------------
   
   /**
    * An object of type TreeNode represents one node in a binary tree of strings.
    */
   private static class TreeNode {
      String item;      // The data in this node.
      TreeNode left;    // Pointer to left subtree.
      TreeNode right;   // Pointer to right subtree.
      TreeNode(String str) {
             // Constructor.  Make a node containing the specified string.
             // Note that left and right pointers are initially null.
         item = str;
      }
   }  // end nested class TreeNode


   /**
    * Add the item to the binary sort tree to which the global variable 
    * "root" refers.  (Note that root can't be passed as a parameter to 
    * this routine because the value of root might change, and a change 
    * in the value of a formal parameter does not change the actual parameter.)
    */
   private static void treeInsert(String newItem) {
      if ( root == null ) {
             // The tree is empty.  Set root to point to a new node containing
             // the new item.  This becomes the only node in the tree.
         root = new TreeNode( newItem );
         return;
      }
      TreeNode runner;  // Runs down the tree to find a place for newItem.
      runner = root;   // Start at the root.
      while (true) {
         if ( newItem.compareTo(runner.item) < 0 ) {
                // Since the new item is less than the item in runner,
                // it belongs in the left subtree of runner.  If there
                // is an open space at runner.left, add a new node there.
                // Otherwise, advance runner down one level to the left.
            if ( runner.left == null ) {
               runner.left = new TreeNode( newItem );
               return;  // New item has been added to the tree.
            }
            else
               runner = runner.left;
         }
         else {
                // Since the new item is greater than or equal to the item in
                // runner it belongs in the right subtree of runner.  If there
                // is an open space at runner.right, add a new node there.
                // Otherwise, advance runner down one level to the right.
            if ( runner.right == null ) {
               runner.right = new TreeNode( newItem );
               return;  // New item has been added to the tree.
            }
            else
               runner = runner.right;
         }
      } // end while
   }  // end treeInsert()


   /**
    * Return true if item is one of the items in the binary
    * sort tree to which root points.   Return false if not.
    */
   static boolean treeContains( TreeNode root, String item ) {
      if ( root == null ) {
             // Tree is empty, so it certainly doesn't contain item.
         return false;
      }
      else if ( item.equals(root.item) ) {
             // Yes, the item has been found in the root node.
         return true;
      }
      else if ( item.compareTo(root.item) < 0 ) {
             // If the item occurs, it must be in the left subtree.
         return treeContains( root.left, item );
      }
      else {
             // If the item occurs, it must be in the right subtree.
         return treeContains( root.right, item );
      }
   }  // end treeContains()


   /**
    * Print the items in the tree in inorder, one item to a line.  
    * Since the tree is a sort tree, the output  will be in increasing order.
    */
   private static void treeList(TreeNode node) {
      if ( node != null ) {
         treeList(node.left);             // Print items in left subtree.
         System.out.println("  " + node.item);  // Print item in the node.
         treeList(node.right);            // Print items in the right subtree.
      }
   } // end treeList()


   /**
    * Count the nodes in the binary tree.
    * @param node A pointer to the root of the tree.  A null value indicates
    * an empty tree
    * @return the number of nodes in the tree to which node points.  For an
    * empty tree, the value is zero.
    */
   private static int countNodes(TreeNode node) {
      if ( node == null ) {
            // Tree is empty, so it contains no nodes.
         return 0;
      }
      else {
            // Add up the root node and the nodes in its two subtrees.
         int leftCount = countNodes( node.left );
         int rightCount = countNodes( node.right );
         return  1 + leftCount + rightCount;  
      }
   } // end countNodes()
  
}






Solution for Programming Exercise 9.3



Exercise 9.3:

Suppose that linked lists
of integers are made from objects belonging to the class


class ListNode {
   int item;       // An item in the list.
   ListNode next;  // Pointer to the next node in the list.
}


Write a subroutine that will make a copy of a list, with the order of the
items of the list reversed. The subroutine should have a parameter of type
ListNode, and it should return a value of type ListNode. The
original list should not be modified.


You should also write a main() routine to test your subroutine.





Discussion





To make any linked list from scratch, you have to create nodes one-by-one
and link them together. In this case, we want to make nodes that contain copies
of the items from the original list. We can run through the original list, look
at each item, create a new node that contains a copy of that item, and link
that new node into the reversed list that we are constructing. We just have to
make sure that the nodes in the new list are in the desired order.


In fact this is pretty easy: As we run down the original list from start to
finish, we need to build the reversed list from back to front. The first item
in the original list should be at the back of the reversed list, the second
item from the original goes in front of that item, and so on. This is
equivalent to "pushing" the items onto the reversed list, using the same push
operation that is used for a stack. An algorithm for this is:


Let rev be an empty list
for each item in the original list:
    Push the item onto rev
    Move on to the next item


This can be coded into the subroutine we need as follows:


/**
 * Return a new list containing the same items as the list,
 * but in the reverse order.
 */
static ListNode reverse( ListNode list ) {
   ListNode rev = null;     // rev will be the reversed list.
   ListNode runner = list;  // For running through the nodes of list.
   while (runner != null) {
          // "Push" the next node of list onto the front of rev.
      ListNode newNode = new ListNode();
      newNode.item = runner.item;
      newNode.next = rev;
      rev = newNode;
         // Move on to the next node in the list.
      runner = runner.next; 
   }
   return rev;
} // end reverse()


The exercise lets you design your own routine for testing the subroutine. It
should be tested on several lists, including an empty list. It's important to
test it on the empty list since a null pointer often represents a
special case in an algorithm, and is therefore a common source of bugs. It's also a
good idea to test a list of length one, for similar reasons. In my
main() routine, I build up a random list one node at a time and test
the reverse() subroutine on the list at each step. The main()
routine was probably harder to write than the subroutine!





The Solution





/**
 * This program includes a subroutine that makes a reversed copy of a
 * list of ints.  The main program simply tests that routine on a few lists.
 */
public class ReverseListDemo {


   /**
    * Objects of type ListNode are linked together into linked lists.
    */
   static class ListNode {
      int item;        // An item in the list.
      ListNode next;   // Pointer to the next node in the list.
   }
   

   /**
    * Return a new list containing the same items as the list,
    * but in the reverse order.
    */
   static ListNode reverse( ListNode list ) {
      ListNode rev = null;     // rev will be the reversed list.
      ListNode runner = list;  // For running through the nodes of list.
      while (runner != null) {
             // "Push" the next node of list onto the front of rev.
         ListNode newNode = new ListNode();
         newNode.item = runner.item;
         newNode.next = rev;
         rev = newNode;
            // Move on to the next node in the list.
         runner = runner.next;
      }
      return rev;
   } // end reverse()
   
   
   /**
    * Prints the items in the list to which the parameter, start, points.
    * They are printed on one line, separated by spaces and enclosed in 
    * parentheses.
    */
   static void printList(ListNode start) {
       ListNode runner;  // For running along the list.
       runner = start;
       System.out.print("(");
       while (runner != null) {
          System.out.print(" " + runner.item);
          runner = runner.next;
       }
       System.out.print(" )");
   } // end printList()
   

   public static void main(String[] args) {
   
      System.out.println("I will print out a list and its reverse, for");
      System.out.println("several different lists.  The first list is empty.\n");
      
