
CPSC 124, Spring 124 Final Exam Information

The final exam for this course is scheduled for Thursday May 6, at 7:00 PM. It will be held

in our regular classroom. The exam will be five pages long and will take most people less than

one-and-a-half hours, with a time limit of two hours.

The exam is cumulative, with some emphasis on material that was covered since the second

test. The final exam counts for 15% of your grade for the course.

The first four pages of the exam will be similar to previous tests, with a mix of definitions

and short-essay questions, programming problems, and questions that ask you to understand and

interpret Java code. You will not be asked to write any sorting subroutine, or to work with GUI

code except possibly for basic drawing on a Canvas.

The last question on the exam will be a full-page, twenty-point essay question on the topic of

program development and how it is supported by the Java programming language. Topics related to

program development include pseudocode, step-wise refinement, subroutines, top-down and bottom-

up design, object-oriented programming, design of classes and class hierarchies, state variables,

and the design of event-driven GUI programs. You should be prepared to write a coherent and

thoughtful essay on this topic.

Don’t forget that solutions to tests, quizzes, and most of the labs can be found on the course

web page. And answers to the end-of-chapter quizzes and exercises from the textbook are also

available online.

Some things that have been covered since the second test:

extending a class; subclasses and superclasses
inheritance
class hierarchies
polymorphism
object-oriented programming
class Object; every class is a direct or indirect subclass of Object
abstract classes and abstract methods
interfaces (i.e. the Java reserved word “interface”)
the special variable “this”
using “this” to access member variables hidden by local variables
the special variable “super”
using “super” to call a method from the superclass
nested classes
GUI programming: components, layout, and events
for-each loops; using for-each loops with arrays and ArrayLists
the search problem for arrays
the linear search algorithm
sorted arrays; what it means for an array to be sorted
the basic idea behind the binary search algorithm for sorted arrays
how to think about the efficiency of an algorithm
why binary search is so much faster than linear search
the basic idea of the the Selection Sort algorithm
the basic idea of the Merge Sort algorithm
why Merge Sort is so much faster than Selection Sort
the structure of two-dimensional arrays; how they are stored in memory
processing two-dimensional arrays



Important topics from earlier in the course:

algorithm
machine language, high-level programming languages, and compilers
syntax and semantics of programming languages
public static void main(String[] args)

literals, variables, expressions, and operators
Java’s primitive types, including int, double, boolean, and char
System.out.print(x), System.out.println(), and System.out.println(x)
TextIO methods: TextIO.getln(), TextIO.getlnInt(), TextIO.getlnDouble()
Math.random(); using Math.random() to make random integers
the String type; Strings are objects
String methods: str.length(), str.charAt(i), str.equals(s1), str.indexOf(ch)

control statements: if, while, for
exceptions and the try..catch statement
how to throw an exception, and why you might want to do so
programming style rules and why they are important

arrays
base type of an array
elements of an array; referring to array elements as for example A[i]
using “new” to create arrays, for example: new int[10]
basic array processing such as summing, counting, finding a max
two-dimensional arrays; using nested for loops with two-dimensional arrays

drawing on a Canvas using a GraphicsContext, g
basic color constants like Color.RED, Color.BLUE, Color.BLACK
setting drawing colors with g.setFill(c) and g.setStroke(c)
drawing subroutines: g.strokeLine, g.strokeRect, g.fillRect, g.strokeOval, g.fillOval

subroutines and parameters; formal parameters vs. actual parameters
black boxes; separation of interface from implementation
the access modifiers “public” and “private”
return types and the return statement; void
the dual nature of classes: the static part and the non-static part
scope of a variable; local variables vs. global variables
named constants and the “final” modifier; why named constants are used
packages; importing classes from packages
top-down and bottom-up design

classes and objects
instance methods and instance variables
instance variables represent “state” of objects; methods represent “behavior”
getter and setter methods and why they are used
pointers, also known as references; the special value null
assignment and equality-testing for objects
constructors; calling a constructor with “new”; writing a constructor for a class



Some sample questions from old final exams.

Here are some questions from final exams that I have given in the past in CPSC 124. This

is not meant to cover every possible topic that might be on the exam this year, but it will give you

some idea of what types of questions might be. Note that the average difficulty of the questions

on the exam will be lower than the sample of questions given here.

1. Some short programming exercises. . .
a) Use a for loop to print out all the multiples of 5 from 5 to 100, with each

number on a separate line.
b) Write a program segment that gets an integer from the user in the range 1

to 100 (inclusive). Use a while loop to make sure that the number that you get is
actually in the specified range. (You can use TextIO for input.)

c) Write a program segment that simulates rolling a pair of dice 1,000,000 times
and counts how many times the dice come up doubles (that is, how many times the
values on the two dice are the same).

d) Write a code segment to simulate the following experiment: Toss a coin over
and over, until it has come up heads ten times. At the end, print the number of times
that the coin has come up tails.

