
CPSC 229, Spring 2021 Homework #10

This homework is due by noon on Saturday, May 1, and will not be accepted late. It covers
general grammars and Turing machines, Sections 4.6 and 5.1. Your answers to questions
1 to 4 can be turned in as a scanned PDF. The remaining questions ask you to construct
Turing machines using an on-line web app. Your answers can be turned in in a .txt file;
further instructions are given below.

1. (4 points) The grammar shown here on the left is for the language L = {anbncn | n ∈ N}. The
grammar on the right is for the language M = {ww | w ∈ {a, b}∗}.

S −→ XTZ
T −→ AbCT
T −→ ε
bA −→ Ab
CA −→ AC
Cb −→ bC
XA −→ aX
CZ −→ Zc
X −→ ε
Z −→ ε

S −→ HTE
T −→ aAT
T −→ bBT

Aa −→ aA
Ab −→ bA
Ba −→ aB
Bb −→ bB
AE −→ Ea
BE −→ Eb
Ha −→ aH
Hb −→ bH
HE −→ ε
T −→ ε

a) Using the grammar on the left, give a derivation for the string aabbcc, which is in L.

b) Using the grammar on the right, give a derivation for the string abaaba, which is in M .

2. (3 points) Create a general grammar for the language {anbanban | n ∈ N}, and indicate how
the grammar works. You can show how the grammar works by giving comments on the rules.
(Note that this language is similar to {anbncn | n ∈ N}. It is OK to have a grammar in which
derivations can get “stuck.” My grammar has 10 rules.)

3. (4 points) Create a general grammar for the language {www | w ∈ {a, b}∗}, and indicate how
the grammar works. You can show how the grammar works by giving comments on the rules.
(Note that this language is similar to {ww | w ∈ {a, b}∗}. Idea: Using rules similar to the above
grammar for {ww | w ∈ {a, b}∗}, make strings like abaabCDCCDHEabaab, then instead of
disappearing, the HE changes to a symbol that can convert the C’s and D’s to a’s and b’s. It
is OK to have a grammar in which derivations can get “stuck,” but it’s not too hard to extend
this idea to one that can’t get stuck. My grammar has 28 rules.)

4. (6 points) Consider the language L = {a2n | n ∈ N}.

a) Create a general grammar for the language {a2n | n ∈ N}. The grammer contains all
strings of a’s whose length is a power of 2. (As a hint, note that if you start with one
a and double it n times, then there will be 2n a’s. For full credit, write a grammar for
which derivations cannot get “stuck.” This can be done with a grammar that has seven
production rules.)

b) Explain in words why your grammar works. How can it generate every string in L? Why
can’t it generate any other strings?

c) Using your grammar, write derivations for the strings a and aaaaaaaa. Note that a = a2
0

and aaaaaaaa = q2
3
, so both of these strings are in L.



For the remaining exercises, you will turn in Turing machine programs that
will work in the web app at http://math.hws.edu/eck/js/turing-machine/TM.html.
You should turn in a plain text (.txt) file containing the programs. For some basic
instructions on how to use the web app and how to save your work into a text file,
see http://math.hws.edu/eck/js/turing-machine/TM-info.html. The program will be
demonstrated in class on Wednesday, April 21. For a couple Turing machine
programs, see the file http://math.hws.edu/eck/cs229/s21/TM-examples.txt, which
has some examples that we will look at in class. There are several more examples
that are already built into the web app.

5. (3 points) This is a small exercise to help you get used to working with the Turing machine
simulator. In class, we looked at a simple example of a Turing machine that moves to the right
searching for two $’s in a row. When (and if) it encounters them, it halts, and the machine is
left on the second $.

Create such a Turing machine in the simulator. You should assume that the tape contains
only a’s, b’s, blanks, and $’s.

This can be done using two states (in addition to the halt state), if you use the “stay”
option (S) as a direction of motion at the end. Without that option, it requires 3 states to put
the machine in the proper position at the end. If you use the “other” and “same” options for
“Old Symbol” and “New Symbol” in some of your rules, you can do this with just four or five
lines in the rule table.

6. (4 points) Create a Turing machine that checks whether the number of a’s in a string of a’s
and b’s is a multiple of 3. The input is a string of a’s and b’s with the machine positioned
on the right end of the string. The output of the computation should be 1 if the number of
a’s is a multiple of 3, and should be 0 if the number is not a multiple of 3. Note that the b’s
don’t contribute anything to the answer, but they need to be erased just like the a’s need to be
erased. (That is, the only thing left on the tape should be a 0 or 1, and the machine should be
positioned on that 0 or 1.)

7. (6 points) In class, we looked at a “binary-to-unary” converter. The input is a string of 0’s
and 1’s, considered to be a binary number. When started on the rightmost digit of a binary
number, the output of the machine is a string of a’s, where the number of a’s is equal to the
original binary number.

Write a “unary-to-binary” converter: When the machine is started on the right end of a
string of a’s as input, the output shoud be a binary number equal to the original number of a’s.
That is, the binary number should be the only thing on the tape, and the machine should be
positioned on the rightmost digit of the binary number. Your machine does not have to work
for empty input, but if you want to output the correct answer, 0, for empty input you can do it.

As an idea for the program, create the binary number to the left of the string of a’s Erase
an a from the right end of the string, move to the left end and increment the binary number,
then move back to the right end of the string of a’s.

http://math.hws.edu/eck/js/turing-machine/TM.html
http://math.hws.edu/eck/js/turing-machine/TM-info.html
http://math.hws.edu/eck/cs229/s21/TM-examples.txt