      ListNode list = null;   // A list, initially empty.
      ListNode reversedList;  // The reversed list.
      
      int ct = 0;  // How many lists have we processed?
      
      while (true) {
             // Print the current list and its reverse.  Then
             // add a new node onto the head of the list before
             // repeating.
          System.out.print("The list:          ");
          printList(list);
          System.out.println();
          reversedList = reverse(list);
          System.out.print("The reversed list: ");
          printList(reversedList);
          System.out.println();
          System.out.println();
          ct++;
          if (ct == 6)
             break;
          ListNode head = new ListNode();  // A new node to add to the list.
          head.item = (int)(Math.random()*100);  // A random item.
          head.next = list;
          list = head;
      }
      
   } // end main()
   

} // end class ReverseListDemo






Solution for Programming Exercise 9.4



Exercise 9.4:


Subsection 9.4.1 
explains how to use recursion to print out the items in a binary tree
in various orders. That section also notes that a non-recursive subroutine can
be used to print the items, provided that a stack or queue is used as an
auxiliary data structure. Assuming that a queue is used, here is an algorithm
for such a subroutine:

Add the root node to an empty queue
while the queue is not empty:
   Get a node from the queue
   Print the item in the node
   if node.left is not null:
      add it to the queue
   if node.right is not null:
      add it to the queue

Write a subroutine that implements this algorithm, and write a program to
test the subroutine. Note that you will need a queue of TreeNodes, so
you will need to write a class to represent such queues.

(Note that the order in which items are printed by this algorithm is different
from all three of the orders considered in Subsection 9.4.1.





Discussion





There's really not a lot to think about here, since such a complete
algorithm is given. However, we do have to assemble the pieces. I use the
standard binary tree node from Section 9.4 (except that
I changed the name of the tree node class to StrTreeNode). The
algorithm needs a queue of tree nodes. To implement this, I copied the
QueueOfInts class from Subsection 9.3.2 and changed
the type of the items in the queue to StrTreeNode. I also changed the
name to TreeQueue. I did this literally by copying the class from a
Web browser window and pasting it into my source code file. With these classes
in hand, the algorithm given in the exercise can be coded as:


/**
 * Use a queue to print all the strings in the tree to which
 * root points.  (The nodes will be listed in "level order",
 * that is:  first the root, then children of the root, then
 * grandchildren of the root, and so on.)
 */
static void levelOrderPrint(StrTreeNode root) {
    if (root == null)
       return;  // There is nothing to print in an empty tree.
    TreeQueue queue;   // The queue.
    queue = new TreeQueue();
    queue.enqueue(root);
    while ( queue.isEmpty() == false ) {
       StrTreeNode node = queue.dequeue();
       System.out.println( node.item );
       if ( node.left != null )
          queue.enqueue( node.left );
       if ( node.right != null )
          queue.enqueue( node.right );
    }
} // end levelOrderPrint()


The name of this routine comes from the order in which it prints out the
nodes of the tree. Think of the root of the tree as being on the top "level" of
the tree, the children of the root on the second level, the children of the
children of the root on the third level, and so on. Then the subroutine prints
the items in level order. That is, all the nodes
on one level are printed before any of the nodes on the next level. This is a
consequence of the way the algorithm processes the items. As items from one
level are removed from the queue and printed, their children (which are the
nodes on the next level) are added to the back of the queue. Just after
all the items from one level have been processed, the queue contains all the
children of those items, ready to be processed, and those children are
exactly the nodes on the next level of the tree. Level-order tree
traversals can't be done by recursion, and they are a standard application of
queues.


To test my subroutine, I wanted a reasonably large tree whose structure I
knew, so I could check whether the nodes are printed in the correct order.
(Since you didn't know about level-order traversals until now, on the other
hand, you should have been mainly concerned with checking that all the nodes in
the tree are printed, period.) I decided to create the binary sort tree shown
in Subsection 9.4.2. To do this, I copied the
treeInsert()subroutine from that section and used it to add names to
the tree in an order that would produce the tree I wanted. Finally, I called
levelOrderPrint() to output the names from the tree. (It worked!)


By the way, you might notice that the levelOrderPrint() routine is
very similar to the technique used in the grid-marking algorithm in the sample program
DepthBreadth.java from
Subsection 9.3.2. In fact they are just variations on the same idea.
One difference is that in DepthBreadth.java, the squares of the grid had to be
marked as "visited" as they were processed to avoid going into an infinite
loop. The levelOrderPrint() subroutine doesn't have to do the same
type of marking because it is working on a tree. One of the defining properties
of a tree is that it cannot contain a loop of nodes. That is, it is not
possible for a node to be its own descendant. This restriction guarantees that
levelOrderPrint() will not go into an infinite loop. The same property
guarantees that all of our recursive tree-processing methods will not suffer
from infinite recursion when they are applied to a tree. You should note,
however, that it is possible to connect tree nodes into data structures that
contain loops and are therefore not trees at all. 
While these data structures are not trees, they might have other
uses. Many of the subroutines we've looked will fail if applied to these loopy
structures.





The Solution





/**
 * This program includes a non-recursive subroutine that prints the
 * nodes of a binary tree, using a queue.  The main program simply
 * tests that routine.  (The nodes are printed in what is called
 * "level order".)
 * 
 * This file defines the queue and tree classes as nested classes.
 * Since they are general-purpose classes, it would really be better
 * to put them in separate files.
 */
   

public class TreePrintNonRecursive {  


   //--------------------------------- NESTED CLASSES -----------------------
   
   /**
    * An object in this class is a node in a binary tree
    * in which the nodes contain items of type String.
    */
   static class StrTreeNode {
      String item;  // The item
      StrTreeNode left;  // Pointer to left subtree.
      StrTreeNode right; // Pointer to right subtree.
      StrTreeNode( String str ) {
            // Constructor.  Make a node to contain str.
         item = str;
      }
   } // end class StrTreeNode
   
   
   /**
    * An object of this type represents a queue of StrTreeNodes,
    * with the usual operations: dequeue, enqueue, isEmpty.
    */
   static class TreeQueue {
   
      /**
       * An object of type Node holds one of the items
       * in the linked list that represents the queue.
       */
      private static class Node {
         StrTreeNode item;
         Node next;
      }
   
      private Node head = null;  // Points to first Node in the queue.
                                 // The queue is empty when head is null.
      
      private Node tail = null;  // Points to last Node in the queue.
   
      /**
       * Add N to the back of the queue.
       */
      void enqueue( StrTreeNode tree ) {
         Node newTail = new Node();  // A Node to hold the new item.
         newTail.item = tree;
         if (head == null) {
               // The queue was empty.  The new Node becomes
               // the only node in the list.  Since it is both
               // the first and last node, both head and tail
               // point to it.
            head = newTail;
            tail = newTail;
         }
         else {
               // The new node becomes the new tail of the list.
               // (The head of the list is unaffected.)
            tail.next = newTail;
            tail = newTail;
         }
      }
   
      /**
       * Remove and return the front item in the queue.
       * Throws an IllegalStateException if the queue is empty.
       */
      StrTreeNode dequeue() {
         if ( head == null)
             throw new IllegalStateException("Can't dequeue from an empty queue."); 
         StrTreeNode firstItem = head.item;
         head = head.next;  // The previous second item is now first.
         if (head == null) {
               // The queue has become empty.  The Node that was
               // deleted was the tail as well as the head of the
               // list, so now there is no tail.  (Actually, the
               // class would work fine without this step.)
            tail = null;
         } 
         return firstItem;
      }
      
      /**
       * Return true if the queue is empty, false if contains one
       * or more items
       */
      boolean isEmpty() {
         return (head == null);
      }
         
   } // end class TreeQueue
 
   
   //-------------------- END OF NESTED CLASSES ---------------------------
   

   static StrTreeNode root;  // A pointer to the root of the binary tree.
   
