1. (2 points) The associative law for intersection states that $A \cap (B \cap C) = (A \cap B) \cap C$ for any sets A, B, and C. Verify this law by reducing it to the associative law for propositional logic.

Answer:

\[
A \cap (B \cap C) = \{x | x \in A \cap (B \cap C)\} = \{x | (x \in A) \land ((x \in B) \land (x \in C))\} = \{x | ((x \in A) \land (x \in B)) \land (x \in C)\} = (A \cap B) \cap C
\]

2. (3 points) Let a, b, and c be values of type `int` given as hexadecimal numbers in Java as

\[
a = 0xABCD1234 \quad b = 0x5678EF09 \quad c = 0xFFFF
\]

Find the values of the following Java expressions, writing the answers as hexadecimal numbers. Do not just give the value, which you could get Java to compute for you; show enough work or explain your reasoning, to show how the answer is computed.

a) $(a << 16) | (b >>> 16)$

b) $a \& (c << 16)$

c) $(a \& (c << 16)) | (b \& c)$

Answer:

a) $a << 16$ shifts a 16 bits to the left which is four hexadecimal digits, filling in with zeros on the right, giving 0x12340000. $b >>> 16$ shifts a 16 bits to the right which is four hexadecimal digits, filling in with zeros on the left, giving 0x00005678. When those two numbers are combined with a bitwise or operation, or’ing with zero has no effect, and so the value of $(a << 16) | (b >>> 16)$ is 0x12345678.

b) By similar reasoning, $c << 16$ is 0xFFFF0000. Since and’ing with 1 has no effect and and’ing with 0 results in zero, $a \& (c << 16)$ is 0xABCD0000.

c) $b \& c$ is 0x0000EF09. (Note that 0xFFFF is still a 32-bit number, which can be written in full as 0x0000FFFF.) When the answer from part b) is or’ed with $b \& c$, the result is 0xABCD0000.

3. (4 points) Consider the two 16-bit integers n and m shown below. First, compute the three 16-bit integers $\neg n$, and $n \& m$, and $n | m$. Then, what subset of \{15, 14, \ldots, 1, 0\} does each of the integers n, m, $\neg n$, $n \& m$, and $n | m$ correspond to? (Write out each set in full using the usual set notation.)

\[
\begin{align*}
n &= 1001 1101 1000 0101 \\
m &= 0101 1001 1100 0111
\end{align*}
\]

Answer:
4. (3 points) What is computed by the following method? (Hint: Write N in binary!) Explain your answer.

```cpp
int countSomething( int N ) {
    int ct = 0;
    for (int i = 0; i <= 31; i++) {
        if ( (N & 1) == 1 ) {
            ct++;
        }
        N = N >>> 1;
    }
    return ct;
}
```

Answer:

When N is written as a binary number, it is made up of 1's and 0's. This function counts the number of 1's in that binary expansion of N. (If you think of N as representing a subset of $\{31, 30, 29, \ldots, 1, 0\}$, then the function computes the cardinality of that subset.)

The test if ((N & 1) == 1) tests whether the rightmost bit in N is 1, and if so the value of ct is incremented. The assignment $N = N >>> 1$ shifts N one bit to the right, so that the next time through the loop, the next bit from the original N is being tested. This is done 32 times, so that every bit from the original N is tested, and ct is incremented one for each bit that is a 1.

5. (2 points) Describe the set $\{1, 2, 3\} \times \mathbb{N}$. Show that you understand its structure.

Answer:

This set is similar to three copies of \mathbb{N}, one for each value in the set $\{1, 2, 3\}$. From the 1 we get elements of $\{1, 2, 3\} \times \mathbb{N}$ of the form $(1, 0), (1, 1), (1, 2), (1, 3), (1, 4), \ldots$, with one element for each number in \mathbb{N}. From the 2, we get $(2, 0), (2, 1), (2, 2), (2, 3), (2, 4), \ldots$. And similarly for the 3. We could write out the whole set using set notation with ellipses as

$$\{1, 2, 3\} \times \mathbb{N} = \{ (1,0), (1,1), (1,2), (1,3), (1,4), \ldots, (2,0), (2,1), (2,2), (2,3), (2,4), \ldots, (3,0), (3,1), (3,2), (3,3), (3,4), \ldots \}$$

6. (5 points)

a) Consider the function $f: \mathbb{Z} \to \mathbb{Z}$ given by $f(n) = n + 1$. Is f a one-to-one function? Is f an onto function? Justify your answers.

b) Now, consider the function $g: \mathbb{N} \to \mathbb{N}$ given by $g(n) = n + 1$. Is g a one-to-one function? Is g an onto function? Justify your answers.
Answer:

a) f is one-to-one. Suppose $f(n) = f(m)$. This means $n + 1 = m + 1$, which implies $n = m$.
[Here, I’ve shown that for any $n, m \in \mathbb{Z}$, if $f(n) = f(m)$, then $n = m$. This is the definition of one-to-one.] It is onto, since given $m \in \mathbb{Z}$, we can let $n = m - 1$, which is in \mathbb{Z}, and then $f(n) = m$. [Here, I’ve shown that for any $m \in \mathbb{Z}$, there is an $n \in \mathbb{Z}$ such that $f(n) = m$. This is the definition of onto.]

b) g is one-to-one by an argument identical to the proof that f is one-to-one. However, g is not onto, since there is no $n \in \mathbb{N}$ such that $f(n) = 0$. This follows from the fact that since $n \geq 0$ for all $n \in \mathbb{N}$, then $f(n) = n + 1 > 0$; so it is impossible that $f(n) = 0$. [The proof here shows that it is not the case that $\forall m \in \mathbb{N}, \exists n \in \mathbb{N}, f(n) = m$. The disproof is by giving the counterexample $m = 0$.]