2. Show the output of each of the following program segments:

a) int x,y;

x = 100;

y = 0;

while (x > 0) {

x = x / 2;

System.out.println(x);

y++;

}

System.out.println(y);

b) int[] A,B;

A = new int[5];

B = new int[5];

A[0] = 1;

B[0] = 0;

for (int i = 1; i < 5; i++) {

A[i] = 2 * A[i-1] + 1;

B[i] = A[i] + B[i-1];

System.out.prilnln(A[i] + " " + B[i]);

}

3. The following code, although syntactically correct, has two semantic errors that would
cause exceptions at run time. The intent is to create five buttons that are initially
disabled. Find the two errors and state the problem in each case.

Button[] buttons;

buttons = new Button[5];

for (int i = 0; i <= 5; i++) {

buttons[i].setDisable(false);

}

4. Writing subroutines. . .
a) Write a subroutine to count the number of times that the number 17 occurs

in an array of type int[]. (The array should be a parameter; the return value is the
count.)

b) Write a subroutine named containsAll with return type boolean and two pa-
rameters of type String. The value of containsAll(str, chars) should be true if the



string str contains every character in the string chars. (You will need to use either
nested for loops or the string method indexOf.)

c) Write a subroutine that will strip extra spaces from a string. The parameter
of the subroutine is a String. The return value is the same string, except that every
substring of consecutive spaces has been replaced by a single space. For example,
using to represent a space, if the parameter is "Goodby cruel world",
then the value returned by the subroutine is "Goodby cruel world". (Hint: Only
include a space in the output string if the preceding character is not also a space.)

5. Suppose that Document is a class that represents a word-processing document. This
class has an instance method

public void print()

that prints the document. Write a complete subclass of class Document that has
exactly the same behavior, except that it also keeps track of the number of times that
the document has been printed (that is, the number of times that print() has been
called). The class that you write should have a method timesPrinted() that returns
the number of times that the document has been printed. (Hint: You will need to use
super.)

6. Consider the following arrays:

String[] cityNames = new String[50]; // Names of 50 cities.

String[] birdNames = new String[100]; // Names of 100 bird species.

int[][] population = new int[50][100]; // Population of each bird in each city.

Assume that the arrays have already been filled with data. The array population

contains data about the population of each of the 100 species of birds in each of the
50 cities. That is, population[b][c] is the number of birds of species number b that live
in city number c.

a) Write a code segment that will add up all the numbers in the population array
(giving the total number of birds of all species in all cities).

b) Write a code segment that will do the following for each city: Count the
number of bird species that are found in that city (that is, the number of species for
which the population is greater than zero). Then print the name of the city along
with the number of bird species found in that city.

c) Which species of bird has the largest total population? Write a code segment
that determines the answer and prints the name of the species.

0

5

10

15

20

A: 0:

1:

2:

3:

4:

7. Write a code segment to create the situation shown
in the picture, including an array of type int[] and
a variable A that points to the array. (Include the
variable declaration.)

8. Consider the following declaration of the class Student and the array stu, and assume
that the array has already been filled with data for 100 students. Write a code
segment that prints the names of all students who have an A average, that is the
average of their test1, test2, and test3 is 90 or above.



public class Student {

public String name;

public double test1;

public double test2;

public double test3;

}

Student[] stu = new Student[100];

9. We have used the expression (int)(1+6*Math.random()) to simulate the rolling of a
standard 6-sided die, but some games use dice with different numbers of sides.

a) Write a complete Java class that represents a single die with any given number
of sides. The class should have a constructor with no parameters that creates a
standard 6-sided die. It should also have a constructor with one parameter of type
int that specifies the number of sides of the die; the value of the parameter must be
greater than 1. It should have a method for rolling the die and a method for reading
the number that is currently showing on the die.

b) A certain game uses five dice, which have 4, 6, 8, 12, and 20 sides respectively.
Write Java code that creates five objects belonging to the class from part a) to rep-
resent these five dice. You can use either five separate variables or an array to hold
the data.

c) Write Java code that will roll the five dice that you created in part b) and
print the sum of the numbers showing on the five dice.

10. Some short essay questions. . .
a) Define the terms syntax and semantics as they relate to programming. Include

some examples in your discussion.
b) Some members of classes are static, and some are not. Carefully explain the

difference.
c) Discuss the new operator, why it is necessary, and how it relates to construc-

tors.
d) Describe the binary search algorithm, and explain briefly why it is so much

more efficient than linear search.
e)What does it mean for a variable to be private, and why should private variables

be used?
f) What is an algorithm? What is the difference between an algorithm and a

program?
g) What are pointers, and where are they used in Java?

11. Write a JavaFX code segment that will draw the picture shown below. Use a for loop.
There are exactly 11 lines in the picture. The scale that you use is up to you, but
your picture should have the same form as the one that is shown. You do not have to
set color or line width; just draw the lines.