   
   /**
    * Use a queue to print all the strings in the tree to which
    * root points.  (The nodes will be listed in "level order",
    * that is:  first the root, then children of the root, then
    * grandchildren of the root, and so on.)
    */
   static void levelOrderPrint(StrTreeNode root) {
       if (root == null)
          return;  // There is nothing to print in an empty tree.
       TreeQueue queue;   // The queue, which will only hold non-null nodes.
       queue = new TreeQueue();
       queue.enqueue(root);
       while ( queue.isEmpty() == false ) {
          StrTreeNode node = queue.dequeue();
          System.out.println( node.item );
          if ( node.left != null )
             queue.enqueue( node.left );
          if ( node.right != null )
             queue.enqueue( node.right );
       }
   } // end levelOrderPrint()
   
   
   /**
    * Add the word to the binary sort tree to which the
    * global variable "root" refers.  I will use this 
    * routine only to create the sample tree on which
    * I will test levelOrderPrint().
    */
   static void treeInsert(String newItem) {
      if ( root == null ) {
              // The tree is empty.  Set root to point to a new node 
              // containing the new item.
          root = new StrTreeNode( newItem );
          return;
       }
       StrTreeNode runner; // Runs down the tree to find a place for newItem.
       runner = root;   // Start at the root.
       while (true) {
          if ( newItem.compareTo(runner.item) < 0 ) {
                   // Since the new item is less than the item in runner,
                   // it belongs in the left subtree of runner.  If there
                   // is an open space at runner.left, add a node there.
                   // Otherwise, advance runner down one level to the left.
             if ( runner.left == null ) {
                runner.left = new StrTreeNode( newItem );
                return;  // New item has been added to the tree.
             }
             else
                runner = runner.left;
          }
          else {
                   // Since the new item is greater than or equal to the 
                   // item in runner, it belongs in the right subtree of
                   // runner.  If there is an open space at runner.right, 
                   // add a new node there.  Otherwise, advance runner
                   // down one level to the right.
             if ( runner.right == null ) {
                runner.right = new StrTreeNode( newItem );
                return;  // New item has been added to the tree.
             }
             else
                runner = runner.right;
           }
       } // end while
   }  // end treeInsert()
   
   
   /**
    * Make a tree with a known form, then call levelOrderPrint()
    * for that tree.  (I want to check that all the items from
    * the tree are printed, and I want to see the order in which
    * they are printed.  The expected order of output is
    * judy bill mary alice fred tom dave jane joe.  The
    * tree that is built here is from an illustration in
    * Section 9.4.)
    */
   public static void main(String[] args) {
      treeInsert("judy");
      treeInsert("bill");
      treeInsert("fred");
      treeInsert("mary");
      treeInsert("dave");
      treeInsert("jane");
      treeInsert("alice");
      treeInsert("joe");
      treeInsert("tom");
      levelOrderPrint(root);
   } // end main()


} // end class TreePrintNonRecursive






Solution for Programming Exercise 9.5



Exercise 9.5:

In Subsection 9.4.2, I say that "if the
[binary sort] tree is created by 
inserting items in a random order, there is a high probability that the tree 
is approximately balanced."
For this exercise, you will do an experiment to test whether that is true.

The depth of a node in a binary tree is the
length of the path from the root of the tree to that node. That is, the root
has depth 0, its children have depth 1, its grandchildren have depth 2, and so
on. In a balanced tree, all the leaves in the tree are about the same depth.
For example, in a perfectly balanced tree with 1023 nodes, all the leaves are
at depth 9. In an approximately balanced tree with 1023 nodes, the average
depth of all the leaves should be not too much bigger than 9.

On the other hand, even if the tree is approximately balanced, there might
be a few leaves that have much larger depth than the average, so we might also
want to look at the maximum depth among all the leaves in a tree.

For this exercise, you should create a random binary sort tree with 1023
nodes. The items in the tree can be real numbers, and you can create the tree
by generating 1023 random real numbers and inserting them into the tree, using
the usual treeInsert() method for binary sort trees. Once you have the
tree, you should compute and output the average depth of all the leaves in the
tree and the maximum depth of all the leaves. To do this, you will need three
recursive subroutines: one to count the leaves, one to find the sum of the
depths of all the leaves, and one to find the maximum depth. The latter two
subroutines should have an int-valued parameter, depth, that
tells how deep in the tree you've gone. When you call this routine from the main
program, the depth parameter is 0; when you call the routine recursively,
the parameter increases by 1.





Discussion





To create the tree, I copied the TreeNode class and the
insertTree() subroutine from Subsection 9.4.2, and I
changed the type of the items in the tree from String to
double. The main program uses a for loop to add 1023 random
real numbers to the tree:


for (int i = 0; i < 1023; i++)
    treeInsert(Math.random()); 


After that, it's just a matter of writing the routines described in the
exercise and calling them to get the desired statistics.


A routine for counting the leaves in the tree is similar to the
countNodes() routine from Subsection 9.4.2. That
routine, however, counts every node in the tree and now we only want to count
the leaves. A leaf is defined to be a node in which both the left and
right pointers are null. In the recursion, one of the base
cases is when we come to a tree that consists of nothing but a leaf. In that
case, the number of leaves is 1. If the node is not a leaf, then we have to
count the number of leaves in each of its subtrees and add the results:


/**
 * Return the number of leaves in the tree to which node points.
 */
static int countLeaves(TreeNode node) {
    if (node == null)
       return 0;  // An empty tree has no leaves.
    else if (node.left == null && node.right == null)
       return 1;  // Node is a leaf.
    else
       return countLeaves(node.left) + countLeaves(node.right);
} // end countNodes()


In general structure, the other two routines are similar. That is, there are
two base cases: an empty tree and a tree consisting just of a leaf. In the
remaining case—a node that has one or both subtrees non-empty—the routine
has to be applied recursively to the subtrees of the node. Look, for example,
at the routine for finding the sum of the depths of all the leaves in the
tree:


/**
 * When called as sumOfLeafDepths(root,0), this will compute the
 * sum of the depths of all the leaves in the tree to which root
 * points.  When called recursively, the depth parameter gives
 * the depth of the node, and the routine returns the sum of the
 * depths of the leaves in the subtree to which node points.
 * In each recursive call to this routine, depth goes up by one.
 */
static int sumOfLeafDepths( TreeNode node, int depth ) {
    if ( node == null ) {
          // Since the tree is empty and there are no leaves,
          // the sum is zero.
       return 0;
    }
    else if ( node.left == null && node.right == null) {
          // The node is a leaf, and there are no subtrees of node, so
          // the sum of the leaf depths is just the depth of this node.
       return depth;
    }
    else {
          // The node is not a leaf.  Return the sum of the
          // the depths of the leaves in the subtrees.
       return sumOfLeafDepths(node.left, depth + 1) 
                   + sumOfLeafDepths(node.right, depth + 1);
    }
} // end sumOfLeafDepth()


The most interesting aspect of this routine is the way it uses its
depth parameter, which is used to keep track of the depth of the
node in the complete tree (not just the subtree to which node
points). For the root, the depth is 0. Each time the subroutine is
called recursively, the node is one level deeper in the tree, and the
depth parameter is correspondingly increased by 1. When we get down to
a leaf node, where node.left and node.right are
null, the value of depth is the depth of that node in the
original tree, and the sum of the depths of the leaves in the subtree, which
consists of just this one leaf node, is depth. When node is
not a leaf, the sums for the two subtrees of node are computed
recursively and are added together to give the sum for all the leaves in the
whole subtree to which node refers. (If you have trouble believing
that this works, remember that recursion works if it works for the base cases
and if it correctly breaks down big problems into smaller problems. You don't
have to follow the details.)


The routine for computing the maximum depth is similar.


When I ran my program several times, I found that the average depth of the
leaves in the tree tended to be about 12—higher than I expected but still
only 1/3 more than the average depth in a perfectly balanced tree. The height
of the tree tended to be about 20.  (The height of a
tree is defined to be the maximum depth of any node in the tree.)





The Solution





/**  
  * This program makes a random binary sort tree containing 1023 random
  * real numbers.  It then computes the height of the tree and the
  * average depth of the leaves of the tree.  Hopefully, the average
  * depth will tend to be close to 9, which is what it would be
  * if the tree were perfectly balanced.  The height of the tree,
  * which is the same as the maximum depth of any leaf, can be
  * significantly larger.
  */
public class RandomSortTree {


   static TreeNode root;   // Pointer to the binary sort tree.

   
   /**
    * An object of type TreeNode represents one node in a binary tree of real numbers.
    */
   static class TreeNode {
       double item;      // The data in this node.
       TreeNode left;    // Pointer to left subtree.
       TreeNode right;   // Pointer to right subtree.
       TreeNode(double x) {
              // Constructor.  Make a node containing x.
          item = x;
       }
   } // end class TreeNode


   /**
    * Add x to the binary sort tree to which the global variable "root" refers.
    */
   static void treeInsert(double x) {
      if ( root == null ) {
              // The tree is empty.  Set root to point to a new node 
              // containing the new item.
          root = new TreeNode( x );
          return;
       }
       TreeNode runner; // Runs down the tree to find a place for newItem.
       runner = root;   // Start at the root.
       while (true) {
          if ( x < runner.item ) {
                   // Since the new item is less than the item in runner,
                   // it belongs in the left subtree of runner.  If there
                   // is an open space at runner.left, add a node there.
                   // Otherwise, advance runner down one level to the left.
             if ( runner.left == null ) {
                runner.left = new TreeNode( x );
                return;  // New item has been added to the tree.
             }
             else
                runner = runner.left;
          }
          else {
                   // Since the new item is greater than or equal to the 
                   // item in runner, it belongs in the right subtree of
                   // runner.  If there is an open space at runner.right, 
                   // add a new node there.  Otherwise, advance runner
                   // down one level to the right.
             if ( runner.right == null ) {
                runner.right = new TreeNode( x );
                return;  // New item has been added to the tree.
             }
             else
                runner = runner.right;
           }
       } // end while
   }  // end treeInsert()


   /**
    * Return the number of leaves in the tree to which node points.
    */
   static int countLeaves(TreeNode node) {
       if (node == null)
          return 0;
       else if (node.left == null && node.right == null)
          return 1;  // Node is a leaf.
       else
          return countLeaves(node.left) + countLeaves(node.right);
   } // end countNodes()
   

   /**
    * When called as sumOfLeafDepths(root,0), this will compute the
    * sum of the depths of all the leaves in the tree to which root
    * points.  When called recursively, the depth parameter gives
    * the depth of the node, and the routine returns the sum of the
    * depths of the leaves in the subtree to which node points.
    * In each recursive call to this routine, depth goes up by one.
    */   
   static int sumOfLeafDepths( TreeNode node, int depth ) {
       if ( node == null ) {
             // Since the tree is empty and there are no leaves,
             // the sum is zero.
          return 0;
       }
       else if ( node.left == null && node.right == null) {
             // The node is a leaf, and there are no subtrees of node, so
             // the sum of the leaf depth is just the depths of this node.
          return depth;
       }
       else {
             // The node is not a leaf.  Return the sum of the
             // the depths of the leaves in the subtrees.
          return sumOfLeafDepths(node.left, depth + 1) 
                      + sumOfLeafDepths(node.right, depth + 1);
       }
   } // end sumOfLeafDepths()
   
   
   /**
    * When called as maximumLeafDepth(root,0), this will compute the
    * max of the depths of all the leaves in the tree to which root
    * points.  When called recursively, the depth parameter gives
    * the depth of the node, and the routine returns the max of the
    * depths of the leaves in the subtree to which node points.
    * In each recursive call to this routine, depth goes up by one.
    */
   static int maximumLeafDepth( TreeNode node, int depth ) {
       if ( node == null ) {
            // The tree is empty.  Return 0.
          return 0;
       }
       else if ( node.left == null && node.right == null) {
             // The node is a leaf, so the maximum depth in this
             // subtree is the depth of this node (the only leaf 
             // that it contains).
          return depth;
       }
       else {
             // Get the maximum depths for the two subtrees of this
             // node.  Return the larger of the two values, which
             // represents the maximum in the tree overall.
          int leftMax = maximumLeafDepth(node.left, depth + 1);
          int rightMax =  maximumLeafDepth(node.right, depth + 1);
          if (leftMax > rightMax)
             return leftMax;
          else
             return rightMax;
       }
   } // end maximumLeafDepth()
   
   
   /**
    * The main routine makes the random tree and prints the statistics.
    */
   public static void main(String[] args) {
         
      root = null;  // Start with an empty tree.  Root is a global
                    // variable, defined at the top of the class.
         
      // Insert 1023 random items.
         
      for (int i = 0; i < 1023; i++)
          treeInsert(Math.random()); 
          
      // Get the statistics.
          
      int leafCount = countLeaves(root);
      int depthSum = sumOfLeafDepths(root,0);
      int depthMax = maximumLeafDepth(root,0);
      double averageDepth = ((double)depthSum) / leafCount;
      
      // Display the results.
      
      System.out.println("Number of leaves:         " + leafCount);
      System.out.println("Average depth of leaves:  " + averageDepth);
      System.out.println("Maximum depth of leaves:  " + depthMax);

   }  // end main()


} // end class RandomSortTree






Solution for Programming Exercise 9.6



Exercise 9.6:

 The parsing programs in
Section 9.5 work with expressions made up of numbers and operators. We can
make things a little more interesting by allowing the variable "x" to occur.
This would allow expression such as "3*(x-1)*(x+1)", for example. Make
a new version of the sample program SimpleParser3.java that can work with such
expressions. In your program, the main() routine can't simply print
the value of the expression, since the value of the expression now depends on
the value of x. Instead, it should print the value of the expression
for x=0, x=1, x=2, and x=3.

The original program will have to be modified in several other ways.
Currently, the program uses classes ConstNode, BinOpNode, and
UnaryMinusNode to represent nodes in an expression tree. Since
expressions can now include x, you will need a new class,
VariableNode, to represent an occurrence of x in the
expression.

In the original program, each of the node classes has an instance method,
"double value()", which returns the value of the node. But in your
program, the value can depend on x, so you should replace this method
with one of the form "double value(double xValue)", where the
parameter xValue is the value of x.

Finally, the parsing subroutines in your program will have to take into
account the fact that expressions can contain x. There is just one
small change in the BNF rules for the expressions: A <factor> is
allowed to be the variable x:

<factor>  ::=  <number>  |  <x-variable>  |  "(" <expression> ")"

where <x-variable> can be either a lower case or an upper
case "X". This change in the BNF requires a change in the factorTree()
subroutine.





Discussion





Like the other expression node classes, the VariableNode class is a
subclass of ExpNode, and it must implement the value(x) and
printStackCommands() methods that it inherits from that class. The
value(x) method has been modified to have a parameter of type
double, which gives the value of the variable x. Since a
VariableNode represents an occurrence of the variable x, the value of
the node is simply the value of x. As for the stack commands to evaluate the
node: When we encounter an x in an expression, we need to push the value of x
onto the stack, just as we would push a constant value onto the stack. I
represent this with a stack operation "Push X". Note that x can have different
values at different times, so we can't say what value will be pushed. We are
generating instructions for a stack machine. At the time when the stack machine
evaluates the expression, it has to know the value of x. The "Push X"
command tells it to push a copy of that value onto the stack. The
VariableNode class is defined as:


/**
 * An expression node that represents a reference to the variable, x.
 */
private static class VariableNode extends ExpNode {
   VariableNode() {
          // Construct a VariableNode. (There is nothing to do!)
   }
   double value(double xValue) {
         // The value of the node is the value of x.
      return xValue;
   }
   void printStackCommands() {
         // On a stack machine, just push the value of X onto the stack.
      System.out.println("  Push X"); 
   }
}


One curious thing about this class is that it doesn't have any instance
variables. A VariableNode represents an occurrence of x. There is no
other information to record. It's not like a ConstNode where we need
an instance variable to tell us which numerical constant has been found.
There is only one "x". Of course, if we expanded our definition of expression
to allow other variables such as y and z, we might add an instance variable to
VariableNode to say which of the possible variables is
represented.


The factorTree() subroutine from SimpleParser3.java has to be
modified to check for an x. If it finds one, it has to return a new
VariableNode. This change and the others you have to make are fairly
straightforward. They are shown in red italic in the solution that follows.





The Solution





import textio.TextIO;

/*
    This program reads standard expressions typed in by the user. 
    The program constructs an expression tree to represent the
    expression.  It then prints the value of the tree.  It also uses
    the tree to print out a list of commands that could be used
    on a stack machine to evaluate the expression.
    The expressions can use the variable "x", positive real numbers, and
    the binary operators +, -, *, and /.  The unary minus operation
    is supported.  The expressions are defined by the BNF rules:

            <expression>  ::=  [ "-" ] <term> [ [ "+" | "-" ] <term> ]...

            <term>  ::=  <factor> [ [ "*" | "/" ] <factor> ]...

            <factor>  ::=  <number>  |  <x-variable> | "(" <expression> ")"

    A number must begin with a digit (i.e., not a decimal point).
    A line of input must contain exactly one such expression.  If extra
    data is found on a line after an expression has been read, it is
    considered an error.

    In addition to the main program class, SimpleParser4, this program
    defines a set of five nested classes for implementing expression trees.

 */

public class SimpleParser4 {

//   -------------------- Nested classes for Expression Trees ------------------------------


   /**
    *  An abstract class representing any node in an expression tree.
    *  The four concrete node classes are concrete subclasses.
    *  Two instance methods are specified, so that they can be used with
    *  any ExpNode.  The value() method returns the value of the
    *  expression for a specified value of the variable, x.  
    *  The printStackCommands() method prints a list
    *  of commands that could be used to evaluate the expression on
    *  a stack machine (assuming that the value of the expression is
    *  to be left on the stack).
    */
   abstract private static class ExpNode {
      abstract double value(double xValue); 
      abstract void printStackCommands();
   }

   /**
    * Represents an expression node that holds a number.
    */
   private static class ConstNode extends ExpNode {
      double number;  // The number.
      ConstNode(double val) {
             // Construct a ConstNode containing the specified number.
         number = val;
      }
      double value(double xValue) {
             // The value of the node is the number that it contains.
         return number;
      }
      void printStackCommands() {
             // On a stack machine, just push the number onto the stack.
         System.out.println("  Push " + number); 
      }
   }

   
   /**
    * An expression node representing a binary operator,
    */
   private static class BinOpNode extends ExpNode {
      char op;        // The operator.
      ExpNode left;   // The expression for its left operand.
      ExpNode right;  // The expression for its right operand.
      BinOpNode(char op, ExpNode left, ExpNode right) {
             // Construct a BinOpNode containing the specified data.
         assert op == '+' || op == '-' || op == '*' || op == '/';
         assert left != null && right != null;
         this.op = op;
         this.left = left;
         this.right = right;
      }
      double value(double xValue) {
             // The value is obtained by evaluating the left and right
             // operands and combining the values with the operator.
         double x = left.value(xValue);
         double y = right.value(xValue);
         switch (op) {
         case '+':  return x + y;
         case '-':  return x - y;
         case '*':  return x * y;
         case '/':  return x / y;
         default:   return Double.NaN;  // Bad operator!
         }
      }
      void  printStackCommands() {
             // To evaluate the expression on a stack machine, first do
             // whatever is necessary to evaluate the left operand, leaving
             // the answer on the stack.  Then do the same thing for the
             // second operand.  Then apply the operator (which means popping
             // the operands, applying the operator, and pushing the result).
         left.printStackCommands();
         right.printStackCommands();
         System.out.println("  Operator " + op);
      }
   }

   
   /**
    * An expression node to represent a unary minus operator.
    */
   private static class UnaryMinusNode extends ExpNode {
      ExpNode operand;  // The operand to which the unary minus applies.
      UnaryMinusNode(ExpNode operand) {
             // Construct a UnaryMinusNode with the specified operand.
         assert operand != null;
         this.operand = operand;
      }
      double value(double xValue) {
             // The value is the negative of the value of the operand.
         double neg = operand.value(xValue);
         return -neg;
      }
      void printStackCommands() {
             // To evaluate this expression on a stack machine, first do
             // whatever is necessary to evaluate the operand, leaving the
             // operand on the stack.  Then apply the unary minus (which means
             // popping the operand, negating it, and pushing the result).
         operand.printStackCommands();
         System.out.println("  Unary minus");
      }
   }


   /**
    * An expression node that represents a reference to the variable, x.
    */
   private static class VariableNode extends ExpNode {
      VariableNode() {
             // Construct a VariableNode. (There is nothing to do!)
      }
      double value(double xValue) {
            // The value of the node is the value of x.
         return xValue;
      }
      void printStackCommands() {
            // On a stack machine, just push the value of X onto the stack.
         System.out.println("  Push X"); 
      }
   }
   
   
//   -------------------------------------------------------------------------------
   

   /**
    * An object of type ParseError represents a syntax error found in 
    * the user's input.
    */
   private static class ParseError extends Exception {
      ParseError(String message) {
         super(message);
      }
   } // end nested class ParseError


   public static void main(String[] args) {

      while (true) {
         System.out.println("\n\nEnter an expression, or press return to end.");
         System.out.print("\n?  ");
         TextIO.skipBlanks();
         if ( TextIO.peek() == '\n' )
            break;
         try {
            ExpNode exp = expressionTree();
            TextIO.skipBlanks();
            if ( TextIO.peek() != '\n' )
               throw new ParseError("Extra data after end of expression.");
            TextIO.getln();
            System.out.println("\nValue at x = 0 is " + exp.value(0));
            System.out.println("Value at x = 1 is " + exp.value(1));
            System.out.println("Value at x = 2 is " + exp.value(2));
            System.out.println("Value at x = 3 is " + exp.value(3));
            System.out.println("\nOrder of postfix evaluation is:\n");
            exp.printStackCommands();
         }
         catch (ParseError e) {
            System.out.println("\n*** Error in input:    " + e.getMessage());
            System.out.println("*** Discarding input:  " + TextIO.getln());
         }
      }

      System.out.println("\n\nDone.");

   } // end main()


   /**
    * Reads an expression from the current line of input and builds
    * an expression tree that represents the expression.
    * @return an ExpNode which is a pointer to the root node of the 
    *    expression tree
    * @throws ParseError if a syntax error is found in the input
    */
   private static ExpNode expressionTree() throws ParseError {
      TextIO.skipBlanks();
      boolean negative;  // True if there is a leading minus sign.
      negative = false;
      if (TextIO.peek() == '-') {
         TextIO.getAnyChar();
         negative = true;
      }
      ExpNode exp;       // The expression tree for the expression.
      exp = termTree();  // Start with the first term.
      if (negative)
         exp = new UnaryMinusNode(exp);
      TextIO.skipBlanks();
      while ( TextIO.peek() == '+' || TextIO.peek() == '-' ) {
             // Read the next term and combine it with the
             // previous terms into a bigger expression tree.
         char op = TextIO.getAnyChar();
         ExpNode nextTerm = termTree();
         exp = new BinOpNode(op, exp, nextTerm);
         TextIO.skipBlanks();
      }
      return exp;
   } // end expressionTree()


   /**
    * Reads a term from the current line of input and builds
    * an expression tree that represents the expression.
    * @return an ExpNode which is a pointer to the root node of the 
    *    expression tree
    * @throws ParseError if a syntax error is found in the input
    */
   private static ExpNode termTree() throws ParseError {
      TextIO.skipBlanks();
      ExpNode term;  // The expression tree representing the term.
      term = factorTree();
      TextIO.skipBlanks();
      while ( TextIO.peek() == '*' || TextIO.peek() == '/' ) {
             // Read the next factor, and combine it with the
             // previous factors into a bigger expression tree.
         char op = TextIO.getAnyChar();
         ExpNode nextFactor = factorTree();
         term = new BinOpNode(op,term,nextFactor);
         TextIO.skipBlanks();
      }
      return term;
   } // end termValue()


   /**
    * Reads a factor from the current line of input and builds
    * an expression tree that represents the expression.
    * @return an ExpNode which is a pointer to the root node of the 
    *    expression tree
    * @throws ParseError if a syntax error is found in the input
    */

   private static ExpNode factorTree() throws ParseError {
      TextIO.skipBlanks();
      char ch = TextIO.peek();
      if ( Character.isDigit(ch) ) {
             // The factor is a number.  Return a ConstNode.
         double num = TextIO.getDouble();
         return new ConstNode(num);
      }
      else if ( ch == 'x' || ch == 'X' ) { 
             // The factor is the variable x.
         TextIO.getAnyChar();   // Read the X.
         return new VariableNode();
      }
      else if ( ch == '(' ) {
             // The factor is an expression in parentheses.
             // Return a tree representing that expression.
         TextIO.getAnyChar();  // Read the "("
         ExpNode exp = expressionTree();
         TextIO.skipBlanks();
         if ( TextIO.peek() != ')' )
            throw new ParseError("Missing right parenthesis.");
         TextIO.getAnyChar();  // Read the ")"
         return exp;
      }
      else if ( ch == '\n' )
         throw new ParseError("End-of-line encountered in the middle of an expression.");
      else if ( ch == ')' )
         throw new ParseError("Extra right parenthesis.");
      else if ( ch == '+' || ch == '-' || ch == '*' || ch == '/' )
         throw new ParseError("Misplaced operator.");
      else
         throw new ParseError("Unexpected character \"" + ch + "\" encountered.");
   }  // end factorTree()


} // end class SimpleParser4






Solution for Programming Exercise 9.7



Exercise 9.7:

This exercise builds on
the previous exercise, Exercise 9.6. To
understand it, you should have some background in Calculus. The derivative of
an expression that involves the variable x can be defined by a few
recursive rules:



	The derivative of a constant is 0.


	The derivative of x is 1.


	If A is an expression, let dA be the derivative of
A. Then the derivative of -A is -dA.


	If A and B are expressions, let dA be the
derivative of A and let dB be the derivative of B.
Then the derivative of A+B is dA+dB.


	The derivative of A-B is dA-dB.


	The derivative of A*B is A*dB + B*dA.


	The derivative of A/B is (B*dA - A*dB) / (B*B).




For this exercise, you should modify your program from the previous exercise
so that it can compute the derivative of an expression. You can do this by
adding a derivative-computing method to each of the node classes. First, add
another abstract method to the ExpNode class:


abstract ExpNode derivative();


Then implement this method in each of the four subclasses of
ExpNode. All the information that you need is in the rules given
above. In your main program, instead of printing the stack operations for the original 
expression, you should print out the stack operations that define the derivative.
Note that the formula that you get for the derivative can be much more
complicated than it needs to be. For example, the derivative of 3*x+1
will be computed as (3*1+0*x)+0. This is correct, even though it's
kind of ugly, and it would be nice for it to be simplified.  However, simplifying
expressions is not easy.


As an alternative to printing out stack operations, you might want to print
the derivative as a fully parenthesized expression. You can do this by adding a
printInfix() routine to each node class. It would be nice to leave
out unnecessary parentheses, but again, the problem of deciding which
parentheses can be left out without altering the meaning of the expression is a
fairly difficult one, which I don't advise you to attempt.


(There is one curious thing that happens here: If you apply the rules, as
given, to an expression tree, the result is no longer a tree, since the same
subexpression can occur at multiple points in the derivative. For example, if
you build a node to represent B*B by saying "new
BinOpNode('*',B,B)", then the left and right children of the new node are
actually the same node! This is not allowed in a tree. However, the difference
is harmless in this case since, like a tree, the structure that you get has no
loops in it. Loops, on the other hand, would be a disaster in most of the
recursive tree-processing subroutines that we have written, since it would
lead to infinite recursion.  The type of structure that is built by the
derivative functions is technically referred to as a directed acyclic graph.)






Discussion





The solution to Exercise 9.6 already
allows the variable x to occur in expressions. Since we are building on that
solution, no changes are needed in the parsing routines. There are a few easy
changes in the main() routine, since it must take the derivative of
the expression entered by the user and then work with that derivative. The
changes are shown in the solution that is given below.


Aside from that, we only need to add the "ExpNode derivative()"
method to each of the node classes. Since I want to print out the derivative in
fully parenthesized infix form, I also add another method, "void printInfix()". 
Since this is not a required part of the exercise—and
since it's fairly simple to do—I won't discuss the printInfix()
method further.


All the information that is needed for writing the derivative()
methods is given in the derivative rules that are listed in the exercise. The
first three rules are pretty simple:



	Since the derivative of a constant is 0, the derivative() method
in the ConstNode class has to return an ExpNode that
represents the expression "0". That's easy. We just need a constant node that
contains the number 0. The definition of derivative() in the
ConstNode class is just: "return new ConstNode(0);".


	Similarly, the derivative of x is 1, so the definition of
derivative() in the VariableNode class is "return new
ConstNode(1);".


	The derivative of -A is -dA, that is, it consists of a
unary minus operator applied to the derivative of the operand A. So, in the
UnaryMinusNode class, we have to compute the derivative of the
operand and then create an ExpNode that applies a unary minus
to that derivative. The derivative of operand is
operand.derivative(), so we only need to "return new
UnaryMinusNode(operand.derivative());".




In the BinOpNode class, the derivative rule that we need to apply
depends on the value of the binary operator, +, -, *, or /.
The rules for A+B and A-B are easy to implement. Let's look
at the case of *, where the rule is that the derivative of
A*B is A*dB+B*dA. In the BinOpNode class, A
is the left operand and B is the right operand. We can
compute the derivatives dA and dB as
left.derivative() and right.derivative(). We then have to
build an expression tree to represent A*dB+B*dA. We need one node to
represent the + operation and two more nodes to represent the two *
operations. We can create the tree step-by-step:


ExpNode dA = left.derivative();
ExpNode dB = right.derivative();
ExpNode firstHalf = new BinOpNode('*', left, dB);   // A*dB
ExpNode secondHalf = new BinOpNode('*', right, dA); // B*dA
ExpNode answer = new BinOpNode('+', firstHalf, secondHalf);
return answer;  // This is the derivative we want!


In my solution, however, I did the same thing in one statement:


return new BinOpNode( '+',
                  new BinOpNode('*', left, right.derivative()),
                  new BinOpNode('*', right, left.derivative()) );


This uses the fact that a constructor call is an expression and can be used
as an actual parameter in a subroutine. This statement returns a node that
represents the sum of two things. The first thing is a node that represents the
product of left and right.derivative(), and the second is a
node that represents the product of right and
left.derivative(). This is exactly the same thing that is returned by
the previous sequence of six statements. There are reasonable arguments for
doing things either way.


The rule for A/B is even more complicated: (B*dA-A*dB)/(B*B). 
Nevertheless, using left for A and right
for B, I can compute the value with a single statement:


return new BinOpNode( '/',
            new BinOpNode('-', 
                    new BinOpNode('*', right, left.derivative()),
                    new BinOpNode('*', left, right.derivative())),
            new BinOpNode('*', right, right) );


As an exercise, you might try doing the same thing with a sequence of simple
statements.





The Solution





import textio.TextIO;

/*
    This program reads standard expressions typed in by the user. 
    The program constructs an expression tree to represent the
    expression.  It computes the derivative of the expression and
    prints out the derivative and the value of the derivative at
    several values of x.  It also prints out a list of commands 
    that could be used on a stack machine to evaluate the derivative.
    The expressions can use the variable "x", positive real numbers, and
    the binary operators +, -, *, and /.  The unary minus operation
    is supported.  The expressions are defined by the BNF rules:

            <expression>  ::=  [ "-" ] <term> [ [ "+" | "-" ] <term> ]...

            <term>  ::=  <factor> [ [ "*" | "/" ] <factor> ]...

            <factor>  ::=  <number>  |  <x-variable> | "(" <expression> ")"

    A number must begin with a digit (i.e., not a decimal point).
    A line of input must contain exactly one such expression.  If extra
    data is found on a line after an expression has been read, it is
    considered an error.

    In addition to the main program class, SimpleParser5, this program
    defines a set of five nested classes for implementing expression trees.

 */

public class SimpleParser5 {

//   -------------------- Nested classes for Expression Trees ------------------------------


   /**
    *  An abstract class representing any node in an expression tree.
    *  The four concrete node classes are concrete subclasses.
    *  Two instance methods are specified, so that they can be used with
    *  any ExpNode.  The value() method returns the value of the
    *  expression for a specified value of the variable, x.  
    *  The printStackCommands() method prints a list
    *  of commands that could be used to evaluate the expression on
    *  a stack machine (assuming that the value of the expression is
    *  to be left on the stack).
    *  The derivative() method returns an expression tree for the derivative 
    *  of the expression (with no attempt at simplification).  Actually,
    *  this might not be a tree, but it is a "directed acyclic graph",
    *  with no loops, so it's OK for our purposes.  The printInfix()
    *  method prints the expression in fully parenthesized form.
    */
   abstract private static class ExpNode {
      abstract double value(double xValue); 
      abstract void printStackCommands();
      abstract void printInfix();       
      abstract ExpNode derivative();
   }

   /**
    * Represents an expression node that holds a number.
    */
   private static class ConstNode extends ExpNode {
      double number;  // The number.
      ConstNode(double val) {
             // Construct a ConstNode containing the specified number.
         number = val;
      }
      double value(double xValue) {
             // The value of the node is the number that it contains.
         return number;
      }
      void printStackCommands() {
             // On a stack machine, just push the number onto the stack.
         System.out.println("  Push " + number); 
      }
      void printInfix() {
         System.out.print(number);
      }
      ExpNode derivative() {
             // The derivative of a constant is zero.
         return new ConstNode(0);
      }
   }

   
   /**
    * An expression node representing a binary operator,
    */
   private static class BinOpNode extends ExpNode {
      char op;        // The operator.
      ExpNode left;   // The expression for its left operand.
      ExpNode right;  // The expression for its right operand.
      BinOpNode(char op, ExpNode left, ExpNode right) {
             // Construct a BinOpNode containing the specified data.
         assert op == '+' || op == '-' || op == '*' || op == '/';
         assert left != null && right != null;
         this.op = op;
         this.left = left;
         this.right = right;
      }
      double value(double xValue) {
             // The value is obtained by evaluating the left and right
             // operands and combining the values with the operator.
         double x = left.value(xValue);
         double y = right.value(xValue);
         switch (op) {
         case '+':  return x + y;
         case '-':  return x - y;
         case '*':  return x * y;
         case '/':  return x / y;
         default:   return Double.NaN;  // Bad operator!
         }
      }
      void  printStackCommands() {
             // To evaluate the expression on a stack machine, first do
             // whatever is necessary to evaluate the left operand, leaving
             // the answer on the stack.  Then do the same thing for the
             // second operand.  Then apply the operator (which means popping
             // the operands, applying the operator, and pushing the result).
         left.printStackCommands();
         right.printStackCommands();
         System.out.println("  Operator " + op);
      }
      void printInfix() {              
             // Print the expression, in parentheses.
         System.out.print('(');
         left.printInfix();
         System.out.print(" " + op + " ");
         right.printInfix();
         System.out.print(')');
      }
      ExpNode derivative() {
             // Apply the derivative formulas.
         switch (op) {
         case '+':
            return new BinOpNode('+', left.derivative(), right.derivative());
         case '-':
            return new BinOpNode('-', left.derivative(), right.derivative());
         case '*':
            return new BinOpNode( '+',
                  new BinOpNode('*', left, right.derivative()),
                  new BinOpNode('*', right, left.derivative()) );
         case '/':
            return new BinOpNode( '/',
                  new BinOpNode('-', 
                        new BinOpNode('*', right, left.derivative()),
                        new BinOpNode('*', left, right.derivative())),
                        new BinOpNode('*', right, right) );
         default:
            return null;
         }
      }
   }

   
   /**
    * An expression node to represent a unary minus operator.
    */
   private static class UnaryMinusNode extends ExpNode {
      ExpNode operand;  // The operand to which the unary minus applies.
      UnaryMinusNode(ExpNode operand) {
             // Construct a UnaryMinusNode with the specified operand.
         assert operand != null;
         this.operand = operand;
      }
      double value(double xValue) {
             // The value is the negative of the value of the operand.
         double neg = operand.value(xValue);
         return -neg;
      }
      void printStackCommands() {
             // To evaluate this expression on a stack machine, first do
             // whatever is necessary to evaluate the operand, leaving the
             // operand on the stack.  Then apply the unary minus (which means
             // popping the operand, negating it, and pushing the result).
         operand.printStackCommands();
         System.out.println("  Unary minus");
      }
      void printInfix() {             
         // Print the expression, in parentheses.
         System.out.print("(-");
         operand.printInfix();
         System.out.print(')');
      }
      ExpNode derivative() {
         // The derivative of -A is -(derivative of A).
         return new UnaryMinusNode(operand.derivative());
      }
   }


   /**
    * An expression node that represents a reference to the variable, x.
    */
   private static class VariableNode extends ExpNode {
      VariableNode() {
             // Construct a VariableNode. (There is nothing to do!)
      }
      double value(double xValue) {
            // The value of the node is the value of x.
         return xValue;
      }
      void printStackCommands() {
            // On a stack machine, just push the value of X onto the stack.
         System.out.println("  Push X"); 
      }
      void printInfix() {         
         System.out.print("x");
      }
      ExpNode derivative() {
            // The derivative of x is the constant 1.
         return new ConstNode(1);
      }
   }

   
   //   -------------------------------------------------------------------------------
   

   /**
    * An object of type ParseError represents a syntax error found in 
    * the user's input.
    */
   private static class ParseError extends Exception {
      ParseError(String message) {
         super(message);
      }
   } // end nested class ParseError


   public static void main(String[] args) {

      while (true) {
         System.out.println("\n\nEnter an expression, or press return to end.");
         System.out.print("\n?  ");
         TextIO.skipBlanks();
         if ( TextIO.peek() == '\n' )
            break;
         try {
            ExpNode exp = expressionTree();
            TextIO.skipBlanks();
            if ( TextIO.peek() != '\n' )
               throw new ParseError("Extra data after end of expression.");
            TextIO.getln();
            ExpNode deriv = exp.derivative();
            System.out.println("\nA fully parenthesized expression for the derivative is:");
            System.out.print("   ");
            deriv.printInfix();
            System.out.println();
            System.out.println("\nValue of derivative at x = 0 is " + deriv.value(0));
            System.out.println("Value of derivative at x = 1 is " + deriv.value(1));
            System.out.println("Value of derivative at x = 2 is " + deriv.value(2));
            System.out.println("Value of derivative at x = 3 is " + deriv.value(3));
            System.out.println("\nOrder of postfix evaluation for derivative is:\n");
            deriv.printStackCommands();
         }
         catch (ParseError e) {
            System.out.println("\n*** Error in input:    " + e.getMessage());
            System.out.println("*** Discarding input:  " + TextIO.getln());
         }
      }

      System.out.println("\n\nDone.");

   } // end main()


   /**
    * Reads an expression from the current line of input and builds
    * an expression tree that represents the expression.
    * @return an ExpNode which is a pointer to the root node of the 
    *    expression tree
    * @throws ParseError if a syntax error is found in the input
    */
   private static ExpNode expressionTree() throws ParseError {
      TextIO.skipBlanks();
      boolean negative;  // True if there is a leading minus sign.
      negative = false;
      if (TextIO.peek() == '-') {
         TextIO.getAnyChar();
         negative = true;
      }
      ExpNode exp;       // The expression tree for the expression.
      exp = termTree();  // Start with the first term.
      if (negative)
         exp = new UnaryMinusNode(exp);
      TextIO.skipBlanks();
      while ( TextIO.peek() == '+' || TextIO.peek() == '-' ) {
             // Read the next term and combine it with the
             // previous terms into a bigger expression tree.
         char op = TextIO.getAnyChar();
         ExpNode nextTerm = termTree();
         exp = new BinOpNode(op, exp, nextTerm);
         TextIO.skipBlanks();
      }
      return exp;
   } // end expressionTree()


   /**
    * Reads a term from the current line of input and builds
    * an expression tree that represents the expression.
    * @return an ExpNode which is a pointer to the root node of the 
    *    expression tree
    * @throws ParseError if a syntax error is found in the input
    */
   private static ExpNode termTree() throws ParseError {
      TextIO.skipBlanks();
      ExpNode term;  // The expression tree representing the term.
      term = factorTree();
      TextIO.skipBlanks();
      while ( TextIO.peek() == '*' || TextIO.peek() == '/' ) {
             // Read the next factor, and combine it with the
             // previous factors into a bigger expression tree.
         char op = TextIO.getAnyChar();
         ExpNode nextFactor = factorTree();
         term = new BinOpNode(op,term,nextFactor);
         TextIO.skipBlanks();
      }
      return term;
   } // end termValue()


   /**
    * Reads a factor from the current line of input and builds
    * an expression tree that represents the expression.
    * @return an ExpNode which is a pointer to the root node of the 
    *    expression tree
    * @throws ParseError if a syntax error is found in the input
    */

   private static ExpNode factorTree() throws ParseError {
      TextIO.skipBlanks();
      char ch = TextIO.peek();
      if ( Character.isDigit(ch) ) {
             // The factor is a number.  Return a ConstNode.
         double num = TextIO.getDouble();
         return new ConstNode(num);
      }
      else if ( ch == 'x' || ch == 'X' ) { 
             // The factor is the variable x.
            TextIO.getAnyChar();   // Read the X.
            return new VariableNode();
         }
      else if ( ch == '(' ) {
             // The factor is an expression in parentheses.
             // Return a tree representing that expression.
         TextIO.getAnyChar();  // Read the "("
         ExpNode exp = expressionTree();
         TextIO.skipBlanks();
         if ( TextIO.peek() != ')' )
            throw new ParseError("Missing right parenthesis.");
         TextIO.getAnyChar();  // Read the ")"
         return exp;
      }
      else if ( ch == '\n' )
         throw new ParseError("End-of-line encountered in the middle of an expression.");
      else if ( ch == ')' )
         throw new ParseError("Extra right parenthesis.");
      else if ( ch == '+' || ch == '-' || ch == '*' || ch == '/' )
         throw new ParseError("Misplaced operator.");
      else
         throw new ParseError("Unexpected character \"" + ch + "\" encountered.");
   }  // end factorTree()


} // end class SimpleParser5
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